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Abstract
This chapter surveys recent developments on some basic solution concepts,
like stable sets, the core, the nucleolus and the modiclus for a very special
class of cooperative games, namely assignment games with transferable
utility. The existence of a stable set for assignment games is still an open
problem.

1 Introduction

In this survey we concentrate on a subclass of transferable utility (TU) games
called assignment games and on some properties of their solutions. Assignment
games with side payments were introduced by Shapley and Shubik [23]. These
games are models of two-sided markets. Players on one side, called sellers, sup-
ply exactly one unit of some indivisible good, say, a house in exchange for money,
with players from the other side, called buyers. Each buyer has a demand for
exactly one house. When a transaction between seller i and buyer j takes place,
a certain profit aij ≥ 0 accrues. The worth of a coalition is given by an assign-
ment of the players within the coalition which maximizes the total profit of the
assigned pairs. Therefore the characteristic function is fully determined by the
profits of the mixed pairs.

Assignment games have a nonempty core and are simply dual optimal solu-
tions to the associated optimal assignment problem. It is known that prices
which competitively balance supply and demand correspond to elements in the
core. The nucleolus, lying in the lexicographic center of the nonempty core, has
∗Partially funded by N.S.F. Grant DMS 0072678.
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the additional property that it satisfies each coalition as much as possible. The
corresponding prices favor neither the sellers nor the buyers, and hence provide
some stability for the market.

To find the nucleolus for any general cooperative game, Kohlberg [11] pro-
posed a weighted sum minimization approach leading to a single, but extremely
large linear program (LP). In order to ensure that the highest excess gets the
largest weight, the second highest excess gets the second largest weight, and so
on, coefficients from a very wide range must appear in the constraints (causing
serious numerical accuracy problems even for 3-person games). Since all possi-
ble permutations of the coalitions must be present among the constraints, the
approach enlarges the size of the LP enormously. In Owen’s [16] improved ver-
sion, although one has to solve a somewhat simpler minimization problem, even
then the constraints grow exponential in terms of the number of players. Indeed
for an n-person game he reduces the problem to a linear programming problem
in 2n+1 +n variables with 4n +1 constraints, where n is the number of players.

When solving an optimal assignment problem, the ordinary primal simplex
method encounters high levels of degeneracy. It is clearly outperformed by
specifically designed algorithms, such as Kuhn’s [12] well-known Hungarian
algorithm. Also for assignment games a method based on general linear pro-
gramming is not well suited, since the combinatorial structure of the char-
acteristic function cannot be effectively translated into a continuous problem
formulation. In the spirit of combinatorial techniques for assignment problems
we apply graph-theoretic techniques to replace linear programming for locating
the nucleolus for assignment games.

We will survey properties that are unique for the core of assignment games.
Besides the nucleolus, as a point solution concept there is yet another point
solution concept for all TU cooperative games, called the modiclus. However,
it should be remarked that for assignment games another classical solution
concept, namely the bargaining setM(i)

1 , introduced by Davis and Maschler [5]
(see also [1]) simply coincides with the core for assignment games [25] (also see
[7]). While the nucleolus is defined by ranking imputations lexicographically
via excesses, the modiclus is defined by lexicographical ranking bi-excesses (for
definitions see the next section).

2 Preliminaries

A (cooperative TU) game is a pair (N, v) such that ∅ 	= N is finite and v : 2N →
R, v(∅) = 0. A coalition is a nonempty subset of N and v is the coalition
function of (N, v). A Pareto optimal payoff vector (pre-imputation) is a vector
x ∈ R

N such that x(N) = v(N), where x(S) =
∑

i∈S xi (x(∅) = 0) for every
S ⊆ N and every x ∈ R

N with
∑

i∈∅ xi = 0 by convention. A pre-imputation x
is an imputation if it is individually rational, that is, if xi ≥ v({i}) for all i ∈ N .
A game v is normalized if for any S ⊆ T ⊆ N, v(S) ≤ v(T ). Let X(N, v) and
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I(N, v) denote the set of pre-imputations and imputations, respectively. Thus,
X(N, v) is a nonempty polyhedral set and I(N, v) is a polytope. Moreover,
I(N, v) 	= ∅, if and only if

∑
i∈N v({i}) ≤ v(N). The core of (N, v), C(N, v), is

the set of all imputations x such that

x(S) ≥ v(S) for all S ⊆ N. (1)

Note that the core is always a polytope, but it may be empty even for games
that have imputations. We will assume that I(N, v) is nonempty.

