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In 1985 Aumann axiomatized the Shapley NTU value by non-emptiness, efficiency, una-
nimity, scale covariance, conditional additivity, and independence of irrelevant alternatives.
We show that, when replacing unanimity by “unanimity for the grand coalition” and
translation covariance, these axioms characterize the Nash solution on the class of n-person
choice problems with reference points. A classical bargaining problem consists of a convex
feasible set that contains the disagreement point here called reference point. The feasible
set of a choice problem does not necessarily contain the reference point and may not be
convex. However, we assume that it satisfies some standard properties. Our result is robust
so that the characterization is still valid for many subclasses of choice problems, among
those is the class of classical bargaining problems. Moreover, we show that each of the
employed axioms – including independence of irrelevant alternatives – may be logically
independent of the remaining axioms.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A bargaining problem on a set N of n agents consists of a pair (S,d) where S ⊆ RN , the feasible set, is a non-empty
comprehensive set of utility profiles and d ∈ S is the disagreement point. Nash (1950) characterized the Nash solution on the
class of bargaining problems with convex feasible sets by Pareto efficiency (EFF), equal treatment of equals, scale covariance
(SCOV), and independence of irrelevant alternatives (IIA). Bargaining problems may be regarded as particular cooperative non-
transferable utility (NTU) games, and, hence, the Shapley NTU value (Shapley, 1969) is a generalization of the Nash solution.
Aumann (1985) characterized the Shapley NTU value (on the class of NTU games with closed, non-leveled, and smooth
feasible sets) by non-emptiness (NE), EFF, conditional additivity (CADD), unanimity (UNA), SCOV, and1 IIA. For n = 2, an NTU
game is either a bargaining problem or a rationing problem, i.e., a pair (S, c) where S is an aforementioned feasible set and
c ∈ RN , the profile of reference utilities, does not belong to S . The current paper extends the rationing solution of Mariotti
and Villar (2005) to non-convex rationing problems (see Theorem 3.1), and Proposition 5.1 also extends Proposition 4 of
Herrero and Villar (2010).

Several authors investigated generalizations of the Nash solution for bargaining problems with non-convex feasible sets
(Herrero, 1989; Conley and Wilkie, 1996; Zhou, 1996; Mariotti, 1998; Peters and Vermeulen, 2012). We consider both, bar-
gaining problems (i.e., surplus sharing problems) and rationing problems (i.e., bankruptcy problems), and do not assume in
general that a feasible set is convex. Thus, this paper generalizes the definition of the Nash solution and extends its char-
acterization so that it may be applied both to bargaining and to rationing problems whose feasible sets are not necessarily
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1 His additional axiom of “Closure Invariance” is not relevant for NTU games with closed feasible sets.
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convex. Hence, the class of considered problems is much larger than the standard one. Moreover, our results turn out to be
robust in the sense that they are applicable to several remarkable subsets of choice problems with reference points, e.g., to
classical bargaining problems with convex feasible sets.

Rubinstein and Zhou (1999) introduce “choice problems with reference points”, i.e., pairs (P , r) where P is a set of
feasible alternatives in some set X and r is a “reference point” in X . They do not assume that in their model the agents are
endowed with any preference relations over the set X , i.e., they do not intend to model conflicting interests in a bargaining
problem. In contrast to these authors, we specify these conflicting interests explicitly by considering the elements of P and
r itself as utility profiles. Despite of these differences in the interpretations, bargaining and rationing problems have the
same structure: They consist of a feasible set (of utility profiles) and a reference utility profile. Thus, we keep the name
and call a pair (P , r) where P ⊆ RN is a feasible set and r ∈ RN a choice problem (on N) with reference point (r) as well.
The Nash solution of a choice problem with reference point (P , r) is the Shapley NTU value of the associated NTU game if
P is non-leveled, smooth, and convex: A Pareto efficient element x of P is a Shapley NTU value if and only if, up to some
natural scaling, it is the Shapley value of the transferable utility TU game that arises when replacing P by the half-space
determined by the supporting hyperplane through x. Hence, the concept of Nash solution may be generalized to a choice
problem (P , r) with a non-convex (but still non-leveled and smooth) feasible set by replacing “supporting hyperplane” with
“tangent hyperplane” where necessary. We show that suitable versions of the axioms used by Aumann may be used to
characterize the aforementioned generalization of the Nash solution to several classes of choice problems with reference
points. The axiom UNA requires for NTU games that the solution equally divides the available one unit to the players of
S in the unanimity game of any subcoalition S of N . Thus, the unique unanimity game that may be regarded as a choice
problem with reference point (in fact a bargaining problem) is the unanimity game of the grand coalition N . Hence, UNA
and SCOV on choice problems do not longer imply translation covariance (TCOV) as in the case of NTU games. Thus, in our
results TCOV is additionally employed.

The paper is organized as follows. In Section 2 the necessary notation is provided, the definitions are presented, and
straightforward properties of the Nash solution are deduced or recalled. It is also shown that the Nash solution of a uniformly
p-smooth (in the sense of Maschler and Owen, 1992) choice problem with reference point always exists.

Section 3 is devoted to the axiomatization of the Nash solution on uniformly p-smooth choice problems with reference
points. It is shown that Aumann’s (1985) characterization of the NTU Shapley value may be resembled: The Nash solution is
characterized by NE, EFF, CADD, UNA, SCOV, TCOV, and IIA (see Theorem 3.1). In Section 4 it is shown by means of examples
that each of the employed axioms is logically independent of the remaining six axioms.

