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Abstract We consider several related set extensions of the core and the anticore of
games with transferable utility. An efficient allocation is undominated if it cannot be
improved, in a specific way, by sidepayments changing the allocation or the game. The
set of all such allocations is called the undominated set, and we show that it consists
of finitely many polytopes with a core-like structure. One of these polytopes is the
L1-center, consisting of all efficient allocations that minimize the sum of the absolute
values of the excesses. The excess Pareto optimal set contains the allocations that are
Pareto optimal in the set obtained by ordering the sums of the absolute values of the
excesses of coalitions and the absolute values of the excesses of their complements.
The L1-center is contained in the excess Pareto optimal set, which in turn is contained
in the undominated set. For three-person games all these sets coincide. These three sets
also coincide with the core for balanced games and with the anticore for antibalanced
games. We study properties of these sets and provide characterizations in terms of
balanced collections of coalitions. We also propose a single-valued selection from the
excess Pareto optimal set, the min-prenucleolus, which is defined as the prenucleolus
of the minimum of a game and its dual.
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1 Introduction

The core of a game with transferable utility can be interpreted from a strategic point
of view—a coalition may ‘deviate’ from the grand coalition if it obtains less than its
stand-alone worth—but also from a fairness point of view: if one coalition obtains its
worth or more, then it is only fair that all coalitions obtain at least their worths. From
the fairness point of view, a natural extension of the core for games in which the core
is empty, would be the anticore, provided that this is a nonempty set. The anticore is
the set of efficient allocations where every coalition obtains at most its worth, and the
fairness argument now says that, if one coalition obtains less than its worth, then it
is only fair that all coalitions obtain at most their worths. In general, however, both
the core and the anticore of a game may be empty, and then the question is what a
‘natural’ extension of the core or the anticore for such games could be.

Of course, this question is not new. A classical extension of the core is the
ε-core, based on subtracting ε from the coalitional worths, and the least core, i.e.,
the intersection of all nonempty ε-cores (Shapley and Shubik 1966; Maschler et al.
1979). Recently, Bejan and Gómez (2009) propose, alternatively, to increase the worth
of the grand coalition to obtain a nonempty core, where this increase is financed by
taxing individual players. The resulting solution concept is called the extended core.1

All such extensions have in common that, essentially, the core restrictions are relaxed
in order to obtain a nonempty solution. Our approach is quite different, and there are
no obvious relations between the mentioned extensions (least core, extended core) and
our extensions.

We start by defining undominated efficient allocations. An efficient allocation x
is undominated in a game v if there is no other efficient allocation z and no game w

arising from sidepayments between players (i.e., by adding an additive game to v) such
that for each coalition S the minimum of z(S) (its total payoff from z) and w(S) is at
least as large as, and sometimes strictly larger than, the minimum of x(S) and v(S); the
allocation z and the game w are interpreted as arising from bargaining over x and v,
respectively, and considering the minimum is based on an assumption of (pessimistic)
max–min preferences concerning uncertainty of reaching a final agreement (x or z) or
not (v or w). The set of all undominated efficient allocations is called the undominated
set, and we show, indeed, that for balanced games this set coincides with the core and
for antibalanced games with the anticore. We characterize the undominated set by bal-
ancedness conditions. These conditions imply that being undominated is equivalent
to the impossibility of redistributing the payoffs among all coalitions with nonposi-

1 Gonzales and Grabisch (2012) propose ‘general solutions’, which distribute the worth of the grand
coalition among coalitions rather than among individuals. The extended core can be viewed as a special
case of this.
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On extensions of the core and the anticore of transferable utility games 39

tive excesses such that no coalition with negative excess loses, and redistributing the
payoffs among all coalitions with nonnegative excesses such that no coalition with
positive excess loses. In fact, this characterization can serve as an intuitive alternative
definition, and in a specific sense reflects the fairness consideration discussed earlier.

We propose two other set extensions of the core and the anticore. The L1-center,
first introduced in Keane (1969) and studied further in Spinetto (1974), consists of all
efficient allocations that minimize the sum of the absolute values of the coalitional
excesses. The excess Pareto optimal set consists of all efficient allocations that are
associated with Pareto optimal points (with the understanding that lower values are
better) of the set of vectors arising from computing, for each coalition, the sum of the
absolute value of its excess and the absolute value of the excess of its complement,
over all possible efficient allocations. The L1-center is contained in the excess Pareto
optimal set, which in turn is contained in the undominated set. The latter two coincide
on the interesting class of proper games (i.e., games in which the worth of a coalition
plus the worth of its complement is never larger than the worth of the grand coali-
tion). All three sets coincide with the core for balanced games and the anticore for
antibalanced games. They also coincide for all three-person games. The undominated
set is the union of a finite collection of polytopes, each with a core-like structure. The
L1-center is exactly one of these polytopes, and the excess Pareto optimal set is the
union of a specific subcollection of these polytopes.

