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a b s t r a c t

A game with precedence constraints is a TU game with restricted cooperation, where the set of feasible
coalitions is a distributive lattice, hence generated by a partial order on the set of players. Its core may be
unbounded, and the bounded core, which is the union of all bounded faces of the core, proves to be a use-
ful solution concept in the framework of games with precedence constraints. Replacing the inequalities
that define the core by equations for a collection of coalitions results in a face of the core. A collection of
coalitions is called normal if its resulting face is bounded. The bounded core is the union of all faces cor-
responding to minimal normal collections. We show that two faces corresponding to distinct normal col-
lections may be distinct. Moreover, we prove that for superadditive games and convex games only
intersecting and nested minimal collection, respectively, are necessary. Finally, it is shown that the faces
corresponding to pairwise distinct nested normal collections may be pairwise distinct, and we provide a
means to generate all such collections.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In cooperative game theory, for a given set of players N, TU
games are functions v : 2N ! R, v(;) = 0, which express for each
nonempty coalition S # N of players the best they can achieve
by cooperation. In the classical setting, every coalition may form
without any restriction, i.e., the domain of v is indeed 2N. In prac-
tice, this assumption is often unrealistic since some coalitions may
not be feasible for various reasons, e.g., players may be political
parties with divergent opinions or restricted communication abil-
ities, or a hierarchy may exist among players and the formation
of coalitions must respect the hierarchy, etc.

Many studies have been done on games defined on specific sub-
domains of 2N, e.g., antimatroids (Algaba, Bilbao, van den Brink, &
Jiménez-Losada, 2004), convex geometries (Bilbao, 1998; Bilbao,
Lebrón, & Jiménez, 1999), distributive lattices (Faigle & Kern,
1992), or other structures (Béal, Rémila, & Solal, 2010; Faigle, Grab-
isch, & Heyne, 2010; Pulido & Sánchez-Soriano, 2006). In this pa-
per, we focus on the case of distributive lattices. To this end, we
assume that there exists some partial order � on N describing
some hierarchy or precedence constraint among players, as in Fai-
gle and Kern (1992). We say that a coalition S is feasible if the coa-
lition contains all its subordinates, i.e., i 2 S implies that any j � i

belongs to S as well. Then by Birkhoff’s theorem, feasible coalitions
form a distributive lattice.

The main problem in cooperative game theory is to define a rea-
sonable solution of the game, that is, supposing that the grand coa-
lition N will form, how to share among its members the total worth
v(N). The core (Gillies, 1959) is the most popular solution concept,
since it ensures stability of the game in the sense that no coalition
has an incentive to deviate from the grand coalition. For classical
TU games, the core is either empty or a convex bounded polyhe-
dron. However, for games whose cooperation is restricted, the
study of the core is much more complex, since it may be un-
bounded or even contain no vertices (see a survey by Grabisch
(2009)). For the case of games with precedence constraints, it is
known that the core is always unbounded or empty but contains
no line (i.e., it has vertices).

Unboundedness of the core induces difficulties in using it as a
solution concept because, on the practical side, one cannot handle
payment vectors that grow beyond any border. Moreover, from the
mathematical point of view, the core is not compact, and this prop-
erty is often required for establishing results. For example, a se-
quence of elements in the core, created by some negotiation
procedure, may not have a convergent subsequence, so that the
procedure does not help to finally select an element of the core.

Certainly there exist many ways of defining a compact subset of
the core, e.g., one may take the convex hull of its vertices. Here, we
choose another solution, called the bounded core (Grabisch & Sud-
hölter, 2012), which has a natural interpretation for games with
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precedence constraints. Indeed, the bounded core is the set of core
elements such that every player takes the maximum of her direct
subordinates, in the sense that any transfer from a subordinate
to her boss would result in a payoff vector outside the core. Also,
from a geometric point of view, the bounded core is the union of
all bounded faces of the core.

Besides, bounded faces of the core have been studied by Grab-
isch (2011) under the name restricted cores. Bounded faces arise
by turning some inequalities x(S) P v(S) of the core into equalities,
so that the resulting face does not contain any extremal ray. From a
game theoretic point of view, these additional equalities can be
seen as binding constraints for certain coalitions, and hence the
arising face is named restricted core. If the collection of coalitions
with a binding constraint does induce boundedness of the resulting
face, it is called a normal collection. In Grabisch (2011), some exam-
ples of normal collections are provided, and their properties are
studied.

The aim of this paper is to investigate the structure of the
bounded core with the help of normal collections. Specifically,
we want to address the following combinatorial problem: The
bounded core is the union of all bounded faces and, hence, it is
the union of restricted cores with respect to all possible normal
collections. However, the number of normal collections is huge,
and we do not know any efficient way to generate them. Hence,
the main question is: How can the bounded core be written as a
union of a minimal number of faces? The second question naturally
follows: How can the corresponding normal collections be
generated?

We provide complete answers to these questions for the case of
convex games and answer the first question in the case of superad-
ditive games as well as for the general case. We establish that for
the general case only minimal (in the size of the collection) normal
collections are necessary and, moreover, each minimal normal col-
lection is necessary in the sense that for each minimal normal col-
lection N , there exists a game such that there is a point in the
bounded face induced by N , which does not belong to any other
bounded face (Proposition 6). In a similar result for superadditive
games, we show that only intersecting minimal normal collections
are needed (Proposition 7).

For convex games Theorem 5 shows that only nested minimal
normal collections are needed. In this case it is proved that gener-
ically all faces that correspond to the nested minimal normal col-
lections are needed in the following sense: For any strictly
convex game the face corresponding to an arbitrary nested mini-
mal normal collection contains an element that is not contained
in a face that corresponds to any other nested minimal normal col-
lection. Finally, we show that nested minimal normal collections
can be generated by a special class of linear extensions of the par-
tial order � on N. Besides, we show a generalization of the well-
known Shapley-Ichiishi theorem for games with precedence
constraints.

The paper is organized as follows. Section 2 establishes the ba-
sic material for the rest of the paper, and it presents the notions of
restricted core, normal collection and bounded core. Section 3
studies the set of normal collections, introduces properties and re-
calls and discusses well-known examples of minimal normal col-
lections. It also shows how nested collections can be obtained by
a closure operator on a certain class of normal collections. Section 4
investigates the general case and the case of superadditive games.
It also generalizes the Bondareva-Shapley theorem (Bondareva,
1963; Shapley, 1971) by suitably generalizing the balancedness
conditions that are equivalent to the nonemptiness of bounded
faces of the core. Section 5 investigates in depth the case of convex
games, showing the fundamental role played by minimal nested
normal collections.