Section 5 investigates the “robustness” of Theorem 3.1. It turns out that the characterization still holds on many inter-
esting classes of choice problems with reference points. Indeed the result holds for many classes of choice problems with
convex feasible sets; e.g., for the class of classical bargaining problems with non-leveled smooth convex feasible sets, the
Nash solution is characterized by the first six axioms, i.e., IIA is not needed. Also it turns out that, if IIA is slightly modified,
the set of uniformly p-smooth choice problems may be replaced by the set of p-smooth choice problems with a non-empty
Nash solution. Finally, this section contains some remarks about the logical independence of the axioms that are employed
in the aforementioned modifications of Theorem 3.1.

Appendix A is devoted to show some technical results that are used in the preceding sections. Namely, it is shown that
for any point x of its boundary, any (uniformly) p-smooth feasible set contains a convex (uniformly) p-smooth feasible set
that contains x.

2. Preliminaries

For a finite set N we denote by RN the set of all real functions on N . So RN is the |N|-dimensional Euclidean space.
(Here and in the sequel, if D is a finite set, then |D| denotes the cardinality of D .) For x, y ∈ RN let x · y denote the scalar
product, and we write x � y if xi � yi for all i ∈ N . Moreover, we write x > y if x � y and x �= y and we write x � y if
xi > yi for all i ∈ N . We denote RN+ = {x ∈ RN | x � 0} and RN++ = {x ∈ RN | x � 0}. For every S ⊆ N , the indicator function on
S is denoted by χ S ∈ RN , i.e.,

χ S
j =

{
1, if j ∈ S,

0, if j ∈ N \ S,

and x(S) = x · χ S = ∑
i∈S xi for every x ∈ RN .

Let N be a finite non-empty set. A choice problem of N is a pair (P , r) such that r ∈ RN and P ⊆ RN is feasible (for N),
i.e.,

P �= ∅,RN ; (2.1)

P is closed; (2.2)

P is comprehensive: x ∈ P , y ∈ RN , y � x ⇒ y ∈ P . (2.3)
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We recall the definition of “uniform positive smoothness” (Maschler and Owen, 1989).

Definition 2.1. Let P ⊆ RN be feasible. Denote by ∂ P the boundary of P . The set P is smooth if

(1) at every x ∈ ∂ P there exists a unique tangent hyperplane Hx = Hx,P to P ;
(2) the mapping ∂ P → RN+ , x 
→ λx = λx,P , is continuous, where λx ∈ RN is the unique normal vector determined by the

requirements λx(N) = 1 and Hx = {y ∈ RN | λx · y = λx · x}.

Moreover, a smooth set P is positively smooth (p-smooth) if λx,P � 0 for all x ∈ ∂ P , and it is uniformly p-smooth if there
exists δ > 0 such that λx,P � δχ N for all x ∈ ∂ P .

Thus, a choice problem (P , r) is (uniformly p-)smooth if P is (uniformly p-)smooth. Note that p-smoothness of P implies
non-levelness of P , an assumption that is widely used in the corresponding literature.

Let N be a finite non-empty set. We denote by ΓN the set of all p-smooth choice problems (P , r) such that P ⊆ RN .
A solution on Γ ⊆ ΓN is a mapping σ that assigns to each (P , r) ∈ Γ a set σ(P , r) ⊆ P . Some well-known properties of a
solution σ on Γ are as follows. The solution σ satisfies

(1) non-emptiness (NE) if σ(P , r) �= ∅ ∀(P , r) ∈ Γ ;
(2) efficiency (EFF) if σ(P , r) ⊆ ∂ P ∀(P , r) ∈ Γ ;
(3) conditional additivity (CADD) if (P i, ri) ∈ Γ , i ∈ {1,2,3}, P 3 = P 1 + P 2, and2 r3 = r1 + r2 imply that

σ
(

P 3, r3) ⊇ (
σ

(
P 1, r1) + σ

(
P 2, r2)) ∩ ∂ P 3;

(4) unanimity (UNA) if (U N ,0) ∈ Γ implies σ(U N ,0) = { 1
|N|χ

N }, where

U N = {
x ∈ RN

∣∣ x(N) � 1
};

(5) scale covariance (SCOV) if for all (P , r) ∈ Γ and for all λ ∈ RN++ such that3 (λ ∗ P , λ ∗ r) ∈ Γ , σ(λ ∗ P , λ ∗ r) = λ ∗ σ(P , r);
(6) translation covariance (TCOV) if for all (P , r) ∈ Γ and y ∈ RN such that (P + {y}, r + y) ∈ Γ , σ(P + {y}, r + y) =

σ(P , r) + {y};
(7) independence of irrelevant alternatives (IIA) if (P , r), (P ′, r) ∈ Γ , P ⊆ P ′ imply that σ(P , r) ⊇ σ(P ′, r) ∩ P .
(8) independence of irrelevant expansions (IIE) if (P , r), (P ′, r) ∈ Γ , P ⊆ P ′ imply that σ(P ′, r) ⊇ σ(P , r) ∩ ∂ P ′ .

Definition 2.2. Let (P , r) ∈ ΓN . The (generalized) Nash solution of (P , r), denoted by φ(P , r), is defined by

φ(P , r) = {
x ∈ ∂ P

∣∣ (xi − ri)λ
x,P
i = (x j − r j)λ

x,P
j ∀i, j ∈ N

}
. (2.4)

Let (P , r) ∈ ΓN . If r /∈ P , i.e., r is not feasible, then (P , r) is a rationing problem (that is frequently called “bankruptcy
problem” in the literature) and

φ(P , r) =
{

x ∈ ∂ P
∣∣∣ x � r,

∏
i∈N

(ri − xi) �
∏
i∈N

(ri − yi) ∀y ∈ Hx,P ∩ {
z ∈ RN

∣∣ z � r
}}

. (2.5)

If r ∈ P , i.e., r is feasible, then (P , r) is a bargaining problem (that is also called “surplus sharing problem” in the literature)
and

φ(P , r) =
{

x ∈ ∂ P
∣∣∣ x � r,

∏
i∈N

(xi − ri) �
∏
i∈N

(yi − ri) ∀y ∈ Hx,P ∩ {
z ∈ RN

∣∣ z � r
}}

. (2.6)

Note that the generalized Nash solution selects the set of stationary points of the Nash product
∏

i∈N(xi − ri) over the set
of Pareto efficient points of P .