Besides studying further properties of these three set extensions we also pro-
pose a single-valued solution which selects from the excess Pareto optimal set and
thus from the undominated set. This solution is a modification of the prenucleolus
(Schmeidler 1969), called the min-prenucleolus, and it assigns to a game the prenucle-
olus of the coalition-wise minimum of that game and its dual. We present an axiomatic
characterization, based on the characterization of the prenucleolus of Sobolev (1975).

The paper is organized as follows. After preliminaries in Sect. 2 we introduce the
undominated set in Sect. 3, and characterize it by balanced collections and relate it
to the core and the anticore in Sect. 4. The L1-center and the excess Pareto optimal
set are discussed in Sects. 5 and 6, respectively. In Sect. 7 we show that the excess
Pareto optimal set is contractible. Section 8 is devoted to the min-prenucleolus and
its characterization, while Sect. 9 briefly reconsiders the undominated set for proper
games. Section 10 concludes.

2 Preliminaries

A game with transferable utility or, simply, a game is a pair (N , v), where N =
{1, . . . , n} with n ∈ N is the set of players and the function v : 2N → Rwith v(∅) = 0
is the characteristic function, assigning to each coalition S ⊆ N its worth v(S). We
also call (N , v) an n-person game and often write v instead of (N , v) if there is no
confusion about the player set. We also write i jk . . . for a coalition {i, j, k, . . .} ⊆ N .

An (n-person) allocation is a vector x ∈ RN . For an allocation x and a coalition
S ⊆ N we denote x(S) := ∑

i∈S xi , with the convention x(∅) := 0. An allocation
x is efficient in the game v if x(N ) = v(N ). The set of efficient allocations in v is
denoted by X (v).
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40 J. Derks et al.

A game v is additive if v(S ∪ T ) = v(S) + v(T ) for all S, T ∈ 2N such that
S ∩ T = ∅. Note that such a game is completely described by the worths of the
singleton coalitions. In particular, any allocation x can be identified with an additive
game vx by letting vx ({i}) = xi for all i ∈ N ; in this case we usually write x instead
of vx . The sum v +w of two games v and w is defined by (v +w)(S) = v(S)+w(S)

for all S ∈ 2N . In particular, for x ∈ RN , v + x is the sum of v and the additive game
induced by x .

A collection of coalitions B ⊆ 2N is balanced if there are positive numbers λS, S ∈
B, such that

∑
S∈B: i∈S λS = 1 for every i ∈ N . The numbers λS are called balancing

weights.
A sidepayment for the player set N is a vector y ∈ RN with y(N ) = 0.
A game v is balanced [antibalanced] if

∑
S∈B λSv(S) � [�] v(N ) for every bal-

anced collection B, with balancing weights λS . Clearly, an additive game is both bal-
anced and antibalanced, but any other game is either balanced or antibalanced or none
of the two. The core C(v) of a game v is the set {x ∈ X (v) | x(S) � v(S) for all S ∈
2N }, and the anticore AC(v) is the set {x ∈ X (v) | x(S) � v(S) for all S ∈ 2N }.
It is well-known (Bondareva 1962; Shapley 1967) that C(v) �= ∅ if and only if v is
balanced, and similarly that AC(v) �= ∅ if and only if v is antibalanced.

Sidepayments and balanced collections can be related as follows. For B ⊆ B′ ⊆ 2N ,
we say that B is balanced within B′ if there exists a balanced collection B′′ with
B ⊆ B′′ ⊆ B′. Then we have the following useful result.

Lemma 2.1 A collection B is balanced within a collection B′ if and only if for each
sidepayment y ∈ RN with y(S) � 0 for all S ∈ B′ we have y(S) = 0 for all S ∈ B.
In particular, a collection B is balanced if and only if for each sidepayment y ∈ RN

with y(S) � 0 for all S ∈ B we have y(S) = 0 for all S ∈ B.

A proof of this lemma, based on Farkas’ Lemma, can be found in Derks and Peters
(1998).