2. Notation, definitions and preliminaries

Let (P, �) be a finite partially ordered set (poset for short), that
is, a finite set P endowed with a reflexive, antisymmetric, and tran-
sitive relation (see, e.g., Davey & Priestley, 1990). We denote by �
the asymmetric part of �. We say that x 2 P covers y 2 P, and we de-
note it by y � � x if y � x and there is no z 2 P such that y � z � x.

We denote by min(P) and max(P), respectively, the set of the
minimal and maximal elements of (P, �). The dual of the poset
(P, �), denoted by (P, �@) (or simply P@), is the set P endowed with
the reverse order, i.e., x � y if and only if y � @x.

Throughout the paper, it is understood that any subset Q of a
poset (P, �) is endowed with� restricted to Q (we do not use a spe-
cial symbol for the restriction).

A chain C is a subset of P such that its elements are pairwise
comparable, i.e., for any two elements x, y 2 C, we have x � y or
y � x, whereas an antichain is a subset of pairwise incomparable
elements of P. A chain C is maximal if no other chain contains it
or, equivalently, if C = {x1, . . ., xq}, with x1 � � x2 � � � � � � � xq and x1 -
2min(P), xq 2max(P). Its length is q � 1. The height of i 2 P, denoted
by h(i), is the length of a longest chain from a minimal element to i.
Elements of same height k form level k, denoted by Lk. Hence, L0 -
= min(P) is the set of all minimal elements, L1 = min(PnL0), L2 -
= min(Pn(L0 [ L1)), etc. The height of N, denoted by h(N), is the
maximum of h(i) taken over all elements of N. Similarly, we define
the depth d(i) of an element i 2 N as its height in the dual poset P@.
We denote by D0 the set of all elements of depth 0, and we have
that D0 = max(P), D1 = max(PnD0), D2 = max(Pn(D0 [ D1)), etc.

A lattice is a poset (L, �), where for each x, y 2 L their supremum
x _ y and infimum x ^ y exist. The lattice is distributive if _, ^ obey
distributivity.

A subset Q # P is a downset of P if x 2 Q and y � x implies y 2 Q.
We denote by OðP;�Þ the set of downsets of (P, �). It is a well-
known fact that ðOðP;�Þ; # Þ is a distributive lattice and every dis-
tributive lattice arises that way (Birkhoff, 1933). We denote by ;x
the downset generated by an element x 2 P, that is,
;x = {y 2 Pjy � x}. Similarly, for any Q # P, ;Q =

S
x2Q ;x.

Let N be a finite set of n players. A set system F on N is a collec-
tion of subsets of N containing N and ;. Any nonempty subset in F

is called a feasible coalition. We define a cooperative TU game with
restricted cooperation (or simply a game) on F as the pair ðF ;vÞ,
with v : F ! R, such that v(;) = 0.

In this paper we focus on a particular case of set systems, intro-
duced by Faigle and Kern (1992) (games with precedence con-
straints). We consider a partial order � on N, which may express
precedence constraints among players, or hierarchical relations. A
coalition S is feasible if whenever i 2 S, all subordinates of i also be-
long to S, i.e., S is a downset of (N, �). In other words, F ¼ OðN;�Þ,
and hence F , partially ordered by inclusion, is a distributive lattice,
where supremum and infimum are, respectively, [, \. In the sequel
we often omit braces for singletons, writing, e.g., 1i instead of 1{i}.

A game ðF ;vÞ with F ¼ OðN;�Þ is convex if

vðS [ TÞ þ vðS \ TÞP vðSÞ þ vðTÞ for all S; T 2 F : ð1Þ

It is superadditive if the above inequalities are valid for disjoint sets
S, T. It is strictly convex if the inequalities (1) are strict for
SnT – ;– TnS.

The following lemma extends a classical result when F ¼ 2N .

Lemma 1. Let F ¼ OðN;�Þ and ðF ;vÞ be a game. Then ðF ;vÞ is
convex if and only if for all i 2 N,

vðP [ iÞ � vðPÞ 6 vðQ [ iÞ � vðQÞ for all P$Q # N n i with P

[ i;Q

2 F ; ð2Þ

710 M. Grabisch, P. Sudhölter / European Journal of Operational Research 235 (2014) 709–717



Author's personal copy

and it is strictly convex if for all i 2 N all inequalities (2) are strict.

Proof. In order to show that (1) implies (2), put S = P [ i and T = Q,
and observe that S \ T = P and S [ T = Q [ i. For the other implica-
tion we may select i1, . . ., ip 2 N, where p = jSnTj, such that
ðS \ TÞ [ fi1; . . . ; img 2 F for all m = 1, . . ., p � 1 and SnT = {i1, . . .,
ip} (it suffices that ik § i‘ for k > ‘). By (2),

vðSÞ � vðS \ TÞ ¼
Xp

m¼1

ðvððS \ TÞ [ fi1; . . . ; imgÞ � vððS \ TÞ

[ fi1; . . . ; im�1gÞÞ

6

Xp

m¼1

ðvðT [ fi1; . . . ; imgÞ � vðT [ fi1; . . . ; im�1gÞÞ

¼ vðS [ TÞ � vðTÞ;

where the last inequality is strict whenever the inequalities (2)
are. h

The core of a game ðF ;vÞ is defined as follows:

CðF ;vÞ ¼ fx 2 Rn j xðSÞP vðSÞ for all S 2 F ; and xðNÞ ¼ vðNÞg;

where xðSÞ ¼
P

i2Sxi, with the convention x(;) = 0. By definition, it is
a convex closed polyhedron. In the case F ¼ OðN;�Þ, Derks and Gil-
les (1995) showed (as well as Tomizawa (1983), in a refined form)
that it contains no line and found its rays – see also Fujishige (2005,
Theorem 3.26). It is well known from the theory of polyhedra that
the core can be written as the Minkowski sum of its convex part
and its conic part:

CðF ;vÞ ¼ convðextðCðF ;vÞÞÞ þ CðF ;0Þ;

where ext(�) and conv(�) denote the extreme points of some convex
set and the convex hull of a set, respectively. Note that the conic
part is obtained by replacing v by the zero function; hence the conic
part depends solely on F .

The characteristic function of S # N is denoted by 1S. When
F ¼ OðN;�Þ, extremal rays of the core are generated by 1j � 1i

for every i, j 2 N such that j � � i in (N, �). Therefore, extremal rays
correspond bijectively to edges in the Hasse diagram of (N, �).
Moreover, unless F ¼ 2N , there is at least one extremal ray so that
CðF ;0Þ is unbounded. Hence, we conclude that in the case
F – 2N; CðF ;vÞ is either empty or unbounded.