Remark 2.3. Let (P , r) ∈ ΓN . For x ∈ ∂ P define the TU game (N, v) = (N, vx,P
r ) by v(N) = λx,P · x and v(S) = λ

x,P
S · rS for all

S � N . Note that x ∈ φ(P , r) if and only if λx,P ∗ x is the Shapley value of (N, v) (Shapley, 1969).

In general, it is well known that a generalized Nash solution may not exist even in the case that N = {1,2}. Indeed, if
(P , r) is defined by r = 0 and P = {x ∈ RN | x1 < 0 and x2 � − 1

x2
1
}, then φ(P , r) = ∅. Thus, we denote

2 Whenever applied to sets, the “+” denotes the “Minkowski sum”.
3 We use the notation λ ∗ x = (λi xi)i∈N for all λ, x ∈ RN .
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Γ
φ
N = {

(P , r) ∈ ΓN
∣∣ φ(P , r) �= ∅}

and Γ uni
N = {

(P , r) ∈ ΓN
∣∣ P is uniformly p-smooth

}
.

We now show that Γ uni
N ⊆ Γ

φ
N .

Proposition 2.4. The generalized Nash solution of a uniformly p-smooth choice problem exists.

Proof. Let (P , r) ∈ Γ uni
N . The following three claims may be used to finish the proof:

(1) If r ∈ ∂ P , then φ(P , r) = {r}.
(2) If r /∈ P and maxx∈P ,x�r

∏
i∈N (ri − xi) exists, then

∅ �= arg max

{∏
i∈N

(ri − xi)

∣∣∣ x ∈ ∂ P , x � r

}
⊆ φ(P , r) ⊆ {x ∈ ∂ P | x � r}.

(3) If r is in the interior of P and maxx∈P ,x�r
∏

i∈N (xi − ri) exists, then

∅ �= arg max

{∏
i∈N

(xi − ri)

∣∣∣ x ∈ P , x � r

}
⊆ φ(P , r) ⊆ {x ∈ ∂ P | x � r}.

Indeed, by claim (1) we may assume that r /∈ ∂ P . If r /∈ P , then {x ∈ ∂ P | x � r} is non-empty and compact by uniform p-
smoothness so that maxx∈P ,x�r

∏
i∈N(ri − xi) exists and claim (2) finishes the proof. In the remaining case we may employ

claim (3).
We now show the three claims. The first claim is a straightforward consequence of the definition. The second inclusion

in both of the remaining claims follows immediately from the definition of φ. The first inclusions may be shown as follows.
If r /∈ P , then let y ∈ arg maxx∈P ,x�r

∏
i∈N (ri − xi). The hyperplane {z ∈ RM | λ · z = λ · y} is a tangent to the hyperbola

{z ∈ RN | r � z,
∏

i∈N(ri − zi) = t} so that y ∈ φ(P , r) by Remark 2.3. If r is in the interior of P , then the proof is similar. �
Remark 2.5. Without smoothness the Nash solution violates CADD (Aumann, 1985, Section 9, in particular Fig. 1). If P and
Q are smooth feasible sets, x ∈ P , y ∈ Q , and x + y ∈ ∂(P + Q ), then x ∈ ∂ P , y ∈ ∂ Q , and the tangent hyperplanes at x to P
and at y to Q are parallel, i.e., λx,P = λy,Q .

From Definition 2.2 and the subsequent paragraphs it may easily be deduced that the generalized Nash solution satisfies
the eight aforementioned properties on suitable subsets of ΓN which is summarized in the following corollary.

Corollary 2.6. The Nash solution on any Γ ⊆ Γ
φ
N satisfies NE, EFF, CADD, UNA, SCOV, TCOV, IIA, and IIE.

Remark 2.7. Let (P , r) ∈ ΓN .

(1) Classically (Nash, 1950) it was assumed that r ∈ P and that P is a convex set. In this case, φ(P , r) is a singleton, namely
the vector y that maximizes the Nash product

∏
i∈N (xi − ri) subject to x ∈ P that satisfy x � r.

(2) Similarly, if RN \ P is convex and r /∈ P , then φ(P , x) consists of the unique vector that maximizes
∏

i∈N (ri − xi) subject
to x � r and x ∈ ∂ P (see Eq. (2.6)).

3. Axiomatization on uniformly p-smooth choice problems

The main result of this section is the following theorem.

Theorem 3.1. The Nash solution on Γ uni
N is the unique solution that satisfies NE, EFF, CADD, UNA, SCOV, TCOV, and IIA.

Proof. By Corollary 2.6 we only have to show the uniqueness part. Let σ be a solution on Γ uni
N that satisfies the desired

axioms. Let (P , r) ∈ Γ uni
N . It remains to show that σ(P , r) = φ(P , r).

We consider first the following special cases.

(1) P = {x ∈ RN | x(N) � 0}, r = 0: Let x ∈ σ(P , r). By EFF, x(N) = 0. By CADD, x + 1
|N|χ

N ∈ σ(U N ,0). By UNA, x = 0. By NE,
σ(P , r) = {0} = φ(P , r).