3 The undominated set

Our definition of the undominated set of a game v will be based on a new concept of
domination among efficient allocations. In order to motivate this new concept, consider
a game v and an efficient allocation x ∈ X (v). Assume that the proposal x is on the
table, and consider a coalition S. From the point of view of S, if the final decision is
exclusively about x , then S is going to obtain x(S) if an agreement on x is reached,
and v(S) otherwise, hence S is sure to obtain the minimum of x(S) and v(S). This
reflects a coalition having max-min preferences over the uncertain issue of reaching
agreement or not. However, consider the following two possibilities before the actual
agreement or disagreement decision on a proposal is taken. First, x may be replaced by
another efficient allocation z ∈ X (v); equivalently, x is replaced by x + y, where y is
a sidepayment. Second, players may make prepayments among each other, effectively
turning the game v into a new game v + y′, where y′ is the additive game induced
by these prepayments, i.e., y′ is again a sidepayment. After such a bargaining phase,
from the point of view of coalition S, if an agreement will be reached then S is going
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On extensions of the core and the anticore of transferable utility games 41

to obtain (x + y)(S), and otherwise it is going to obtain (v + y′)(S); hence, S is sure
to obtain the minimum of (x + y)(S) and (v + y′)(S).

With this setting in mind, we present the following definition.

Definition 3.1 Let v be a game and let x ∈ X (v). Then x is dominated if there are
sidepayments y and y′ such that

min{(x + y)(S), (v + y′)(S)} � min{x(S), v(S)} for all S ∈ 2N

with at least one of these inequalities strict. If x is not dominated, then it is undominated.
The set of all undominated efficient allocations is the undominated set, denoted by
UD(v).

Thus, if x ∈ X (v) is undominated, then there are no sidepayments y, y′ such that
all coalitions are better off and at least one coalition is strictly better off by deciding
on the allocation x + y instead of x and at the same time performing sidepayments y′.
Observe, again, that ‘better off’ is based, implicitly, on the coalitions having max-min
preferences to deal with the uncertainty of the players reaching an agreement on a
proposal.

Remark 3.2 This concept of domination is closely related to the dominance relation
between pairs of allocations considered in Bossert et al. (2005) in the context of
uncertain cooperative games.

4 Characterization of the undominated set by balanced collections

The undominated set can be characterized in terms of balanced collections. This yields
a finite check on (un)dominatedness of an efficient allocation, and is convenient for
computational purposes. Moreover, the characterization provides relations with the
core and the anticore of a game. More generally, it is useful for investigating the geo-
metric structure of the undominated set. Specifically, we will show that the undomi-
nated set is a union of finitely many polytopes.

We start with an auxiliary lemma on extending balanced collections.

Lemma 4.1 Let B1 and B2 be balanced collections in 2N . Then there are balanced
collections C1 and C2 such that

(1) B1 ⊆ C1 ⊆ B1 ∪ (2N \ B2),
(2) B2 ⊆ C2 ⊆ B2 ∪ (2N \ B1),
(3) C1 ∪ C2 = 2N .

Proof Suppose that S ∈ 2N such that S /∈ B1 ∪ B2. If N \ S ∈ B1 then {S} ∪ B1 is
still balanced; if N \ S ∈ B2 then {S} ∪ B2 is still balanced; and if N \ S /∈ B1 ∪ B2
then {S, N \ S} ∪ B1 (or {S, N \ S} ∪ B2) is still balanced. Thus, S or S and N \ S
can be added to B1 or B2. The desired sets C1 and C2 are obtained by repeating this
argument. 
�
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42 J. Derks et al.

In order to state the characterization theorem, for a game v and an efficient allocation
x ∈ X (v) we define the following collections of coalitions:

L(x, v) = {S ∈ 2N | x(S) < v(S)}
E(x, v) = {S ∈ 2N | x(S) = v(S)}
H(x, v) = {S ∈ 2N | x(S) > v(S)} .

When there is no confusion about what the game is, we also write L(x), E(x), and
H(x) instead of L(x, v), E(x, v), and H(x, v).

Theorem 4.2 Let v be a game and let x ∈ X (v). Then x is undominated if and only
if there are balanced collections B1 and B2 such that L(x) ⊆ B1, H(x) ⊆ B2, and
B1 ∩ B2 ⊆ E(x).

Proof For the only-if part, let x be undominated. We show that L(x) is balanced within
L(x) ∪ E(x). Suppose not, then according to Lemma 2.1 there is a sidepayment y
with y(S) � 0 for all S ∈ L(x) ∪ E(x) and y(S) > 0 for some S ∈ L(x). Choose
α > 0 such that x(S) + αy(S) > v(S) for all S ∈ H(x). Then we have

min{x(S) + αy(S), v(S)} � min{x(S), v(S)} for all S ∈ 2N ,

with at least one inequality strict, as is easy to verify. This violates x being undomi-
nated. Hence L(x) is balanced within L(x)∪ E(x). Similarly, one shows that H(x) is
balanced within H(x) ∪ E(x). So we have shown that there are balanced collections
B1 and B2 with L(x) ⊆ B1 ⊆ L(x) ∪ E(x) and H(x) ⊆ B2 ⊆ H(x) ∪ E(x).