2.1 The Nucleolus and the Modiclus

Let (N, v) be a game. If H = (hk)k∈D is a finite family of real-valued functions
on X = X(N, v) (the family of dissatisfaction functions) and x ∈ X, then let
θH(x) ∈ R

d (where d = |D| denotes the cardinality of D) be the vector whose
components are the numbers hk(x), k ∈ D, arranged in a nonincreasing order,
that is,

θH
t (x) = max

T⊆D,|T |=t
min
k∈T

hk(x) for all t = 1, . . . , d.

Let ≥lex denote the lexicographical ordering on R
d; that is, x ≥lex y, where

x, y ∈ R
d, if x = y or if there exists 1 ≤ t ≤ d such that xk = yk for all 1 ≤ k < t

and xt > yt. The nucleolus of H, N (H) is defined (see [9]) by

N (H) = {x ∈ X | θH(x) ≥lex θH(y) for all y ∈ X}. (2)

Let the class H be taken to be the dissatisfactions of coalitions at any x ∈ R
N

measured by e(S, x, v) = v(S)− x(S) called the excess of S at x. Now the pre-
nucleolus of (N, v) is defined to be the set N ((e(S, ·, v))S⊆N ). Indeed the pre-
nucleolus [19], N ((e(S, ·, v))S⊆N ), is a singleton, abbreviated by ν(N, v). It is
also called the nucleolus if the domain of excesses is restricted to the imputation
set.

In order to define the modiclus of (N, v) we proceed similarly. Instead
of the ordered vector of excesses we take the nonincreasingly ordered vec-
tor of bi-excesses. (Here the bi-excess of a pair (S, T ), S, T ⊆ N , at x is
the number eb(S, T, x, v) = e(S, x, v) − e(T, x, v).) The bi-excess can be seen
as the level of envy of S against T at x. The modiclus of (N, v) is the set
N
(
(eb(S, T, ·, v))S,T⊆N

)
. The modiclus denoted by ψ(N, v) is a singleton [28].

Recall that the dual game of (N, v), is defined by v∗(S) = v(N) − v(N \ S)
for all S ⊆ N . Also, recall that (N, v) is
• constant-sum if v(S) + v(N \ S)v(N) for all S ⊆ N ;
• convex if v(S) + v(T ) ≤ v(S ∩ T ) + v(S ∪ T ) for all S, T ⊆ N ;
• zero-monotonic if v(S∪{i}) ≥ v(S)+v({i}) for all i ∈ N and all S ⊆ N\{i}.

The following relationships between the modiclus and the pre-nucleolus are of
interest. (See [14] and [28,29].)
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Proposition 2.1. Let (N, v) be a game.

(1) Let ∗ : N → N∗ be a bijection such that N ∩ N∗ = ∅. If (N ∪ N∗, ṽ) is
defined by

ṽ(S ∪ T ∗) = max{v(S) + v∗(T ), v∗(S) + v(T )} for all S, T ⊆ N,

then ψi(N, v) = νi(N ∪N∗, ṽ) = νi∗(N ∪N∗, ṽ) for all i ∈ N .
(2) If (N, v) is a constant-sum game, then ψ(N, v) = ν(N, v).
(3) If (N, v) is a convex game, then ψ(N, v) ∈ C(N, v).
(4) If (N, v) is zero-monotonic, then ψ(N, v) and ν(N, v) are individually ratio-

nal.

If ν(N, v) ∈ I(N, v), then ν(N, v) is the nucleolus of (N, v).