(2) There exists λ ∈ RN++ such that P = {x ∈ RN | λ · x � λ · r}. In this case σ(P , r) = φ(P , r) = {r} by case (1), SCOV, and
TCOV.
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(3) There exist λ ∈ RN++ and c > λ · r such that P = {x ∈ RN | λ · x � c}. Let

P ′ = {
x ∈ RN

∣∣ λ · x � c − λ · r
}
.

By SCOV and UNA, σ(P ′,0) = φ(P ′,0) = {( c−λ·r
|N|λi

)i∈N }. By TCOV, σ(P , r) = σ(P ′,0) + {r} = φ(P , r).

(4) There exist λ ∈ RN++ and c < λ · r such that P = {x ∈ RN | λ · x � c}. Let

P ′ = {
x ∈ RN

∣∣ λ · x � −c
}

and P ′′ = {
x ∈ RN

∣∣ λ · x � 0
}
.

By EFF and CAD, σ(P ′,−r) + σ(P , r) ⊆ σ(P ′′,0). By case (1) and SCOV, σ(P ′′,0) = {0} = φ(P ′′,0). By case (3) and NE,
σ(P , r) = −σ(P ′,−r) = φ(P , r).

(5) P is convex. Let y ∈ σ(P , r). By EFF, y ∈ ∂ P . Let λ = λy,P . Then λ · y � λ · x for all x ∈ P by convexity. Let

P ′ = {
x ∈ RN

∣∣ λ · x � λ · y
}

and P ′′ = {
x ∈ RN

∣∣ λ · x � 0
}
.

By cases (2)–(4), σ(P ′′,0) = {0} = φ(P ′′,0) and σ(P ′, r) = φ(P ′, r) is a singleton. By CADD, {y} + σ(P ′′,0) ⊆ σ(P ′, r) so
that y ∈ φ(P , r) by IIA of φ. The opposite inclusion is shown similarly by interchanging the roles of σ and φ.

(6) RN \ P is convex. Let y ∈ σ(P , r). By EFF, y ∈ ∂ P . Let λ = λy,P and P ′ = {x ∈ RN | λ · x � λ · y}. By IIA and cases (2)–(4),
y ∈ σ(P ′, r) = φ(P ′, r). By IIE of φ (see Corollary 2.6), y ∈ φ(P , r).
In order to show that φ(P , r) ⊆ σ(P , r), let z ∈ φ(P , r). If r is not in the interior of P , then, by Remark 2.7(2),
|φ(P , r)| = 1 so z ∈ σ(P , r) by NE.
Hence, we may assume that r is in the interior of P . It is sufficient to find (P ′, r), (P ′′,0) ∈ Γ uni

N such that 0 ∈ ∂ P ′′ ,
RN \ P ′′ is convex, z ∈ ∂ P ′ , P ′ is convex, P ′ ⊆ P , and P = P ′ + P ′′ . Indeed, as 0 is not in the interior of P ′′ , {0} =
φ(P ′′,0) = σ(P ′′,0). Moreover, z ∈ φ(P ′, r) = σ(P ′, r) by IIE of φ and case (5) so that y ∈ σ(P , r) by CADD. Now, we
shall construct P ′ and P ′′ . Let G P ′

, G P ′′
: RN → RN be defined by

G P ′
(x) = 2y − x, G P ′′

(x) = 2x − 2y ∀x ∈ RN

and define

P ′ = {
z ∈ RN

∣∣ ∃x ∈ ∂ P : z � G P ′
(x)

}
, P ′′ = {

z ∈ RN
∣∣ ∃x ∈ ∂ P : z � G P ′′

(x)
}
.

With λ = λy,P and g = gλ,P it may easily be deduced that, for all x ∈ RN ,

gλ,P ′
(x) = −g(2y − x) and gλ,P ′′

(x) = 2g

(
x

2
+ y

)

so that ∇gλ,P ′
(x) = ∇g(2y − x) and ∇gλ,P ′′

(x) = ∇g( x
2 + y). Hence, P ′ and P ′′ are uniformly p-smooth by Remark A.1

of Appendix A. It is straightforward to verify that P ′ and P ′′ satisfy the desired properties.
(7) Now we are able to consider the general case and prove that σ(P , r) = φ(P , r).

(a) Let y ∈ σ(P , r). By EFF and Corollary A.4 there exists ( P̃ , r) ∈ Γ uni
N such that P̃ is convex, y ∈ ∂ P̃ , and P̃ ⊆ P . By

IIA, y ∈ σ( P̃ , r). By case (5), y ∈ φ( P̃ , r). By IIE of φ, y ∈ φ(P , r).
(b) In order to show the opposite inclusion, let z ∈ φ(P , r). By EFF, z ∈ ∂ P . By Corollary A.4 there exists (P ′,−r) ∈ Γ uni

N
such that P ′ is convex, P ′ ⊆ −(RN \ P ), and −z ∈ P ′ . Let P ′′ = −(RN \ P ′). By IIE of φ, z ∈ φ(P ′′, r). By case (6),
z ∈ σ(P ′′, r). By IIA, z ∈ σ(P , r). �

4. On the logical independence of the axioms

The following solution, denoted by φ̂, will be useful. For (P , r) ∈ Γ uni
N let

φ̂(P , r) =
{

φ(P , r), if r ∈ P ,

arg max{∏i∈N(ri − xi) | x ∈ ∂ P , x � r}, if r /∈ P .

By Proposition 2.4 and a careful inspection of claim (2) of its proof, φ̂ satisfies NE. In view of and EFF and UNA, because
φ̂ is a non-empty subsolution of φ. It is straightforward to verify that φ̂ satisfies SCOV, TCOV, and IIE. The following example
shows that φ̂ does not satisfy IIA provided that |N| � 2.