From the normative point of view, a closed but unbounded
solution set to a game may be attacked on the grounds that a se-
quence of elements of this set, e.g., created by some negotiation
procedure, may not have a convergent subsequence so that the
procedure does not help to finally select an element of the set. Also,
there is no ‘‘fair’’ chance move in the sense that there does not exist
a uniformly distributed random variable on an unbounded core.
However, there exists a compact subset of the core called the
bounded core, (a) the definition of which has a plausible interpre-
tation, and (b) which is characterized by some intuitive and simple
properties (Grabisch & Sudhölter, 2012) that also characterize the
core on the class of games with unrestricted cooperation (Hwang
& Sudhölter, 2001). Indeed, the bounded core CbðF ;vÞ of ðF ;vÞ is
the set of elements x of CðF ;vÞ that satisfy the following condition
for any i, j 2 N such that j � � i: There is no e > 0 such that
xþ eð1i � 1jÞ 2 CðF ;vÞ. Hence, the bounded core is the set of core
elements such that every player takes the maximum of her direct
subordinates, in the sense that any transfer from a subordinate
to her boss would result in a payoff vector outside the core. Also,
the bounded core is the union of all bounded faces of CðF ;vÞ,1 so

that the convex part of CðF ; vÞ is the convex hull of CbðF ;vÞ. If non-
empty, it coincides with the core if and only if F ¼ 2N . In this paper
we investigate these bounded faces.

In Grabisch (2011), some of the inequalities x(S) P v(S) are
turned into equalities so that no extremal ray exists any more.
These equalities can be considered as additional binding con-
straints on certain coalitions. We call normal collection any collec-
tion N #F n f;;Ng such that

CN ðF ;vÞ ¼ fx 2 Rn j xðSÞP vðSÞ 8S 2 F ; xðSÞ ¼ vðSÞ 8S

2 N ; and xðNÞ ¼ vðNÞg

is bounded for all games ðF ;vÞ on F . Note that N is normal if and
only if CN ðF ; 0Þ ¼ f0g. It is remarked that the empty collection is
normal if and only if F ¼ 2N . We call CN ðF ;vÞ the restricted core
with respect to (w.r.t.) N .

We denote by NCðFÞ the set of normal collections on F . In
Grabisch (2011), several normal collections are proposed (see Sec-
tion 3). When F ¼ OðN;�Þ, it is proved that a normal collection
contains at least h(N) sets, where h(N) is the height of (N, �).

We say that an extremal ray r of CðF ;0Þ is deleted by equality
x(S) = 0 if CfSgðF ;0Þ ¼ fx 2 CðF ;0Þ j xðSÞ ¼ 0g does not contain r
any more. The following result from Grabisch (2011) is
fundamental.

Lemma 2. Let F ¼ OðN;�Þ. For i, j 2 N such that j � � i, the extremal
ray generated by 1j � 1i is deleted by equality x(S) = 0 if and only if
S 3 j and S 63 i.

Geometrically, a restricted core CN ðF ;vÞ, whenever nonempty,
is a bounded face of the core CðF ;vÞ because it is bounded and de-
fined by just turning some constraints that determine the core into
binding constraints. The following result shows the relation be-
tween the two concepts (Grabisch & Sudhölter, 2012).

Proposition 1. Let F ¼ OðN;�Þ, and consider any game ðF ;vÞ. Then

CbðF ;vÞ ¼
[

N2NCðF Þ
CN ðF ;vÞ:

3. The set of normal collections

Let (N, �) be a poset and consider F ¼ OðN;�Þ. In order to avoid
pathologic cases we assume throughout this section that �– ;, i.e.,
h(N) > 0 or, equivalently, F$2N . We now define some possible
properties of a normal collection.

Definition 1. For T #F denote gðT Þ ¼
P

S2T jSj. A normal collec-
tion N is called minimal, short, or nested if N does not contain a
normal proper subcollection, if jN j ¼ hðNÞ, or if N is a chain in F ,
respectively. Moreover, we say that a normal collection N is thinner
than a normal collection N

0 if gðN Þ < gðN 0Þ and there exists an
injection i : N ! N

0 such that S # i(S) for all S 2 N . The normal
collection is thinnest if there is no thinner normal collection.

Proposition 2. Let N and N
0 be normal collections. Then N is thinner

than N
0 if and only if t ¼ gðN 0Þ � gðN Þ > 0 and there exist normal

collections N ¼ N 0; . . . ;N t ¼ N
0 such that N j is thinner than N jþ1

for all j = 0, . . ., t � 1.

Proof. The ‘‘if-part’’ is an immediate consequence of the transitiv-
ity of the relation thinner. In order to show the ‘‘only-if-part’’ we
proceed by induction on t. If t = 1, then this part is valid by the def-
inition of thinner. We assume now that the statement is shown for
all 1 6 t < r for some r > 1. If t = r, let i satisfy the properties of Def-
inition 1. Two cases may occur.

1 Thus, the suitably normalized sum of the Lebesgue measures on those bounded
faces that have maximal dimension may be regarded as uniform probability measure
on a nonempty bounded core – see Dembski (1990) for the definition of uniform
probability measures.
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jN j < jN 0j: In this case select any S0 2 N
0 n iðN Þ, i 2min(S0) and

define N
00 ¼ N [ ffigg. As N

00 contains N , it is still normal.
Moreover, N is thinner than N

00
;N

00 is thinner than N
0, and

gðN 00Þ ¼ gðN Þ þ 1 so that, by the inductive hypothesis, the proof is
complete.
jN j ¼ jN 0j: In this case A ¼ fS 2 N j S$iðSÞg – ;. Let S0 2 A such

that a = min{h(i)ji 2 i(S0)nS0} 6min{h(i)j i 2 i(S)nS} for all S 2 A and
let i 2 i(S0)nS0 with h(i) = a. Then T ¼ S0 [ fig 2 F . Define
N
00 ¼ ðN n fS0gÞ [ fTg. As S # T # i(S0) and gðN 00Þ ¼ gðN Þ þ 1, it

remains to show that N
00 is normal. Let j 2 N such that j � � i. It

suffices to prove that there exists S00 2 N
00 with i R S00 3 j. Let S0 2 N

0

with i R S0 3 j and denote S = i�1(S0). If S R A, then S = i(S) = S0. If
S 2 A, then j 2 S because h(j) < h(i). In any case we have i R S 3 j and
S – S0. Hence, S00 ¼ S 2 N

00. h

By Proposition 2, a normal collection is thinnest if and only if
none of its members may be deleted or replaced by a proper subset
without losing normality. Hence, a thinnest normal collection is
minimal, but the converse may not be true (see Example 3). More-
over, note that any short normal collection is minimal, but the con-
verse is not true (see Example 5).