For the if-part, let B1 and B2 be as in the statement of the theorem. In view of
Lemma 4.1 we may assume that B1 ∪ B2 = 2N . Suppose there are sidepayments y
and y′ such that

min{x(S) + y(S), v(S) + y′(S)} � min{x(S), v(S)} for all S ∈ 2N . (1)

For S ∈ L(x) ∪ E(x), (1) implies min{x(S) + y(S), v(S) + y′(S)} � x(S), which in
turn implies y(S) � 0. Since B1 is balanced it is also balanced within L(x) ∪ E(x),
which by Lemma 2.1 implies y(S) = 0 for all S ∈ B1. Similarly, one shows that
y′(S) = 0 for all S ∈ B2. Since B1 ∪ B2 = 2N , it follows that all inequalities in (1)
are equalities, so that x is undominated. 
�

The following corollary follows from Theorem 4.2 and Lemma 4.1.

Corollary 4.3 Let v be a game and let x ∈ X (v). Then x is undominated if and
only if there are balanced collections B1 and B2 such that L(x) ⊆ B1, H(x) ⊆
B2, B1 ∩ B2 ⊆ E(x), and B1 ∪ B2 = 2N .

Lemma 2.1 and Theorem 4.2 (or Corollary 4.3) provide a further explanation of
undominated allocations and, indeed, could be used as alternative definitions. Define
the excess of a coalition S in a game v at an efficient allocation x by e(S, x, v) =
e(S, x) = v(S) − x(S). Then an efficient allocation is undominated exactly if by any
sidepayment (redistribution) that makes no coalition with nonpositive excess worse
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On extensions of the core and the anticore of transferable utility games 43

off no coalition with negative excess can strictly improve, and by any sidepayment
that makes no coalition with nonnegative excess worse off no coalition with positive
excess can strictly improve.

As an illustration, in the next example we compute the undominated set for three-
person symmetric games (already considered in von Neumann and Morgenstern 1944).

Example 4.4 Let N = {1, 2, 3}, let α ∈ R, and consider the three-person symmetric
game v with:

v(i) = 0 for all i ∈ N , v(i j) = α for all i, j ∈ N with i �= j, and v(N ) = 1.

For α � 2
3 we have UD(v) = C(v) = {x ∈ R3 | xi � 0 for all i ∈ N , x(N ) =

1, and xi + x j � α for all i, j ∈ N , i �= j}. For 1 > α > 2
3 we have C(v) = ∅ and

UD(v) = {x ∈ R3 | xi � 0 for all i ∈ N , x(N ) = 1, and xi + x j � α for all i, j ∈
N , i �= j}. For α � 1 we have UD(v) = {x ∈ R3 | x(N ) = 1 and xi � 0 for all i ∈
N }. All these statements can be checked by using Theorem 4.2 or Corollary 4.3.

The next result shows that the undominated set extends the core and the anticore.

Theorem 4.5 Let v be a game. If C(v) �= ∅ then UD(v) = C(v), and if AC(v) �= ∅
then UD(v) = AC(v).

Proof Suppose that C(v) �= ∅, and let z ∈ C(v). Since E(z) ∪ H(z) = 2N and 2N is
balanced, Theorem 4.2 implies that z is undominated, so C(v) ⊆ UD(v). To prove the
converse inclusion, let x̃ be an arbitrary element of C(v). Then for every S ∈ 2N and
every x ∈ X (v) we have min{x(S) + (x̃ − x)(S), v(S)} = v(S) � min{x(S), v(S)}.
If, in particular, x is undominated then we must have min{x(S)+ (x̃ − x)(S), v(S)} =
v(S) = min{x(S), v(S)} for all S ∈ 2N , hence x(S) � v(S) for all S ∈ 2N . So
UD(v) ⊆ C(v). This proves the first implication in the theorem. The proof of the
second implication is analogous.2 
�

The following example shows that in general the undominated set does not have to
be convex.

Example 4.6 Consider the four-person game v with worths given in the following
table.