Example 4.1. Let |N| � 2 and X = {x ∈ RN |x � 0,
∏

i∈N (−xi) � 1}. Then X is a p-smooth feasible set. If Y = {y ∈ ∂ X | yi �
−2}, then Y �= ∅ so that P = {z ∈ RN | λy,X · z � λy,X · y ∀y ∈ Y } is uniformly p-smooth. Let r = 0. We may easily deduce
that φ(P , r) = Y . Let P ′ = P −{χ N }. By symmetry of P , φ(P ′, r) � −2χ N . Let i ∈ N . Define x̂ by x̂ j = −3 and x̂i = −1− 1

2|N|−1

and observe that x̂ ∈ ∂ P ′ . However,
∏

i∈N −x̂i = 3n−1 + 3n−1

2n−1 > 2n = ∏
i∈N 2 so that −2χ N /∈ φ̂(P ′, r). For sketches of P and

P ′ in the case |N| = 2 see Fig. 1.



Author's personal copy

224 P. Sudhölter, J.M. Zarzuelo / Games and Economic Behavior 80 (2013) 219–228

Fig. 1. Sketch of the uniformly p-smooth feasible sets P and P ′ .

We now show that φ̂ satisfies CADD.

Lemma 4.2. The solution φ̂ on Γ uni
N satisfies CADD.

Proof. For i ∈ {1,2}, let (P i, ri) ∈ Γ uni
N , xi ∈ φ̂(P i, ri) such that, with P = P 1 + P 2, r = r1 + r2, and x = x1 + x2, (P , r) ∈ Γ uni

N

and x ∈ ∂ P . By CADD of φ, x ∈ φ(P , r). It remains to show that x ∈ φ̂(P , r). If r ∈ P , then the proof is finished.
Hence, we may assume that r /∈ P . As x ∈ ∂ P , λx1,P 1 = λx2,P 2 = λx,P . By Remark 2.3, there exists c ∈ R such that (r2 −

x2) = c(r1 − x1). A careful inspection of the proof of Proposition 2.6 (see claims (1)–(3)) shows that x1 � r1 or x2 � r2.
Without loss of generality we may assume that x1 � r1. By definition of φ̂,

P 1 ⊇
{

z ∈ RN
∣∣∣ z � r1,

∏
i∈N

(
r1

i − zi
)
�

∏
i∈N

(
r1

i − x1
i

)} =: Z 1 (4.1)

Let Z = {z ∈ RN | z � r,
∏

i∈N (ri − zi) �
∏

i∈N(ri − xi)}. Two cases may occur:

(1) x2 � r2. By expression (4.1), P ⊇ {x2} + Z 1. Let z ∈ Z and define z1 = z − x2. It suffices to show that z1 ∈ Z 1. Now,
z1 � r1, because x2 � r2 and z � r. As r � x, −1 < c � 0. With a = r − z,b = r − x, and α = − c

1+c , we receive

r1 − z1 = a + αb, r1 − x1 = (1 + α)b, a,b > 0, and α � 0.

Hence, it suffices to show the following implication:

a,b ∈ RN++,
∏
i∈N

ai �
∏
i∈N

bi, α � 0 �⇒
∏
i∈N

(ai + αbi) �
∏
i∈N

(
(1 + α)bi

)
. (4.2)

Indeed, implication (4.2) may be proved by induction on |N|. If |N| = 1, then the desired implication is obviously valid.
Assume that implication (4.2) is valid for |N| � r for some r ∈ N. If |N| = r + 1, then we may assume that ak < bk for
some k ∈ N and, hence, a
 > b
 for some 
 ∈ N . Define ã ∈ RN by ãi = ai for all i ∈ N \ {k, 
}, ãkã
 = aka
 , and

ãk =
{

bk, if aka
 � bkb
,
aka


b

, otherwise.

Then

ã � 0,
∏
i∈N

ãi =
∏
i∈N

ai, and
∏
i∈N

(ãi + αbi) �
∏
i∈N

(ai + αbi).

The proof is finished by applying the inductive hypothesis, either to N \ {k}, if ãk = bk , or to N \ {
} in the other case,
i.e., if ã
 = b
 .

(2) x2 � r2. Let

Z 2 =
{

z ∈ RN
∣∣∣ z � r2,

∏
i∈N

(
r2

i − zi
)
�

∏
i∈N

(
r2

i − x2
i

)}
.

By definition of φ̂, P 2 ⊇ Z 2. As Z 1 + Z 2 ⊇ Z , the proof is finished. �
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The solution σ i, i = 1, . . . ,6, shows that the i-th axiom in Theorem 3.1 is logically independent of the remaining axioms
provided that |N| � 2. If (P , r) ∈ Γ uni

N , then

σ 1(P , r) =
{

φ(P , r), if r ∈ P \ ∂ P ,

∅, otherwise;
σ 2(P , r) =

{
φ(P , r), if r ∈ P \ ∂ P ,

φ(P , r) − RN+, otherwise;
σ 3(P , r) =

{
φ(P , r), if r ∈ P \ ∂ P ,

∂ P , otherwise;
σ 4(P , r) = ∂ P ;
σ 5(P , r) = {

x ∈ ∂ P
∣∣ x = r + tχ N for some t ∈ R

};
σ 6(P , r) = φ(P ,0).

As mentioned in Corollary 2.6, the Nash solution satisfies IIE. Hence the seven axioms employed in Theorem 3.1 imply
IIE. For completeness reasons we should like to remark that all of the axioms are needed to guarantee IIE. Indeed, each of
the foregoing examples σ 1, σ 2, σ 4, σ 5, σ 6, and φ̂ satisfies IIE. In order to show that also CADD is needed, we may replace
σ 3 by the solution σ ′ that differs from σ 3 only inasmuch as it assigns {x ∈ ∂ P | x � r} to each (P , r) with r /∈ P \ ∂ P . The
solution σ ′ inherits NE, EFF, UNA, SCOV, TCOV, and IIA from σ 3, and it satisfies IIE in addition.