2.2 Assignment Games

Let N = P ∪Q where P, Q is a partition of the player set N into two types of
players called sellers and buyers respectively. The players could also be colleges
and students or even men and women dating. From now on we will stick to
calling them sellers and buyers. Neither sellers nor buyers have any interest in
mutual cooperation among themselves. Suppose each seller owns an indivisible
object, say, a house which he values as worth at least ci to him. Each buyer
j has a ceiling price bij for the house of seller i. For any i ∈ P, j ∈ Q the
coalitional worth of the seller-buyer pair {i, j} is taken to be v({i, j}) = aij =
max(bij − ci, 0). Any arbitrary coalition S ⊆ N decomposes into sellers S1 and
buyers S2. Here if |S1| 	= |S2| then by introducing either dummy sellers or
dummy buyers if necessary we can assume |S1| = |S2|. We will take aij = 0 if i
or j is a dummy player, namely a dummy seller or a dummy buyer respectively.
Thus assuming |S1| = |S2|, let σS denote any arbitrary bijection σS : S1 → S2.
Given the coalition S and matrix A for player set N = P ∪ Q we define the
assignment game with characteristic function given by

vA(S) = max
σS

∑
i∈S1

aiσS(i).

If S ⊆ T, vA(S) ≤ vA(T ) and vA({i}) = 0 for all i ∈ N . Thus the pre-nucleolus
is the same as its nucleolus. The following theorem is due to Shapley and Shu-
bik [23].

Theorem 2.1. The game (N, vA) has a nonempty core. The worth of the
grand coalition N of vA is given by the following linear program:

max
∑

k∈P

∑
�∈Q ak�xk�

subject to∑
�∈Q xk̃� ≤ 1,∑
k∈P xk�̃ ≤ 1,

xk̃̃ � ≥ 0, ∀ k̃ ∈ P, �̃ ∈ Q.

(3)



On Assignment Games 183

The core of the game consists of dual optimal solutions to this linear program-
ming problem. The core of the subgame (S, v) (that is, defined by v(T ) = vA(T )
for all T ⊆ S) is the set of optimal solutions of the dual program. Hence,
(N, vA) is totally balanced, that is, (N, vA) and each of its subgames (S, vA),
∅ 	= S ⊆ N , have nonempty cores and thus ν(N, vA) ∈ C(N, vA).

The following observation was made by Sudhölter [30].

Proposition 2.2. Given an assignment game (N, vA) with sellers P and buy-
ers Q the modiclus of (N, vA) treats P and Q equally, that is, ψ(P ) = ψ(Q)
where ψ = ψ(P ∪Q, vA).

Example 2.1. [Glove Game] Let P = {1, . . . , p}, Q = {1, . . . , q}, p ≤ q,
let A = (ak�)k∈P,�∈Q be given by ak� = 1, and let v = vA. Then v(S) =
min{|S∩P |, |S∩Q|} for all S ⊆ N . Moreover, let ν = ν(N, v) and ψ = ψ(N, v).
If p = q, then νi = 1/2 = ψi for all i ∈ N . If p < q, then νk = 1 for all k ∈ P
and ν� = 0 for all � ∈ Q. Proposition 2.2 and the well-known equal treatment
property yield ψk = 1

2 for k ∈ P and ψ� = p
2q for � ∈ Q. Hence, ψ ∈ C(N, v) if

and only if p = q.

Let (P∪Q, vA) be an assignment game. As all our solution concepts satisfy the
strong null-player property, we shall always assume that |P | = |Q|. Moreover,
our solution concepts are anonymous. Hence, we shall always assume that

P = {1, . . . , p}, Q = {1′, . . . , p′}, and vA(N) =
p∑

i=1

aii′ , (4)

that is, an optimal assignment for N is attained at the diagonal {{i, i′} | i =
1, . . . , p}.