We give some elementary properties of normal collections.

Lemma 3. Let N ¼ fN1; . . . ;Nqg, N1 $ � � � $ Nq, be a nested normal
collection, and denote N0 = ; and Nq+1 = N. Then NknNk�1 is an
antichain in (N, �) for k = 1, . . ., q + 1.

Proof. If NknNk�1 is not an antichain, then there exist i, j 2 NknNk�1

such that i � � j. Since N is nested, no set in N will contain i and not
j. Then by Lemma 2, the ray 1i � 1j is not deleted by an equation of
the form x(S) = 0 where S 2N . h

Lemma 4. Suppose that N is a collection containing a set S such that
N n S 2 F . If N is normal, then N n fSg is normal.

Proof. If there were an element S 2 N such that N n S 2 F , then the
condition x(S) = 0 would not eliminate any extremal ray because
j 2 S and j � � i would imply i 2 S. Therefore, S can be discarded
from N . h

Lemma 5. Let N be a normal collection that contains two disjoint
sets P and Q with P [ Q – N. If N 0 ¼ ðN n fP;QgÞ [ fP [ Qg, then N

0

is a normal collection, and CN ðF ;vÞ# CN 0 ðF ;vÞ for every superaddi-
tive game ðF ;vÞ.

Proof. As F ¼ OðN;�Þ; P [ Q 2 F . Let i, j 2 N such that j � � i. If
j 2 P 63 i, then i R Q because Q 2 OðN;�Þ and P \ Q = ;. Similarly, if
j 2 Q 63 i, then i R P. Hence, N 0 is still normal by Lemma 2. Now,
let x 2 CN ðF ;vÞ. Then x(T) = v(T) for all T 2 N

0 n fP [ Qg, x(S) P v(S)
for all S 2 F nN 0, x(N) = v(N), x(P) = v(P), and x(Q) = v(Q),
x(P [ Q) P v(P [ Q) P v(P) + v(Q), where the last inequality is valid
by superadditivity. Hence, x(P [ Q) = v(P [ Q), so that
x 2 CN 0ðF ; vÞ. h

We now provide some examples of special short normal collec-
tions discussed in the literature. The upwards normal collection N

u

is built from the successive removal of minimal elements, the
downwards normal collection N

d is built from the successive re-
moval of maximal elements, and the collection N

GX may be seen
as a dual of N

d. Formally, these collections are defined by (for
the definitions of h(N), Lk, Dk, etc., see Section 2)

N
u ¼ fNu

1; . . . ;Nu
hðNÞg;N

d ¼ Nd
1; . . . ;Nd

hðNÞ

n o
; and N

GX

¼ NGX
1 ; . . . ;NGX

hðNÞ

n o
;

where for every k = 1, . . ., h(N),

Nu
k ¼# ðLk�1 nmaxðNÞÞ;

Nd
k ¼ Dk [ � � � [ DhðNÞ; and

NGX
k ¼ L0 [ � � � [ Lk�1:

Clearly, N
d and N

GX are nested normal collections. Moreover,
Grabisch (2011) shows that N

u is thinnest, and Grabisch and
Xie (2011) verify that N

GX is a ‘‘thickest’’ short normal collection,
i.e., N

GX is not thinner than any other short normal collection.
For the sake of completeness we now verify that N

d is also
thinnest.

Proposition 3. The downwards normal collection is thinnest.

Proof. Consider Nd
‘ ¼ D‘ [ � � � [ DhðNÞ for some 1 6 ‘ 6 h(N), and

remove an element k from it which is maximal in this set (if not,
one cannot remove it since Nd

‘ n fkg would not be a downset). Note
that k 2 D‘. Then there exists an element j such that k � � j. There-
fore, the ray 1k � 1j is not deleted by Nd

‘ n fkg. Since k 2 D‘, it fol-
lows that k R Nd

‘þ1, so that ray 1k � 1j remains. h

Example 1. Consider the poset (N, P) of 9 elements, the Hasse dia-
gram of which is depicted below.

We have L0 = {1, 2, 3}, L1 = {4, 5, 6, 9}, L2 = {7, 8}, and D0 = {7, 8,
9}, D1 = {2, 4, 5, 6}, D2 = {1, 3}. The upwards collection is {123,
13456}, the downwards collection is {123456, 13}, and
N

GX ¼ f123;1234569g (where it is understood that 123 is a
shorthand for {1, 2, 3}, etc.).

We now show that the upwards normal collection and many
other normal collections, though not necessarily nested them-
selves (see the foregoing example), may generate nested normal
collections. In general, let N be a normal collection. An ordering
of N is a bijection r : N ! f1; . . . ; jN jg. For every ordering r define
N r ¼ f

Sk
i¼1r�1ðiÞ j k ¼ 1; . . . ; jN jg, called the nested closure of N at

r. We call r feasible if

r�1ðkÞ n
[k�1

‘¼1
r�1ð‘Þ is an antichain of ðN;�Þ for all k

¼ 1; . . . ; jN j: ð3Þ

Example 2 (Example 1 continued). Consider the normal collection
N ¼ f136;134;125g. Then N has no feasible ordering because
none of its elements is an antichain.

Theorem 1. The nested closure of a normal collection at an ordering
is normal if and only if the ordering is feasible.

Proof. Consider a normal collection N , an ordering r of N , and let
N r ¼ fN1; . . . ;Nqg its nested closure, i.e., Nk ¼

Sk
i¼1r�1ðiÞ.

Suppose that N r is not normal. Then there exists a ray 1i � 1j

with i � � j, which is not deleted by N r, i.e., any set in
Nj; j ¼ 1; . . . ; q, either contains both i and j or none of them. Since
N r is nested, there exists some k 2 {1, . . ., q} such that N1; . . . ;Nk
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contain neither i nor j, and Nkþ1; . . . ;Nq contain both i and j.
Therefore, in N , r�1(1), . . ., r�1(k) contain neither i nor j, while
r�1(k + 1) contains them both. Since i � � j, this contradicts (3) and,
hence, r is not a feasible ordering.