5. Bargaining problems and p-smooth choice problems

This section is devoted to some modifications of Theorem 3.1 showing the robustness of this axiomatization.
We first treat p-smooth choice problems with convex feasible sets. Let Γ con

N = {(P , r) ∈ ΓN | P is convex}. A set Γ ⊆ Γ con
N

is a feasible domain of convex choice problems if

(1) Γ ⊆ Γ
φ
N ;

(2) ({x ∈ RN | x(N) � c}, r) ∈ Γ for all c ∈ R and all r ∈ RN such that r(N) � c;
(3) If (P , r) ∈ Γ and λ ∈ RN++ , then (λ ∗ P , λ ∗ r) ∈ Γ ;
(4) If (P , r) ∈ Γ and x ∈ ∂ P , then ({y ∈ RN | λx,P · y � λx,P · x}) ∈ Γ .

A careful inspection of cases (1)–(5) in the proof of Theorem 3.1 shows that this result holds when replacing Γ uni
N by

any feasible domain of convex choice problems, i.e., we have the following proposition.

Proposition 5.1. Let Γ ⊆ Γ con
N be a feasible domain. The Nash solution on Γ is the unique solution that satisfies NE, EFF, CADD, UNA,

SCOV, TCOV, and IIA.

A choice problem with reference point (P , r) is a bargaining problem if r ∈ P . In this case, we may interpret r as the
disagreement point and use the letter d instead of r. A bargaining problem (P ,d) is proper if d is an element of the interior
of P .

A careful inspection of the proof of Theorem 3.1 shows that this result still holds if Γ uni
N is replaced by the subset of

uniformly p-smooth bargaining problems on N .
Moreover, it should be noted that the set of bargaining problems (P ,d) ⊆ ΓN such that P is convex is a feasible domain

so that Proposition 5.1 applies also to this set. However, in this case, we don’t need IIA.

Theorem 5.2. Let Γ ⊆ Γ con
N consist of bargaining problems only. Then Γ ⊆ Γ

φ
N and if Γ is feasible, then the Nash solution on Γ is the

unique solution that satisfies NE, EFF, CADD, UNA, SCOV, and TCOV.

Proof. Let (P ,d) ∈ Γ . By (1) of Remark 2.7, φ(P ,d) �= ∅. In order to show the second statement, we may follow the first
part of the proof of Theorem 3.1. Indeed, we may first literally the proof until and including case (3) because IIA is not
employed in this part. Note that cases (4), (6), and (7) cannot occur. The first inclusion σ(P ,d) ⊆ φ(P ,d) of case (5) may
be literally copied – it just refers to IIA of φ. The part that shows the other inclusion with the help of IIA may now be
circumvented, because by (1) of Remark 2.7, φ(P ,d) is a singleton. �

We now check if our result may be applied to Γ
φ
N . If we want to adjust the proof of Theorem 3.1 suitably, we first notice

that we have to replace Corollary A.4 by Lemma A.3 wherever it occurs. Unfortunately, the general case (7) may not be
adjusted in a straightforward manner. In fact, if P is not uniformly p-smooth, then the convex p-smooth choice problem
( P̃ , r) whose existence is guaranteed by Lemma A.3 may not be uniformly p-smooth so that φ( P̃ , r) = ∅ might be possible.

In order to overcome this problem we employ a slightly stronger version of IIA. For the sake of completeness, we also
modify IIE. Let Γ ⊆ ΓN and σ be a solution on Γ . Then σ satisfies
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(7′) IIA’ if (P , r) ∈ ΓN , (P ′, r) ∈ Γ , P ⊆ P ′ , and σ(P ′, r) ∩ P �= ∅ imply that (P , r) ∈ Γ and σ(P ′, r) ∩ P ⊆ σ(P , r);
(8′) IIE’ if (P ′, r) ∈ ΓN , (P , r) ∈ Γ , P ⊆ P ′ , and σ(P , r) ∩ ∂ P ′ �= ∅ imply that (P ′, r) ∈ Γ and σ(P , r) ∩ ∂ P ′ ⊆ σ(P ′, r).

Note that φ satisfies IIA’ and IIE’ on Γ
φ
N . Moreover, if we replace IIA and IIE by the stronger versions wherever they occur

in the proof of Theorem 3.1, then we receive the following result.

Corollary 5.3. On the set Γ
φ
N the Nash solution is the unique solution that satisfies NE, EFF, CADD, UNA, SCOV, TCOV, and IIA’.

It should be remarked that Corollary 5.3 still holds when Γ
φ
N is replaced by the subset of all bargaining problems in Γ

φ
N .

Note that the solutions σ i , i = 1, . . . ,5, defined in Section 4 still show that the i-th axiom is logically independent of the
remaining axioms in all foregoing characterizations of the Nash solution provided |N| � 2. Moreover, σ 6 still violates TCOV
and satisfies EFF, CADD, UNA, SCOV, and IIA’ on all mentioned classes of choice problems. However, σ 6 also violates NE if
Γ contains all bargaining problems in Γ

φ
N so that, e.g., we don’t know if TCOV is really needed in Corollary 5.3.

We remark that the logical independence of IIA’ in Corollary 5.3 is an open problem.
Finally, it should be noted that our solution φ̂ defined in Section 4 still shows that IIA is needed in Proposition 5.1 if the

feasible domain consists, e.g., of all convex uniformly p-smooth choice problems. However, in general it is an open problem
if IIA is really needed. Only in the case |N| = 2 it is known that IIA is redundant if Γ = Γ con

N ∩ Γ
φ
N (Peleg et al., 2012,

Theorem 3.1).
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Appendix A

The following remarks are useful.