S 1 2 3 4 12 13 14 23 24 34 123 124 134 234 N
v(S) −5 −5 −2 5 5 −5 5 5 −5 5 −1 −5 −5 −5 0

Then x = (−2,−2, 2, 2) ∈ UD(v) (check the balancedness conditions in Theo-
rem 4.2) and so is y = −x . However, x+y

2 = 0 /∈ UD(v): E(0) = {∅, N }, and
L(0) = {12, 23, 34, 14, 4}, which cannot be extended to a balanced collection by
adding elements from E(0). So UD(v) is not convex.

We now further explore the relation between the undominated set, the core and the
anticore. For a game v and an arbitrary collection B ⊆ 2N define the B-restricted core
and anticore by

2 Alternatively, one can use the first implication together with the observations UD(v) = UD(v∗) and
AC(v) = C(v∗), where v∗ is the dual game of v, see Sects. 6 and 8 below.
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C(B, v) = {x ∈ X (v) | x(S) � v(S) for all S ∈ B}

and

AC(B, v) = {x ∈ X (v) | x(S) � v(S) for all S ∈ B}.

Let P = P N denote the set of all pairs of balanced collections with player set N such
that all coalitions are used, i.e.,

P = {(B1,B2) ⊆ 2N × 2N | B1, B2 are balanced and B1 ∪ B2 = 2N }.

An element of P is called a constellation.
We now have:

Theorem 4.7 Let v be a game. Then

UD(v) =
⋃

(B1,B2)∈P
AC(B1, v) ∩ C(B2, v) .

Proof If x ∈ UD(v) then by Corollary 4.3 there are balanced collections B1 and B2
with L(x) ⊆ B1 ⊆ L(x) ∪ E(x), H(x) ⊆ B2 ⊆ H(x) ∪ E(x), and B1 ∪ B2 = 2N ,
and clearly x ∈ AC(B1, v) ∩ C(B2, v). Conversely, let x ∈ X (v) and (B1,B2) ∈ P
such that x ∈ AC(B1, v) ∩ C(B2, v). Then L(x) ⊆ B1 ⊆ L(x) ∪ E(x) and H(x) ⊆
B2 ⊆ H(x) ∪ E(x) with both collections balanced, so x ∈ UD(v) by Theorem 4.2.


�
Theorem 4.7 says that the undominated set is the union of finitely many polyhedra,

each one with a core-like structure. We can actually say more.

Lemma 4.8 Let v be a game and let (B1,B2) ∈ P . Then the set AC(B1, v)∩C(B2, v)

is compact.

Proof Closedness is obvious. Suppose the set were not bounded. Then there must be a
player i ∈ N such that, for every number K ∈ R there is an x ∈ AC(B1, v)∩C(B2, v)

with xi � K . Clearly, {i} ∈ B2. Since B2 is balanced we have
∑

S∈B2
λS x(S) =

x(N ) = v(N ) for every x ∈ X (v), where λS > 0, S ∈ B2, are balancing weights
associated with B2. By choosing x ∈ AC(B1, v) ∩ C(B2, v) with x({i}) = xi large
enough, there must be a coalition T ∈ B2 with x(T ) < v(T ), contradicting the fact
that x ∈ C(B2, v). Hence the set AC(B1, v) ∩ C(B2, v) must be bounded. 
�

Lemma 4.8 and Theorem 4.7 imply that the undominated set is the union of finitely
many polytopes. In particular, we have the following consequence.

Corollary 4.9 For every game v the set UD(v) is compact.

Many of the polytopes in Theorem 4.7 can be empty. For instance, if v is a balanced
game, then for the only nonempty polytope, the core, we can take the constellation
P = (B1,B2) where B1 = {∅, N } (so that AC(B1, v) = X (v)) and B2 = 2N (so that
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On extensions of the core and the anticore of transferable utility games 45

C(B2, v) = C(v)), as follows from Theorem 4.5. Nonemptiness of the undominated
set for arbitrary v will follow as a result in the next section (Corollary 5.4).

In general, for distinct pairs (B1,B2), (B′
1,B′

2) ∈ P it may happen that AC(B1, v)∩
C(B2, v) ⊆ AC(B′

1, v) ∩ C(B′
2, v), where the inclusion may be strict or not. In

order to achieve a canonical representation, we say that (B1,B2) ∈ P is a standard
constellation for v if there exists an x ∈ AC(B1, v) ∩ C(B2, v) such that

L(x) = B1 \ B2 and H(x) = B2 \ B1 . (2)

Let Pv denote the set of standard constellations for v. Call a (B1,B2) ∈ Pv minimal if
for every (B′

1,B′
2) ∈ Pv with B′

1 ⊆ B1 and B′
2 ⊆ B2 we have B′

1 = B1 and B′
2 = B2.

By Pm
v we denote the set of minimal standard constellations for v.