Conversely, suppose that r is not feasible for N . Then there
exist i, j 2 N with i � j, and k 2 {1, . . ., q} such that r�1(k) contains
both i, j, while the sets r�1(k � 1), . . ., r�1(1) contain none of them.
Then, Nk n Nk�1 is not an antichain, and by Lemma 3, we conclude
that N r is not normal. h

The nested closure of the upwards normal collection N
u at the

ordering r given by r Nu
k

� �
¼ k for k = 1, . . ., h(N) is denoted by

N
W ¼ fNW

1 ; . . . ;NW
hðNÞg, and it is called the Weber collection (Grab-

isch, 2011). We have

NW
k ¼

[k

‘¼1
Nu
‘ ¼

[k�1

j¼0
Lj nmaxðNÞ for k ¼ 1; . . . ;hðNÞ;

so that, by Theorem 1, N W is normal. The Weber collection is also
short and therefore minimal.

Proposition 4. For the upwards collection the ordering r defined by
r Nu

k

� �
¼ k, for k = 1, . . ., h(N), is the unique feasible ordering.

Proof. Only uniqueness has to be shown. Let s – r be an ordering
and k be minimal such that s�1ðkÞ – Nu

k , say s�1ðkÞ ¼ Nu
‘ for some

‘ > k. Choose i0 2 L‘�1nmax(N). Then there exists j 2 L‘�2 such that
j � � io. It follows that i0; j 2 s�1ðkÞ n

Sk�1
i¼1 s�1ðiÞ so that N s is not

normal by Theorem 1. h

Moreover, as
Sk

j¼0Lj � DhðNÞ�k for all k = 0, . . ., h(N), we conclude
that

Nd
hðNÞþ1�k ¼

[hðNÞ

‘¼hðNÞþ1�k
D‘ #

[k�1

j¼0
Lj nmaxðNÞ ¼ NW

k for all k

¼ 1; . . . ;hðNÞ;

so that we have deduced the following relations with N
GX and N

d.

Proposition 5. The normal collection N
d either coincides with or is

thinner than the normal collection N
W, and N

W either coincides with
or is thinner than the normal collection N

GX.
By means of Example 3 it is shown that Weber collection may

neither coincide with the downwards normal collection nor with
the collection N

GX.

Example 3. (Example 1 continued) The Weber collection is
{123,123456}, and hence the downwards collection is thinner
than the Weber collection that is thinner than the collection N

GX.
The ‘‘opposite’’ construction of a nested closure is that of the

‘‘opening’’. For any nested normal collection N ¼ fN1; . . . ;Nqg, N1 -
$ � � � $ Nq, define its opening by

N
� ¼ fN1; # ðN2 n N1Þ; . . . ; # ðNq n ðN1 [ � � � [ Nq�1ÞÞg:

Corollary 1. The opening of a nested normal collection is normal, and
every nested normal collection is a nested closure of its opening.

4. Arbitrary and superadditive games

Throughout this section we assume that (N, �) is a poset and
that F ¼ OðN;�Þ. Let N be a normal collection and ðF ;vÞ a game.
Whether CN ðF ; vÞ is empty or not depends on both the normal col-
lection and the game. It may happen that CN ðF ;vÞ is empty while
CðF ;vÞ is not. If CN ðF ; vÞ is nonempty, then it is a bounded face of
CðF ;vÞ. Moreover, if N #N

0 2 F , then CN 0 ðF ;vÞ# CN ðF ;vÞ so that,
by Proposition 1,

CbðF ;vÞ ¼
[

N2MNCðF Þ
CN ðF ; vÞ; ð4Þ

where MNCðF Þ denotes the set of minimal normal collections on
F . Regardless of the game v it cannot be expected that all the sets
CN ðF ;vÞ are pairwise distinct as shown by means of Example 4.

Example 4. Let N = {1, 2, 3} and (N, �) be given by 1 � 2, 3. There
are two minimal normal collections, namely N 1 ¼ f1g and
N 2 ¼ f12;13g. Moreover, CN 1

ðF ;vÞ – ; if and only if
v(12) + v(13) 6 v(1) + v(N), and CN 2

ðF ;vÞ – ; if and only if
v(12) + v(13) P v(1) + v(N). In the case that
v(12) + v(13) = v(1) + v(N), CN 1

ðF ;vÞ ¼ CN 2
ðF ;vÞ is the singleton

{(v(1), v(12) � v(1), v(13) � v(1))}. Hence, in any case either
CbðF ;vÞ ¼ CN 1

ðF ;vÞ or CbðF ;vÞ ¼ CN 2
ðF ;vÞ.

Nevertheless, all sets CN ðF ;vÞ are needed in Eq. (4) in the fol-
lowing sense.

Proposition 6. For each N 0 2MNCðFÞ there exists a game ðF ;vÞ
such that

CbðF ;vÞ n
[

N2MNCðF ÞnfN 0g
CN ðF ;vÞ– ;:

Proof. Let v be defined by v(S) = 0 for all S 2 N 0 [ fN; ;g and
v(T) = �1 for all T 2 F n ðN 0 [ f;;NgÞ. Then 0 2 RN belongs to
CN 0 ðF ;vÞ and, hence, to CbðF ;vÞ, but not to CN ðF ; vÞ for any other
minimal normal collection N . h

For superadditive games not all minimal normal collections
may be needed in Eq. (4). Recall that a collection of sets is called
intersecting if any two of its sets have a nonempty intersection,
and let IMNCðFÞ denote the set of intersecting minimal normal
collections. By Lemmas 4 and 5 we obtain that

CbðF ;vÞ ¼
[

N2IMNCðFÞ
CN ðF ;vÞ for any superadditive game ðF ;vÞ:

ð5Þ

Again Example 4 shows that not all of the restricted cores w.r.t.
intersecting minimal normal collections may be distinct even in
the superadditive case, but Proposition 6 has the following
analogue.

Proposition 7. For each N 0 2 IMNCðFÞ there exists a superadditive
game ðF ;vÞ such that

CbðF ;vÞ n
[

N2IMNCðF ÞnfN 0g
CN ðF ;vÞ– ;:

The proof of Proposition 7 is similar to the proof of Proposition
6. Indeed, if N 0 is intersecting, then the constructed game v is
automatically superadditive so that the proof can be literally
copied.