3 Core Stability and Related Concepts

It was von Neumann and Morgenstern [32] who first introduced the notion of a
stable set. Stable sets are characterized by the notions of internal stability and
external stability. The two definitions hinge on comparing pairs of imputations
for a game (N, v). We say imputation x dominates imputation y via coalition
S(x �S y) if xi > yi, i ∈ S, and

∑
i∈S xi ≤ v(S). Intuitively players in coalition

S object to their share according to y when they have a better share of the
grand coalitional worth according to x which is not a dream, but is within their
reach. A set V ⊆ I(N, v) is called internally stable if no imputations in V can
dominate another imputation in V . Further the set V is externally stable if any
imputation not in V is dominated by some imputation in V via a coalition. A
set V is called stable for a game (N, v) if V is both internally and externally
stable.
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Since the core when it exists is a polyhedral set, the problem of existence is
simply reduced to the existence of solution for a system of linear inequalities.
Using the duality theorem, the so-called Bondareva [4] and Shapley [20] the-
orem sharpens the problem to the existence of balanced collections. Thus the
existence is decidable via a simplex algorithm in a constructive fashion. Unfor-
tunately, there is no such constructive approach to the existence of a stable set
for an arbitrary game (N, v). In general games that are physically motivated
have been found to have a plethora of stable sets. It was Lucas [13] who sur-
prised game theorists by constructing a ten-person game with no stable set. In
this connection we have the following.
Open Problem: Do all assignment games admit nonempty stable sets?

There are special classes of games for which the stable set exists and is unique.
Perhaps the best-known such class is the class of convex games. In fact Shap-
ley [21] proved that for convex games the core is the unique stable set. Since
assignment games have a nonempty core, a natural question is to identify those
assignment games whose core is also stable, and hence is the unique stable set.
For assignment games we have two special imputations called the seller’s corner
and buyer’s corner. In the seller’s corner the seller takes away the full coali-
tional worth and the optimally matched mate receives nothing. In the buyer’s
corner, it is the buyer who takes away the coalitional worth, with the optimally
matched mate receiving nothing. Since domination of an imputation by another
imputation is possible only with buyer-seller coalitional pairs, the above two
extreme imputations cannot be dominated by any imputation. Thus for the
core to be a stable set, necessarily these two imputations must lie in the core.
Interestingly, that condition is also sufficient for core stability [27].

Several other sufficient conditions for the stability of the core have been
discussed in the literature.

Given an n-person game (N, v) with a nonempty core, the game admits a
Large core if and only if for any n-vector x with x(S) ≥ v(S), ∀ S ⊆ N , there
exists a core element y such that y ≤ x coordinatewise. In an unpublished paper
Kikuta and Shapley [10] investigated another condition, baptized to extendabil-
ity of the game in the work of van Gellekom et al. [31]. For a totally balanced
game (N, v) the core is extendable if and only if any core element x of any sub-
game (S, v), S ⊆ N is simply the restriction of some core element y ∈ C(N, v)
to the coordinates in S. The core of a game (N, v) is exact if and only if for any
coalition S, there is some core element x such that x(S) = v(S). Sharkey [23]
and Biswas et al. [3] proved the following.

Theorem 3.1. For any totally balanced game (N, v) we have the following:
Core is Large ⇒ Core is extendable ⇒ Core is exact.

A game (N, v) is called symmetric if for any two coalitions S, T with |S| = |T |,
v(S) = v(T ). In fact Biswas et al. [3] proved the following.
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Theorem 3.2. For any totally balanced symmetric game or for games with
|N | < 5 Core is exact ⇒ Core is extendable ⇒ core is Large.

Unfortunately, given the data of the game, (N, v) we have no easy way to
verify any of these conditions.

It turns out that for the class of assignment games, Largeness of the core,
extendability and exactness of the game are all equivalent conditions, but are
strictly stronger than the stability of the core. However for assignment games
(vA, N) many of these implications are equivalent and are easily verifiable via
the matrix A defining the assignment game.

Let A be a nonnegative real matrix such that (4) is satisfied. We say that
A has a dominant diagonal if aii′ ≥ aij′ and aii′ ≥ aji′ for all i, j ∈ P . Also,
we say that A has a doubly dominant diagonal if aii′ + ajk′ ≥ aik′ + aji′ for all
i, j, k ∈ P . Now we are able to state the following characterization [27].