The following lemma shows that we indeed obtain a canonical, ‘unique’ representa-
tion of UD(v) based on minimal standard constellations. It says that the undominated
set of a game v consists of a collection of distinct polytopes which correspond one-
to-one with the minimal standard constellations for v.

Lemma 4.10 For any game v

UD(v) =
⋃

(B1,B2)∈Pm
v

AC(B1, v) ∩ C(B2, v) (3)

and

UD(v) �
⋃

(B1,B2)∈Pm
v \{(B̂1,B̂2)}

AC(B1, v) ∩ C(B2, v) for all (B̂1, B̂2) ∈ Pm
v . (4)

Proof One inclusion of (3) follows from Theorem 4.7. In order to show the other
inclusion let z ∈ UD(v) and take (B1,B2) ∈ P such that z ∈ P := AC(B1, v) ∩
C(B2, v) (cf. Theorem 4.7). Define the (pairwise disjoint) sets L , E , and H by

L = {S ∈ 2N | S ∈ L(x) for some x ∈ P},
E = {S ∈ 2N | S ∈ E(x) for all x ∈ P},
H = {S ∈ 2N | S ∈ H(x) for some x ∈ P}.

Let B̂1 = L ∪ E and B̂2 = H ∪ E . By convexity of P there is an x̂ ∈ P such
that L(x̂) = L = B̂1 \ B̂2 and H(x̂) = H = B̂2 \ B̂1. By construction of B̂1
and B̂2 we have P ⊆ AC(B̂1) ∩ C(B̂2) and since L ⊆ B1 ⊆ L ∪ E = B̂1 and
H ⊆ B2 ⊆ H ∪ E = B̂2, also the converse inclusion holds, so that z ∈ P =
AC(B̂1) ∩ C(B̂2). It is left to prove that (B̂1, B̂2) ∈ P , i.e., that B̂1 and B̂2 are
balanced; for then, (B̂1, B̂2) ∈ Pv , and therefore there is some (B̂′

1, B̂′
2) ∈ Pm

v such
that z ∈ AC(B̂1) ∩ C(B̂2) ⊆ AC(B̂′

1) ∩ C(B̂′
2)).

Consider a sidepayment y ∈ R
N with y(S) � 0 for all S ∈ B̂1 = L ∪ E . We

may assume that (x̂ + y)(S) > v(S) for all S ∈ H . Since L ⊆ B1 ⊆ L ∪ E and B1
is balanced, we have y(S) = 0 for all S ∈ B1 by Lemma 2.1. Then we must have
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y(S) = 0 for all S ∈ E as well, since otherwise x̂ + y would be an element of P
with (x̂ + y)(S) > v(S) for some S ∈ E , contradicting the definition of E . Hence,
y(S) = 0 for all S ∈ L ∪ E , implying balancedness of B̂1 = L ∪ E by Lemma 2.1.
One similarly proves that B̂2 is balanced.

In order to show (4) let (B̂1, B̂2) ∈ Pm
v and choose an x ∈ AC(B̂1) ∩ C(B̂2)

satisfying (2) for Bi = B̂i , i = 1, 2. For any (B1,B2) ∈ Pm
v for which x ∈

AC(B1, v) ∩ C(B2, v) we have

B1 ⊆ L(x) ∪ E(x) = B̂1 and B2 ⊆ H(x) ∪ E(x) = B̂2 ,

so that by minimality of the standard constellation, x /∈ AC(B1, v)∩C(B2, v) for any
(B1,B2) ∈ Pm

v \ {(B̂1, B̂2)}. 
�
We denote the relative interior of a set Z ⊆ R

n—i.e., the interior of Z relative to
a smallest affine subspace of Rn containing Z—by relint(Z). Now we have:

Lemma 4.11 Let the constellation (B1,B2) ∈ P be a minimal standard constellation
for the game v. Then for every x ∈ X (v) we have x ∈ relint(AC(B1, v) ∩ C(B2, v))

if and only if L(x) ∪ E(x) = B1 and H(x) ∪ E(x) = B2. In particular, if x ∈
relint(AC(B1, v) ∩ C(B2, v)), then L(x) ∪ E(x) and H(x) ∪ E(x) are balanced.