Remark A.1. Let N �= ∅ be finite and λ ∈ RN++ .

(1) Let P ⊆ RN be feasible. Then there is a unique function g = gλ,P : RN → R that satisfies x − g(x)λ ∈ ∂ P for all x ∈ RN .
The mapping g is continuous and satisfies

P = {
x ∈ RN

∣∣ g(x) � 0
}; (A.1)

g(x + tλ) = g(x) + t ∀x ∈ RN ∀t ∈ R; (A.2)

g is nondecreasing; (A.3)

P is smooth ⇒ ∇g(x) = λx−g(x)λ,P

λ · λx−g(x)λ,P
∀x ∈ RN , (A.4)

where, for any differentiable real function f : RN → R, ∇ f = (
∂ f
∂xi

)i∈N denotes the gradient4 of f .

(2) Let g : RN → R be a continuous mapping that satisfies Eq. (A.2) and condition (A.3). Then the set P g = P defined by
Eq. (A.1) is feasible and gλ,P = g . Moreover, if ∇g is continuous, then P is smooth, and g is convex if and only if P is
convex.

Remark A.2. Let P , Q ∈ RN be convex such that P , Q , and P + Q are feasible.

(1) If P is smooth, then P + Q is also smooth.
(2) If P is smooth and, for any y ∈ ∂ Q and any λ ∈ RN such that λ > 0 and such that H = {y′ ∈ RN | λ · y′ = λ · y} is a

supporting hyperplane at y of Q , λ � 0, then P + Q is p-smooth.
(3) If P is smooth and there exists ε > 0 such that, for any y ∈ ∂ Q and any λ ∈ RN such that λ > 0 and λ(N) = 1 and such

that H = {y′ ∈ RN | λ · y′ = λ · y} is a supporting hyperplane at y of Q , λ � εχ N , then P + Q is uniformly p-smooth.

Indeed, in order to verify Remark A.2, note that any z ∈ ∂(P + Q ) is of the form z = x + y for suitable x ∈ ∂ P and y ∈ ∂ Q
and if H = {z′ ∈ RN | λ · z′ = λ · z} for some λ � 0, λ �= 0, is a supporting hyperplane at z to P + Q , then {x′ ∈ RN | λ · x′ = λ · x}

4 By (2) of Definition 2.1, the function gλ,P is C1 provided that P is smooth.
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is a supporting hyperplane of P at x so that λ is proportional to λx,P and {y′ ∈ RN | λ · y′ = λ · y} is a supporting hyperplane
at y to Q . These observations immediately imply the desired statements.

Lemma A.3. If P ⊆ RN is a p-smooth feasible set and y ∈ ∂ P , then there exists a p-smooth feasible set P̃ ⊆ RN such that

P̃ is convex; (A.5)

y ∈ ∂ P̃ ; (A.6)

P̃ ⊆ P . (A.7)

Proof. For simplicity we may assume that y = 0 (otherwise replace P by P − {y} and y by 0). Moreover, we may assume
that λy = λy,P = 1

n χ N (otherwise replace P by λy ∗ P ). Let g = gλy ,P and X = H y,P = {x ∈ RN | λy · x = 0} = {x ∈ RN |
x(N) = 0}. Now we define G : R+ → R by the requirement that

G(t) = max
{∇g(rz) · z

∣∣ z ∈ X, ‖z‖ = 1, 0 � r � t
} ∀t � 0, (A.8)

and note that G is well-defined by Remark A.1. Moreover, G(0) = 0 and G is continuous. By the fundamental theorem of
calculus there exists a function ĝ : R → R such that ĝ′ = G and ĝ(0) = 0. As G is monotonically increasing, ĝ is a convex
function. For any z ∈ X satisfying ‖z‖ = 1, define gz : R → R by gz(t) = g(tz) for all t ∈ R+ . Then, for all t � 0,

g′
z(t) = ∇g(tz) · z � ĝ′(t) and gz(0) = 0.

Hence, we may conclude that

gz(t) � ĝ(t) ∀t ∈ R+. (A.9)

Now we are ready to define ḡ as follows: For z ∈ RN let x(z) = z − z(N)λy . Then x(z) ∈ X and we define ḡ(z) = ĝ(‖x(z)‖) +
z(N) so that ḡ(z + tλy) = ḡ(z) + t for t ∈ R. By Eq. (A.8), ḡ is symmetric in the sense that

ḡ(z) = ḡ
(
z + χ {i}(z j − zi) + χ { j}(zi − z j)

)
for all z ∈ RN and i, j ∈ N. (A.10)

By inequality (A.9) and Eq. (A.2),

g(z) � ḡ(z) ∀z ∈ RN . (A.11)

Define P̂ = {z ∈ RN | ḡ(z) � 0} − RN+ . By inequality (A.11) and comprehensiveness of P , P̂ ⊆ P . Moreover, y = 0 ∈ P̂ . It is
easy to check that, for all z ∈ RN and all i ∈ N ,

∂ ḡ

∂xi
(z) =

{
1, if x(z) = 0,

ĝ′(‖x(z)‖) xi(z)
‖x(z)‖ + 1, if x(z) �= 0.