Theorem 3.3. Let P = {1, . . . , p}, Q = {1′, . . . , p′}, let A be a nonnegative
real matrix on P ×Q satisfying (4), let N = P ∪Q, and let vA be the coalition
function of the corresponding assignment game.

(N, vA) has a stable core ⇔ A has a dominant diagonal.
(N, vA) has a Large core ⇔ (N, vA) has an extendable core ⇔ (N, vA) is
exact ⇔ A has a dominant and doubly dominant diagonal.
(N, vA) is convex⇔ A is a diagonal matrix (that is, aij′ 	= 0 implies j = i).

Despite Example 2.1, from the above theorem we may deduce the following
result for the modiclus [18].

Theorem 3.4. The modiclus of an assignment game is in the core, provided
the core is stable.

The authors present a 15-person game which is exact and has a Large core
and hence has a stable core and yet its modiclus is not a member of the core.

4 The Geometric Shape of the Core for Assignment Games

While Shapley and Shubik characterized the core of assignment games as dual
optimal solutions of (3), they made another key observation that given any two
core elements (u1, v1), (u2, v2), the elements (u1∨u2, v1∧v2), and (u1∧u2, v1∨
v2) are also core elements where ∨,∧ are the usual lattice operations, namely
for vectors u1, u2, (u1 ∨ u2) = max(u1, u2) where max is taken coordinatewise.

Interestingly, the dual inequalities that are used for determining the core as
the optimal dual allocations have a special geometric structure. The core is
obtained by starting with a cube bi ≤ ui ≤ ei, i = 1, . . . , p for some constants
bi, ei i = 1, . . . , p and then chopping off the 45-45-90 degree triangular cylinders
determined by inequalities of the type

ui − uk ≥ dik ∀ i, k ∈ 1, . . . , p; i 	= k
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for some constants {dik}. In fact the converse is also true, namely Quint [17]
proved the following.

Theorem 4.1. Let P be a polytope with elements (u1, . . . , up) ∈ Rp satisfying

ui − uk ≥ dik ∀ i, k ∈ 1, . . . , p; i 	= k

bi ≤ ui ≤ ei

for some constants {dik}, bi ≥ 0, ei ≥ 0 i = 1, . . . , p. Then we can always find
an assignment game with p sellers whose u space core coincides with P .

The extreme points of the core of assignment games can also be nicely rec-
ognized by the following graph-theoretic technique of Balinsky and Gale [2].
Given any core element (u, v) we can associate with the core element a graph
Γuv with vertices as P ∪Q and with edges (p, q) where up + vq = apq.

Theorem 4.2. A core element (u, v) of the assignment game vA is an extreme
point if and only if the graph Γuv is connected.

The extreme points of the cores of subgames of assignment games have the
following extension property [2].

Theorem 4.3. If (ũ, ṽ) is an extreme point of the core of some subgame on
P̃ ∪ Q̃ of an assignment game with sellers P and buyers Q and defining matrix
A, then there is an extreme point (u, v) of the polyhedron

X = {(u, v) : up + vq ≥ apq, up0 = 0, p ∈ P, q ∈ Q},

where 0 denotes the dummy buyer such that (u, v) agrees with (ũ, ṽ) on P̃ ∪ Q̃.

The cores of assignment games and convex games share the following common
properties [8,15].

Property 4.1. In each extreme point of the core allocations of an assignment
game (N, v) there is at least one player i who receives his marginal contribution
v(N)− v(N \ {i}).

Property 4.2. Every marginal contribution for any player is attained at some
core element.