We now provide a necessary and sufficient condition for the
nonemptiness of the restricted core w.r.t. a normal collection that
generalizes the balancedness condition of the Bondareva-Shapley
theorem (Bondareva, 1963; Shapley, 1971). For a normal collection
N we say that B#F is N -balanced if there exist dS > 0, S 2 B, such
that

P
S2BdS1S ¼

P
S2N[fNg1

S. We call ðdSÞS2B a system of N -balancing
weights.

Theorem 2. Let N be a normal collection. CN ðF ;vÞ – ; if and only if
for every N -balanced collection B with N -balancing weights ðdSÞS2B ,
it holds that

X
S2B

dSvðSÞ 6
X

S2N[fNg
vðSÞ: ð6Þ
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Proof. We consider the following linear program with x 2 RN:

min z ¼
X

S2N[fNg
xðSÞ

s:t: xðSÞP vðSÞ; S 2 F

The optimal value z⁄ of z is
P

S2N[fNgvðSÞ if and only if CN ðF ;vÞ– ;.
The dual problem reads

max w ¼
X
S2F

dSvðSÞ

s:t:
X
S2F

dS1S ¼
X

S2N[fNg
1S

dS P 0; S 2 F :

By the duality theorem, w⁄ = z⁄, which implies that any feasible
solution satisfies

P
S2FdSvðSÞ 6

P
S2N[fNgvðSÞ. h

Let N be a normal collection. Theorem 2 may be reformulated
as follows: CN ðF ;vÞ– ; if and only if for all vectors y 2 RF with
y – 0 satisfying
X

S3i;S2F
yS ¼ 0; i 2 N

yS P 0; S 2 F n ðN [ fNgÞ;

it holds thatX
S2F

ySvðSÞ 6 0:

By multiplying all yS by a sufficiently small positive real if neces-
sary, we may additionally assume that yS P �1 for all S 2 F . If we
extend a system ðdSÞS2B of N -balancing weights to all elements of
F by defining dS = 0 for all S 2 F n B, then the desired equivalence
is established by assigning, to any S 2 F ,

yS ¼
dS; if S 2 F n ðN [ fNgÞ;
�dS; if S 2 N [ fNg:

�

We remark that the foregoing equivalent version of Theorem 2 may
also be proved by directly applying Farkas lemma (see, e.g., Schrij-
ver, 1986).

It should be noted that at an element x of CN ðF ;vÞ every coali-
tion S 2 N is effective for x, i.e., x(S) = v(S). An exact game (Schmei-
dler, 1972) is defined by the requirement that every coalition is
effective for some core element. Though these concepts are quite
distinct, the interested reader may compare our concept of N -bal-
ancedness with the properties like ‘‘exact balancedness’’ and
‘‘overbalancedness’’ that are used to characterize exact games with
unrestricted cooperation (Schmeidler, 1972; Csóka, Herings, &
Kóczy, 2011).

Also note that Theorem 2 generalizes a result of Grabisch and
Xie (2011). As it can be observed, the proof follows the classical
scheme, where terms with N as argument, like v(N), x(N), are re-
placed by summations of these terms over N [ fNg. Therefore, a
strong form of the theorem can be obtained as well, which we give
without proof.

We say that a collection B #F is minimal N -balanced if B is N -
balanced and no proper subcollection is N -balanced. Similarly to
the classical case, we obtain that a minimal N -balanced collection
has a unique system of N -balancing weights, and we get the fol-
lowing result.

Theorem 3. Let N be a normal collection. CN ðF ;vÞ– ; if and only if
(6) holds for any minimal N -balanced collection B, where ðdSÞS2B is
the unique system of N -balancing weights for B.

It should be noted that if (N, �) is connected (that is, for any i,
j 2 N, there is a sequence of elements i = i1, i2, . . ., ik = j such that

i‘ and i‘+1 are comparable, for ‘ = 1, . . ., k � 1), then the core
CðF ;vÞ is nonempty for any game v (Grabisch & Sudhölter, 2012,
Lemma 3.2). Since CðF ; vÞ contains no line, the bounded core,
too, is nonempty, implying that in this case there exists at least
one nonempty restricted core for any game v.

5. Convex games

Throughout this section we assume that (N, �) is a poset and
that F ¼ OðN;�Þ.

The following result has been shown by Grabisch (2011).

Proposition 8. Suppose that ðF ;vÞ is a convex game. Then, for any
nested normal collection N , the restricted core CN ðF ;vÞ is nonempty.

The next result shows that, moreover, the union of the re-
stricted cores w.r.t. nested normal collections already coincides
with the bounded core provided that the game is convex. The main
result of this section (Theorem 5) shows the converse of Proposi-
tion 8 for strictly convex games.

Proposition 9. For any normal collection N , there exists a nested
normal collection N

0 such that, for any convex game v,

CN ðF ;vÞ# CN 0 ðF ; vÞ:
The proof is based on the following technical lemma. For any

collection ;– G #F we define

FðGÞ ¼ fðG n fT; T 0gÞ [ fT \ T 0; T [ T 0g j T; T 0 2 Gg:

Note that any element of FðGÞ is nonempty and does not possess a
larger cardinality than G and that G 2 FðGÞ.

Lemma 6. With g ¼ jGj, the gðg�1Þ
2 -fold composition of F applied to G,

i.e., F
gðg�1Þ

2 ðGÞ, contains a nested collection.

Proof. We proceed by induction on g. If g = 1, then G is already
nested. Assume that the lemma is valid for any g < k for some
k > 1. Now, if g = k, then let G ¼ fT1; . . . ; Tgg, define

T 01 ¼
Sg

j¼1Tj; T
0
k ¼ Tk \

Sk�1
j¼1 Tk for k = 2, . . ., g and let

G0 ¼ T 01; . . . ; T 0g
n o

. Note that G0 2 Fg�1ðGÞ and that 2 6 g0 ¼ jG0j 6 g.

By the inductive hypothesis, F
ðg0�1Þðg0�2Þ

2 G0 n T 01
� �� �

contains a nested
collection G00. By construction, all elements of G00 are contained in
T 01. Hence, G00 [ T 01

� �
is a nested collection in

Fg�1þðg
0�1Þðg0�2Þ

2 ðGÞ# F
gðg�1Þ

2 ðGÞ. h

Proof. (of Proposition 9) We may assume that N – ;. Let T; T 0 2 N

and v be a convex game. In view of Lemma 6 it suffices to show that
N
0 ¼ ðN n fT; T 0gÞ [ fT [ T 0; T \ T 0g is (a) normal and (b)