(A.12)

As ĝ is a convex function, we conclude that P̂ is closed and convex. In order to show that P̂ is smooth, by convexity, it
suffices to show that at each z ∈ ∂ P̂ there exists a unique supporting hyperplane to P̂ . Let λ′ ∈ RN , λ′ �= 0, be some vector
such that P̂ ⊆ {z′ ∈ RN | λ′ · z′ � λ′ · z}. Then there exist x̂ ∈ RN with ḡ(x̂) � 0 and x ∈ −RN+ such that z = x̂ + x. Hence
ḡ(x̂) = 0 and x ∈ ∂(−RN+). As −RN+ is a cone, λ′ · x � 0. As λ′ · x̂ = λ′ · (x̂ + 0x) � λ′ · z = λ′ · x̂ + λ′ · x, we may conclude that
λ′ · x = 0 so that λ′ · x̂ � λ′ · z′ for all z′ ∈ RN with ḡ(z′) = 0. Thus, λ′ is proportional to ∇ ḡ(z).

Now, P̂ is p-smooth, then P̃ = P̂ satisfies the desired properties. Hence, we may assume that P̂ is not p-smooth. We now
construct a p-smooth feasible set P̃ with 1

2 P̂ ⊆ P̃ ⊆ P̂ . Note that 1
2 P̂ is a smooth convex feasible set that contains y = 0 in

its boundary. Moreover, gλy , 1
2 P̂ (z) = ḡ(2z)

2 for all z ∈ RN . For i ∈ N , let Xi = {x ∈ X | ∂ ḡ
∂zi

(x) � 1
2 }. As P̂ is not p-smooth, by

Remark A.1 (A.4), a careful inspection of Eq. (A.12) shows that Xi �= ∅ for all i ∈ N . Let x, x′ ∈ Xi such that ‖x′‖ � ‖x‖. As ĝ
is convex and ḡ(z) = ĝ(‖z‖) for all z ∈ X , ḡ(x′)/2 − ḡ(x′/2) � ḡ(x)/2 − ḡ(x/2). As Xi is closed, we may conclude that

αi = min
x∈Xi

ḡ(x)

2
− ḡ

(
x

2

)

exists. Moreover, by smoothness of P̂ , αi > 0. Finally, by Eq. (A.10) we may conclude that αi = α j for all i, j ∈ N . Now we
are ready to construct P̃ . Let ε � min{ αi|N| ,

1
2|N| } for all i ∈ N and define

Q =
{

y ∈ RN
∣∣∣ y+(N) � ε

y−(N)

1 + y−(N)

}
,

where x+ and x− denote the positive and negative part of any x ∈ RN , i.e., x+, x− ∈ RN+ such that x = x+ − x− . Note that

Q is convex and feasible and that Q ⊆ (−RN+) + {εχ N }. Let P̃ = 1
2 P̂ + Q . It is straightforward to verify that P̃ is closed so
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that P̃ is feasible. We conclude that Q satisfies the assumptions in (2) of Remark A.2. It suffices to show that P̃ ⊆ P̂ . Let
z ∈ ∂ P̃ . Then there exist x ∈ ∂( 1

2 P̂ ), y ∈ ∂ Q , and λ ∈ RN+ with λ(N) = 1 so that z = x + y and 1
2 P̂ ⊆ {x′ ∈ RN | x′ · λ � x · λ}

and Q ⊆ {y′ ∈ RN | y′ · λ � y · λ}. If |N|mini∈N λi > 1
2 , then

λ · y � −y−(N)

2|N| + y+(N) � −y−(N)

2|N| + ε
y−(N)

1 + y−(N)

� y−(N)

(
ε

1 + y−(N)
− 2

2|N|
)

� y−(N)

(
ε − 1

2|N|
)

� 0 = λ · 0

so that y = 0 and, hence, z ∈ P̂ . If |N|mini∈N λi � 1
2 , then, by construction, x + εχ N ∈ P̂ . As y � εχ N , x + y ∈ P̂ . �

Corollary A.4. Let P ⊆ RN be a uniformly p-smooth feasible set and y ∈ ∂ P . Then there exists a uniformly p-smooth feasible set
P̃ ⊆ RN that satisfies conditions (A.5)–(A.7).

Proof. By Lemma 2.1 there exists a p-smooth feasible set P̃ with the desired properties.
We shall now modify P̃ as follows: For μ > 0 let

Xμ = {
z ∈ RN

∣∣ (
μχ N\{i} + (

1 − (|N| − 1
)
μ

)
χ {i}) · z � 0 ∀i ∈ N

}
.

As P is uniformly p-smooth, for any μ > 0 with μ < min{λy
i | i ∈ N},

P + Xμ ⊆ P . (A.13)

Define P̂ = P̃ + Xμ . As a sum of two convex sets, P̂ is convex. By expressions (A.13) and (A.11), P̂ ⊆ P , and y ∈ P̂ ,
because y ∈ P̃ . As Xμ is a convex cone, {x} + Xμ ⊆ P̂ for all x ∈ P̃ . As Xμ ⊇ −RN+ , P̂ is comprehensive.

We now show that P̂ is closed. Let (x̂t + xt)t∈N be a convergent RN -sequence such that x̃t ∈ P̃ and xt ∈ Xμ for all t ∈ N.
It remains to prove that z = limt→∞ x̂t + xt ∈ P̂ . If z′ ∈ RN such that x̂t + xt � z′ for all t ∈ N, then x̂t ∈ {z′}− Xμ for all t ∈ N.
As μ < λ

y
i for all i ∈ N , {x ∈ RN | λy · x � λy · y} ∩ ({z′} − Xμ) is compact. As P̃ ⊆ {x ∈ RN | λy · x � λy · y}, P̃ ∩ ({z′} − Xμ) is

also compact. Hence, (x̂t)t∈N has a convergent subsequence, let us say, is convergent itself. We conclude that (xt)t∈N is also
convergent. As P̃ and Xμ are closed, limt→∞ x̂t ∈ P̃ and limt→∞ xt ∈ Xμ so that z = limt→∞ x̂t + limt→∞ xt ∈ P̂ . Hence P̂ is
feasible and Remark A.2 finishes the proof. �
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