5 An Algorithm to Compute the Nucleolus

Given a game (N, v) and an imputation x let f(S, x) = −e(S, x, v) (see Sec-
tion 2.1). Hence f(S, x) is the satisfaction of the coalition S at imputation x. As
we focus on assignment games, we shall henceforth always assume that (N, v)
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is zero-monotonic. Hence the nucleolus of the game is just its pre-nucleolus. We
now slightly modify our viewpoint. With H = (−f(S, ·))S⊆N the nucleolus of a
zero-monotonic game (N, v) is the unique member of the set given by the right-
hand side of (2) in which we may replace X by I(N, v) by Proposition 2.1. By
the lexicographic center of a nonempty closed convex subset D of the imputa-
tion set, we mean the unique point x∗ ∈ D which lexicographically minimizes
the vector θH(x) over D (that is, the set defined by the right-hand side of (2)
with X = D is a singleton as shown by Schmeidler [19]). Even though the deter-
mination of the nucleolus is quite difficult in general, it is possible to locate it
efficiently for special subclasses of games. We will describe an algorithm [26]
to locate the nucleolus for an assignment game. We will reinterpret the game
slightly differently as follows.

Stable Real Estate Commissions: House owners P = {U1, U2, . . . , Up},
each possessing one house, and house buyers Q = {V1, V2, . . . , Vq}, each want-
ing to buy one house, approach a common real estate agent. Not revealing
the identity of the buyers and sellers, the agent wants an up-front commission
aij ≥ 0 if he links seller Ui to buyer Vj . The sellers and buyers prefer fixed com-
missions u1, u2, . . . , up and v1, . . . , vq. The agent has no objection if they meet
his expectation for every possible link. He guarantees their money’s worth in
his effort and promises to take no commission from a seller (buyer) if he cannot
find a suitable buyer (seller).

We define P0 = P ∪ {0}, Q0 = Q ∪ {0}, ai0 = 0 ∀ i ∈ P0, a0j = 0 ∀ j ∈ Q0,
u0 := 0, v0 = 0, and all the constraints in (1) reduce to

fij(u, v) = ui + vj − aij ≥ 0 ∀ (i, j) ∈ P0 ×Q0). (5)

If σ ⊆ P ∪Q is an optimal assignment and D is the core we get

{i, j} ∈ σ ⇒ fij(u, v) = 0 ∀ (u, v) ∈ D. (6)

With the convention that (0, 0) ∈ σ we write (i, 0) ∈ σ ((0, j) ∈ σ) if in σ row
i ∈ P (column j ∈ N) is not assigned to any column j ∈ N (row i ∈ Q). Here
σ is extended to a subset of P0 ×Q0 so that (6) also expresses the fact that D
lies in the hyperplane ui = 0 (or vj = 0) for any unassigned row i (column j).
It is easily seen that

D = {(u, v) : fij(u, v) = 0 ∀ (i, j) ∈ σ, fij(u, v) ≥ 0 ∀ (i, j) 	∈ σ}. (7)

Here and from now on (i, j) 	∈ σ is written instead of (i, j) ∈ (P0, Q0) \ σ.
Among many vectors of commissions (u0, u1, . . . , um; v0, v1, . . . , vn) in D for

the agent, he wants to choose one that is “neutral” and “stable.” The lexico-
graphic center is a possible option that is neutral and stable for all pairs.

For every (u, v) ∈ D the first max(p, q) + 1 components (those coordinates
k = (i, j) corresponding to (i, j) ∈ σ) of θH(u, v) are equal to 0. Let

α1 = max
(u,v)∈D

min
(i,j)�∈σ

fij(u, v).
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Let

D1 =
{

(u, v) ∈ D : min
(i,j)�∈σ

fij(u, v) = α1

}
Let

σ1 = {(i, j) : fij(u, v) = constant on D1}.

The set σ1 can be regarded as an “assignment” between the equivalence classes
of the relation ∼1 defined on M0 and N0 by

i1 ∼1 i2 if and only if ui1 − ui2 is constant on D1,

j1 ∼1 j2 if and only if vj1 − vj2 is constant on D1,

respectively.

α2 = max
(u,v)∈D1

min
(i,j)�∈σ1

fij(u, v),

D2 =
{

(u, v) ∈ D1 : min
(i,j)�∈σ1

fij(u, v) = α2

}
,

σ2 = {(i, j) ∈ (M0, N0) : fij(u, v) is constant on D2}.

Let i ∼2 k if and only if ui−uk is a constant on D2. Observe that σ2 ⊇ σ1 ⊇ σ.
Therefore, after some t ≤ min(m, n) rounds the process terminates with

σt = {(i, j) = (M0 ×N0) : fij(u, v) is constant on Dt}.