CN ðF ;vÞ# CN 0 ðF ;vÞ. In view of Lemma 2 and by interchanging
the roles of T and T0 if necessary, in order to show (a) it suffices
to prove that, for any i, j 2 N such that i 2 T 63 j and i � � j either j R T0

or i 2 T0. Now, if j 2 T0, then i 2 T0 because T0 is a downset. In order to
show (b) let x 2 CN ðF ;vÞ. In order to show that x 2 CN 0 ðF ;vÞ it suf-
fices to show that x(T [ T0) = v(T [ T0) and x(T \ T0) = v(T \ T0). As the
game is convex,

vðT [ T 0Þ þ vðT \ T 0Þ 6 xðT [ T 0Þ þ xðT \ T 0Þ
¼ xðTÞ þ xðT 0Þ ¼ vðTÞ þ vðT 0Þ 6 vðT [ T 0Þ þ vðT \ T 0Þ

so that the desired equalities follow immediately. h

We recall the notion of marginal vector and restricted mar-
ginal vector introduced by Grabisch (2011). To this end we as-
sume throughout that N = {1, . . ., n}. We consider the set of
maximal chains in F . This set is in a one-to-one correspondence
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with the set Lð�Þ of linear extensions of (N, �), i.e., to any max-
imal chain C = {;, S1, S2, . . ., Sn}, ;– S1 $ � � � $ Sn = N, corresponds a
unique permutation p on N with Si:¼{p(1), . . ., p(i)}, i = 1, . . ., n,
and vice versa. The linear extension is given by the sequence
p(1), p(2), . . ., p(n). Considering a game ðF ;vÞ, the marginal vector
apðvÞ 2 RN associated to the linear extension p (equivalently,
aC(v) associated to the maximal chain C) is the payoff vector de-
fined by

ap
pðiÞðvÞ :¼ vðSiÞ � vðSi�1Þ

¼ vðfpð1Þ; . . . ;pðiÞgÞ � vðfpð1Þ; . . . ;pði� 1ÞgÞ; i 2 N: ð7Þ

Consider a nested collection G (not necessarily normal). A restricted
maximal chain w.r.t. G is a maximal chain (from ; to N) in F contain-
ing G. Associated linear extensions are called restricted linear exten-
sions, and the set of restricted linear extensions w.r.t. G is denoted
by LGð�Þ. A restricted marginal vector is a marginal vector whose
underlying maximal chain is restricted.

The following result is noteworthy and extends the classical re-
sult of Shapley (1971) and Ichiishi (1981).2

Theorem 4. A game ðF ;vÞ is convex if and only if apðvÞ 2 CðF ;vÞ for
every p 2 Lð�Þ.

Proof. Necessity: Assume that v is convex, let S 2 F n f;g, and
p 2 Lð�Þ. We have to show thatX
i2S

ap
i ðvÞP vðSÞ: ð8Þ

Let i1, . . ., is 2 S, s = jSj, be chosen so that p�1(i1) < � � � < p�1(is). Then
Tk ¼ fi1; . . . ; ikg ¼ Sp�1ðikÞ \ S 2 F for any k = 1, . . ., s, using the above
notation. By (2),

vðSp�1ðikÞÞ � vðSp�1ðikÞ n ikÞP vðTkÞ � vðTk�1Þ for all k ¼ 1; . . . ; s;

where T0 = ;. Summing up all these inequalities yields (8).
Sufficiency: Let v be a game and assume that apðvÞ 2 CðF ;vÞ for

all p 2 Lð�Þ. Let S; T 2 F so that SnT – ;– TnS. Let S \ T = {i1, . . ., ir},
TnS = {ir+1, . . ., it}, SnT = {it+1, . . ., iq}, and Nn(S [ T) = {iq+1, . . ., in} such
that, for any j 2 N, fi1; . . . ; ijg 2 F . Then the permutation p defined
by p(j) = ij for any j 2 N is a linear extension. Hence,

vðSÞ 6

X
i2S

ap
i ðvÞ ¼

X
i2S

ðvðSp�1ðiÞÞ � vðSp�1ðiÞ n iÞÞ

¼
Xr

j¼1

ðvðfi1; . . . ; ijgÞ � vðfi1; . . . ; ij�1gÞÞ

þ
Xq

j¼tþ1

ðvðT [ fitþ1; . . . ; ijgÞ

�vðT [ fitþ1; . . . ; ij�1gÞÞ
¼ vðS \ TÞ þ vðS [ TÞ � vðTÞ;

so that the proof is complete. h

In Grabisch (2011) Theorems 4 and 5, it is proved that for any
nested normal collection N , the set of restricted marginal vectors
is the set of extreme points of CN ðF ;vÞ if v is convex.

Proposition 10. For any nested normal collection N of F and any
convex game v, fapðvÞ jp 2 LN ð�Þg is the set of extreme points of
CN ðF ;vÞ.

An inspection of the proof shows that the result extends to any
nested, not necessarily normal, collection. Also, the foregoing re-
sults have the following immediate consequence.

Corollary 2. A game ðF ;vÞ is convex if and only if fapðvÞ jp 2 Lð�Þg
is the set of extreme points of CðF ;vÞ.

Proof. The ‘‘if-part’’ is a special case of the ‘‘if-part’’ of Theorem 4.
Now, if v is convex, then, by Propositions 9 and 10, every vertex of
CðF ;vÞ is a marginal vector and every marginal vector belongs to
CðF ;vÞ. Since, by (7),

Pi
j¼1ap

pðjÞðvÞ ¼ vðfpð1Þ; . . . ;pðiÞgÞ for i = 1,
. . ., n, a marginal vector ap(v) is a vertex of CðF ;vÞ whenever it
belongs to CðF ;vÞ. h

We are now in a position to show the main result of this section.
Let MNNCðFÞ denote the set of minimal nested normal collections
of F .

Theorem 5.

(i) For any convex game v and any nested normal collection N of
F ; CN ðF ; vÞ – ;. Moreover, if v is strictly convex, then
dimCN ðF ;vÞ ¼ n� jN j � 1.

(ii) For any convex game v,

CbðF ;vÞ ¼
[

N2MNNCðFÞ
CN ðF ;vÞ:

Moreover, no term in the union is redundant if v is strictly convex.
(iii) Let N be a normal collection of F . If v is strictly convex, then

CN ðF ;vÞ – ; if and only if N is nested.

Proof.

(i) The first assertion is Proposition 8. By Proposition 10, for any
p 2 LN ð�Þ, apðvÞ 2 CN ðF ;vÞ. Let x ¼ 1

jLN ð�Þj
P

p2LN ð�Þa
pðvÞ. If v

is strictly convex, then in order to show the equation it suf-
fices to prove that x(S) > v(S) for all S 2 F n ðN [ f;;NgÞ. Let
N [ f;;Ng ¼ fT0; . . . ; Trg, where ; = T0 – T1 $ � � � $ Tr = N.
Suppose there exists j 2 {1, . . ., r � 1} such that Tj-

nS – ;– SnTj, then

vðSÞ þ vðTjÞ < vðS \ TjÞ þ vðS [ TjÞ 6 xðS \ TjÞ þ xðS [ TjÞ
¼ xðSÞ þ xðTjÞ ¼ xðSÞ þ vðTjÞ

by strict convexity and because x 2 CN ðF ;vÞ. Otherwise, there ex-
ists ‘ 2 {0, . . ., r � 1} such that T‘ $ S $ T‘+1. Let S0 = T‘ [ (T‘+1nS).
Note that since T‘+1nT‘ is an antichain by Lemma 3, S0 2 F . Then
there exists ~p 2 LN ð�Þ such that S0 ¼ f~pð1Þ; . . . ; ~pðjS0jÞg, i.e.,P

i2S0a
~p
i ðvÞ ¼ vðS0Þ. By strict convexity we conclude thatP

i2Sa~p
i ðvÞ > vðSÞ. For any p 2 LN ð�Þ;

P
i2Sap

i ðvÞP vðSÞ and, hence,
x(S) > v(S).