Proof Let x ∈ X (v). Then x ∈ relint(AC(B1, v) ∩ C(B2, v)) if and only if x(S) <

v(S) for all S ∈ B1 \ B2, x(S) > v(S) for all S ∈ B2 \ B1, and x(S) = v(S) for all
S ∈ B1∩B2. Hence, x ∈ relint(AC(B1, v)∩C(B2, v)) if and only if L(x)∪E(x) = B1
and H(x) ∪ E(x) = B2. The last claim in the lemma is obvious. 
�

In a game v, the sets L(x) ∪ E(x) and H(x) ∪ E(x) for an undominated allo-
cation x ∈ X (v) are not necessarily balanced themselves. Lemmas 4.10 and 4.11
however imply that these sets are balanced if x is a relative interior allocation of the
polytope to which it belongs. Hence, such allocations are elements of the set sUD(v)

defined by

sUD(v) = {x ∈ X (v) | L(x) ∪ E(x) and H(x) ∪ E(x) are balanced} .

Thus we have

⋃

(B1,B2)∈P
relint(AC(B1, v) ∩ C(B2, v)) ⊆ sUD(v) ⊆ UD(v) . (5)

Since for every (B1,B2) ∈ P the set AC(B1, v)∩C(B2, v) is the (topological) closure
of relint(AC(B1, v) ∩ C(B2, v)), it follows that the set at the left-hand side in (5) and
thus also the set sUD(v) is dense in UD(v). The following example shows that both
inclusions can be strict.

Example 4.12 Let (N , v) be defined by:

N = {1, 2, 3}, v(12) = v(3) = 1, v(13) = v(1) = −1, v(S) = 0 otherwise.
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Then the undominated set is the convex hull of the set {(0, 0, 0), (−1, 0, 1), (−1, 1, 0),

(0, 1,−1)}. For x = (0, 0, 0) we have L(x) = {3, 12}, E(x) = {∅, 2, 23, N },
and H(x) = {1, 13} so that x ∈ UD(v) \ sUD(v). For z = (−1, 0, 1) we
have L(z) = {12}, E(z) = {∅, 1, 2, 3, N }, and H(z) = {13, 23}, so that z ∈
sUD(v) \ relint(UD(v)). This example may be extended to more than three players
by adding null-players.

Remark 4.13 Yanovskaya (1998) introduces the ‘extended prenucleolus’ of a game
v, which we denote by Y (v). Theorem 1 in Yanovskaya (1998) states that x ∈ X (v)

belongs to Y (v) if and only if the collection L(x) ∪ E(x) is balanced. For balanced
games, Y (v) coincides with the relative interior of the core, and hence is a strict subset
of the undominated set. In general, there is no inclusion relation: the condition on
Y (v) is weaker in the sense that there is no balancedness condition involving H(x),
but stronger in the sense that L(x) ∪ E(x) is required to be balanced instead of L(x)

within L(x) ∪ E(x), as in the undominated set. For an example, consider the three-
person game v′ with v′(12) = 2 and v′(S) = v(S) for all other coalitions S, with v

as in Example 4.12. Then for x = (0, 0, 0) we have L(x, v′) = {3, 12}, E(x, v′) =
{∅, 2, 23, N }, and H(x, v′) = {1, 13} so that x ∈ UD(v) \ Y (v). For z = ( 1

3 , 4
3 ,− 5

3 )

we have L(z, v′) = {3, 12, 13, 23}, E(z, v′) = {∅, N }, and H(z, v′) = {1, 2}, so that
z ∈ Y (v) \ UD(v).

5 The L1-center

The L1-center of a game v was introduced by Keane (1969) and further discussed
by Spinetto (1974), who showed that it coincides with the core for balanced games.
We will see that it is also closely related to the undominated set. More precisely, it is
exactly one of the polytopes of which the undominated set consists.

Definition 5.1 For a game v, let the function � : RN → R be defined by

�(x) =
∑

S∈2N

|v(S) − x(S)|.

The L1-center of the game v is the set

L1(v) = {x ∈ X (v) | �(x) � �(x ′) for all x ′ ∈ X (v)} .

Thus, the L1-center consists of all efficient allocations that minimize the sum of
the absolute values of the coalitional excesses. Since � is a continuous function and
we can restrict ourselves to a bounded and closed subset of X (v) to find its minima, it
follows by the extreme value theorem of Weierstraß that the L1-center is nonempty; it
is also clear that it is closed and therefore compact. By using the triangular inequality
for absolute values it is easy to see that the L1-center is a convex set. Altogether we
have the following result.
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Lemma 5.2 Let v be a game. Then L1(v) is nonempty, compact and convex.

The next result shows that the L1-center coincides with exactly one of the polytopes
in Theorem 4.7.

Theorem 5.3 Let v be a game. Then there is a pair (B1,B2) ∈ P such that L1(v) =
AC(B1, v) ∩ C(B2, v).

Proof We first prove the following two claims.