This means that a subset of D is found that is parallel to all hyperplanes defining
D. Since they include ui = 0 for all i ∈M and vj = 0 for all j ∈ N , this subset
must consist of a single point. It can be proved [26] that this point is precisely
the lexicographic center of D.

Next we illustrate by an example how to implement the procedure leading to
the lexicographic center.

Example 5.1. We are given

A =

⎡⎣ 6 7 7
0 5 6
2 5 8

⎤⎦ ,

where P = {1, 2, 3} = Q. The unique optimal assignment for A is σ = {(1, 1),
(2, 2), (3, 3)}, i.e., the entries in the main diagonal. Starting with all commissions
collected entirely from sellers, one could use the procedure to be described below
to locate the u worst point (u1, v1) = (0, 6, 4, 6 : 0, 0, 1, 2) in D. Further with
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rows numbered 0, 1, 2, 3 and columns numbered 0, 1, 2, 3 we can read off
(u1, v1) from column 0, and row 0 of the matrix

[fij(u1, v1)] =

⎡⎢⎢⎣
0 0∗ 1 2
6 0 0∗ 1
4 4 0 0∗

6 4 2 0

⎤⎥⎥⎦ .

Even though the coordinates for the starred entries above are the next set with
higher fij values in the lexicographic ranking, they are still 0. However, from
now on there will be strict improvement with higher values when we follow the
iteration. We want to move in a direction (s, t) inside D with one end at the
extreme solution (u1, v1). Let the new point be (u2, v2) = (u1, v1) + β · (s, t)
for some β ≥ 0. Since the point (u1, v1) is the worst for all sellers in terms of
commissions in D, they would like their commissions reduced.

Since (u1, v1) is the farthest from the hyperplanes indexed by (0, 1), (1, 2) and
(2, 3) (indicated by a * in the above matrix) this translates to the requirements

s0 + t1 ≥ 1, s1 + t2 ≥ 1, s2 + t3 ≥ 1 (8)

with at least one inequality. Since we must remain in D we also have

si + ti = 0, i = 1, 2, 3. (9)

Combining (8) and (9) gives

t1 − t0 ≥ 1, t2 − t1 ≥ 1, t3 − t2 ≥ 1 (10)

with at least one equality to hold. Thus the direction for improvement for sellers
is (s, t) = (0,−1,−2,−3 : 0, 1, 2, 3). Next we determine how far we can move
along this direction inside D starting from the initial u worst corner of D. That
is

[fij((u1, v1) + β · (s, t))] =

⎡⎢⎢⎣
0 (0 + β)∗ 1 + 2β 2 + 3β

6− β 0 (0 + β)∗ 1 + 2β
4− 2β 4− β 0 (0 + β)∗

6− 3β 4− 2β (2− β)� 0

⎤⎥⎥⎦ ,

where ∗ refers to the worst satisfied coalition at the current imputation, and
# refers to the penultimate coalition. Compared to the worst satisfied mixed
coalition consisting of the dummy seller 0 with buyer 1 with satisfaction 0 + β,
the next worst hit coalition is the one with seller 3 and buyer 2 and with
satisfaction f32 = 2−β which is the first one to reach the same level as the worst
hit one when improved. To reach this common level we equate 2−β = 0+β and
we get β = 1 and (u2, v2) = (0, 5, 2, 3; 0, 1, 3, 5). It can be shown that (u2, v2) is
the u-worst corner (v-best corner) in D1.
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0 1∗ 3 5

5 0 1∗ 3 −1

2 3 0 1∗ −2

3 2 1∗ 0 −2

+1 +2 +2

β = 1.

The updated distance matrix is compactly represented by
Here the left-side border frame is the column vector u2 and the top border

frame is the row vector v2 for all the non-dummy players. We also have the
right-side frame with the column vector s = (−1,−2,−2)T and the bottom
frame with the row vector t(1, 2, 2).