(ii) The equation follows from Propositions 1 and 9, and the fact
that minimal normal collections give largest restricted cores.
In order to show the final statement, let v be strictly convex
and let x be defined as in the proof of (i). We have seen that
x(S) = v(S) if and only if S 2 N [ f;;Ng so that there is no
other minimal normal collection N

0 with x 2 CN 0 ðF ;vÞ.
(iii) One direction follows from (i). For the other direction let N

be a normal collection that is not nested. Hence, there are
S; T 2 N such that SnT – ;– Tn S. By strict convexity,
v(S) + v(T) < v(S [ T) + v(S \ T) so that any y 2 RN with
y(S) = v(S) and y(T) = v(T) either satisfies y(S \ T) < v(S \ T)
or y(S [ T) < v(S [ T). We conclude that CN ðF ;vÞ ¼ ;. h

It remains to find all nested minimal normal collections. For
this, the following lemma is useful.

2 This result is in fact already known. It has been proved for acyclic permission
structures by Derks and Gilles (1995), while it is known from Algaba et al. (2004) that
these set systems are equivalent to set systems of the form OðN;�Þ. Also, Grabisch
and Xie (2008) proved it in an unpublished paper. The ‘‘only-if-part’’ is known from
Fujishige and Tomizawa (1983) (also cited in Theorem 3.22 of Fujishige (2005)). We
provide a simpler proof of this result, thereby also making the current paper more
self-contained.
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Lemma 7. The nested normal collection N ¼ fN1; . . . ;Nqg, ;– N1 -
$ � � � $ Nq, is minimal if and only if

(i) NqnNq�1 contains an element that is not maximal (w.r.t. �), and
(ii) NknNk�1 contains an element i that covers some element j (i.e.,

j � � i) of Nk�1nNk�2 for k = 2, . . ., q, where N0 = ;.

Proof. If (i) is not satisfied, then N n fNqg is still normal, and if (ii)
is not satisfied for some k, then N n fNk�1g is still normal. In order
to verify the opposite implication assume that N is not minimal
and let p 2 {1, . . ., q} such that N n fNpg is still normal. If p = q, then
N violates (i), and if p < q, then N violates (ii) for k = p + 1. h

Every p 2 Lð�Þ generates a collection N
p

#F defined as fol-
lows: Let 0 = t0 < t1 < � � � < tq < tq+1 = n be defined by the require-
ments that

� {p(tj + 1), . . ., p(tj+1)} is an antichain for all j = 0, . . ., q;
� {p(tj + 1), . . ., p(tj+1 + 1)} is not an antichain for all j = 0, . . ., q � 1.

Then define Nj = {p(1), . . ., p(tj)} for all j = 1, . . ., q and put
N

p ¼ fN1; . . . ;Nqg. As Njn Nj�1 for j = 1, . . ., q is an antichain (where
N0 = ;), N p is a nested normal collection. Moreover, N p is a mini-
mal normal collection by Lemma 7. Conversely, let
N ¼ fN1; . . . ;Nqg;N1$ � � �$Nq, be a minimal nested normal collec-
tion. Choose p 2 Lð�Þ such that

� for all j = 1, . . ., q, p�1(Nj) = {1, . . ., jNjj};
� p(jNk�1j + 1) covers some element of Nk�1n Nk�2 for all k = 2, . . .,

q.

By Lemma 7 such p exists. By construction N ¼ N
p.

We summarize that every linear extension3 of (N, �), i.e., every
F-admissible ordering of N, generates a unique minimal nested nor-
mal collection of F and that a minimal nested normal collection is
generated by some (not necessarily unique) linear extension of (N,
�).

Example 5. Let N = {1, 2, 3, 4} and � be determined by 1 � 3 and
2 � 4. Then minimal nested normal collections are

N 1 ¼ f12g; N 2 ¼ f1;123g; and N 3 ¼ f2;124g:

Note that N 2 and N 3, although minimal, are not short. The F-
admissible permutations are

p1 ¼ ð1;2;3;4Þ; p2 ¼ ð1;2;4;3Þ; p3 ¼ ð2;1;3;4Þ; p4

¼ ð2;1;4;3Þ; p5 ¼ ð1;3;2;4Þ; and p6 ¼ ð2;4;1;3Þ:

The permutations p1, . . ., p4 generate N 1, p5 generates N 2, and p6

generates N 3. However, for any convex game v,

CN 1 ðF ; vÞ ¼ convðfap1 ðvÞ; . . . ; ap4 ðvÞgÞ; CN 2 ðF ; vÞ
¼ convðfap1 ðvÞ; ap5 ðvÞgÞ; and CN 3 ðF ; vÞ
¼ convðfap4 ðvÞ; ap6 ðvÞgÞ:

Finally, if v(S) = jSj2 for S 2 F , then v is strictly convex and
ap5 ðvÞþap6 ðvÞ

2 ¼ ð3;3;5;5Þ R CbðF ;vÞ so that the bounded core may be
nonconvex even for convex games.

The nested collections N
d
;N

GX
;N

W presented in Section 3 are
generated by particular linear extensions. Let p be a permutation
of N. Then p is a linear extension that generates the normal
collection

� N
d if and only if it satisfies

p
[hðNÞ

j¼kþ1
Dj

��� ���þ i
� 	

2 Dk for all k ¼ 1; . . . ;hðNÞ and all i

¼ 1; . . . ; jDkj;

� N
GX if and only if it satisfies

p
[k�1

j¼0
Lj

��� ���þ i
� 	

2 Lk for all k ¼ 0; . . . ; hðNÞ � 1 and all i

¼ 1; . . . ; jLkj;

� N
W if and only if it satisfies

p
[k�1

j¼0
Lj nmaxðNÞ

��� ���þ i
� 	

2 Lk nmaxðNÞ for k

¼ 0; . . . ; hðNÞ � 1; i

¼ 1; . . . ; jLk nmaxðNÞj:
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