They are derived from the following considerations: To improve further from
(u2, v2) = (0, 5, 2, 3; 0, 1, 3, 5) we need to find a direction to move inside D1.
Observe that the starred entries represent the worst hit coalitions at the current
point. If the rows and columns are numbered 0,1,2,3 as before, the satisfactions
of sellers with dummy buyers are given by the left-side frame. The satisfaction
of buyers with dummy sellers are given by the entries of the top frame. Thus
we have a starred value 1 at entries (0,1), (1,2), (2, 3) and (3, 2). This means
that f01(u, v) ≥ 1, f12(u, v) ≥ 1, f23(u, v) ≥ 1, f32(u, v) ≥ 1 for all (u, v) ∈ D1.
Since on D1 we have f22(u, v) = f33(u, v) ≡ 0, we have f23(u, v) = f32(u, v) ≡ 1
∀ (u, v) ∈ D1. Thus the new direction (s, t) must satisfy s0 + t1 ≥ 1, s1 + t2 ≥
1, s2 + t3 = 0, s3 + t2 = 0. Thus the direction is (s, t)(0,−1,−2,−2 : 0, 1, 2, 2).

Thus we notice that on the new set D2 ⊆ D1 not only the coalitions
(1, 1), (2, 2), (3, 3) of buyer-seller pairs have constant value for the satisfaction
at the imputations but also have constant satisfaction for the coalitions (2,3),
(3,2). Thus what were originally boxed coalitions for D1 are also boxed for D2

and so are (2, 3), (3, 2) coalitions. Now to determine the new step size β for the
new direction we proceed as follows. Consider the matrix

(1 + β∗) 3 + 2β 5 + 2β

5− β 0 (1 + β)� 2 + β −1

(2− 2β)� 3− β 0 1 −2

(3− 2β) (2− β) 1 0 −2

+1 +2 +2

β = 1

The decreasing distance f20 = 2−2β is the first to reach the increasing second
smallest distance 1 + β. It happens when β = 1/3. So the maximal distance in
this direction is β = 1/3, and the u-worst corner of the set D2 of points with the
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second smallest distance 4/3 is (u3, v3) = (0, 14/3, 4/3, 7/3; 0, 4/3, 11/3, 17/3).
The updated distance matrix is

[fij(u3, v3)] =

0 4/3∗ 11/3 17/3

14/3 0 4/3∗ 7/3

4/3∗ 8/3 0 1

7/3 5/3 1 0

.

Again (u3, v3) is the u-worst corner (v-best corner) in D2. To move inside
D2, we look for direction (s, t). Using the starred entries, (s, t) must satisfy
s0 + t1 ≥ 4/3, s1 + t2 ≥ 4/3, s2 + t0 ≥ 4/3. Also since f23(u, v) = f32(u, v) ≡ 1
on D2, we easily find the above system of inequalities inconsistent. Thus no
more movement inside is possible. We have reached the lexicographic center.

Remark 5.1. Starting with the worst set of commissions for all sellers and
using Kuhn’s Hungarian method [12], the algorithm locates the unique set of
commissions that again favors all the buyers in the restricted new domain D
of commissions. The next step is to locate the unique direction (s, t) and the
unique step size β in finding the new set of commissions. We have not used
in our example any efficient procedure to find the direction (s, t). Solymosi
and Raghavan [26] develop an explicit graph-theoretic algorithm to find this
direction. The decomposition of the payoff space and the lattice structure of
the feasible set at each iteration are utilized in associating a directed graph.
If the graph is acyclic, the problem of finding the new direction (s, t) can be
transformed to determine the longest path to each vertex of the graph. Cycles
are used to collapse vertices so that the graph has fewer vertices. The algorithm
stops when the graph is reduced to just one vertex. The assignment game is the
simplest of cooperative games which are balanced and hence have a nonempty
core. The Real Estate Game was first considered by Shapley and Shubik [23].
The same problem was viewed in the context of competitive pricing of indivisible
goods by Gale [6]. Pooling peoples’ utility functions amounts to interpersonal
comparisons and hence has remained alien to mainstream economists. For a
version of the Real Estate Game without side payments see [22].
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