Claim 1 If x, x ′ ∈ L1(v) and S ∈ L(x), then S /∈ H(x ′).

To show this, suppose to the contrary that x, x ′ ∈ L1(v), S ∈ L(x), and S ∈ H(x ′).
Let 0 < t < 1 and consider the efficient allocation z = t x + (1 − t)x ′. Then
|v(S) − z(S)| = |t (v(S) − x(S)) + (1 − t)(v(S) − x ′(S))| < t |v(S) − x(S)| +
(1 − t)|v(S) − x ′(S)| since v(S) − x(S) > 0 and v(S) − x ′(S) < 0. Also, for any
T ∈ 2N , we have |v(T ) − z(T )| � t |v(T ) − x(T )| + (1 − t)|v(T ) − x ′(T )| by the
triangular inequality. Hence, �(z) < t�(x) + (1 − t)�(x ′) = min{�(x ′′) | x ′′ ∈ X (v)},
contradicting the fact that z ∈ X (v). This proves Claim 1.

Claim 2 Let x ∈ L1(v). If y is a sidepayment with y(S) � 0 for all S ∈ E(x), then∑
S∈L(x) y(S) � 0 and

∑
S∈H(x) y(S) � 0.

To show this, let y be a sidepayment with y(S) � 0 for all S ∈ E(x). Since y(S) � 0
for all S ∈ E(x), there exists ε > 0 such that L(x + εy) = L(x), H(x + εy) ⊇
H(x), L(x − εy) ⊇ L(x), and H(x − εy) = H(x) . Then

�(x + εy) =
∑

S∈L(x+εy)

(v(S) − x(S) − εy(S))

+
∑

S∈H(x+εy)

(x(S) + εy(S) − v(S))

=
∑

S∈L(x)

(v(S) − x(S)) − ε
∑

S∈L(x)

y(S)

+
∑

S∈H(x)

(x(S) − v(S)) + ε
∑

S∈H(x)

y(S) + ε
∑

S∈E(x)

y(S)

= �(x) − 2ε
∑

S∈L(x)

y(S).

This implies
∑

S∈L(x) y(S) � 0 since x ∈ L1(v). One similarly shows

�(x − εy) = �(x) − 2ε
∑

S∈H(x)

y(S)

which implies
∑

S∈H(x) y(S) � 0. This proves Claim 2.
We now define L = {S ∈ 2N | S ∈ L(x) for some x ∈ L1(v)} and H = {S ∈

2N | S ∈ H(x) for some x ∈ L1(v)}. For each S ∈ L take an x S ∈ L1(v) such that
S ∈ L(x S) and for each S ∈ H take an x S ∈ L1(v) such that S ∈ H(x S). Let x̂
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be a convex combination of all these x S with positive weights. By convexity of the
L1-center (Lemma 5.2) we have x̂ ∈ L1(v) and by Claim 1, L = L(x̂) and H = H(x̂).
Writing E = E(x̂) = 2N \ (L ∪ H), so

E =
⋂

x∈L1(v)

E(x) , (6)

we claim that L ∪ E and H ∪ E are balanced. Let y be a sidepayment with y(S) � 0
for all S ∈ L ∪ E . By Claim 2 we have

∑
S∈L y(S) � 0, hence y(S) = 0 for all

S ∈ L . We conclude that
∑

T ∈E∪H y(T ) = 0. Since y(S) � 0 for all S ∈ E , there
exists ε > 0 such that with z = x̂ + εy, L(z) = L and E(z) ⊆ E ; hence, y(S) = 0
for all S ∈ L(z) and

∑
T ∈E(z)∪H(z) y(T ) = 0, and therefore z ∈ L1(v). By (6),

E = E(z), i.e., y(S) = 0 for all S ∈ E . Lemma 2.1 now implies that L ∪ E is
balanced. Similarly one shows that H ∪ E is balanced. Thus, (L ∪ E, H ∪ E) ∈ P
and clearly L1(v) ⊆ AC(L ∪ E, v) ∩ C(H ∪ E, v).3

For the converse inclusion L1(v) ⊇ AC(L ∪ E, v)∩C(H ∪ E, v), let z ∈ AC(L ∪
E, v) ∩ C(H ∪ E, v). If z(S) < v(S) for some S ∈ 2N then S ∈ L and thus
x̂(S) < v(S). If z(S) > v(S) for some S ∈ 2N then S ∈ H and thus x̂(S) > v(S).
Hence, if x̂(S) = v(S) for some S then also z(S) = v(S). Define the sidepayment y
by z = x̂ + y, then y(S) = 0 for all S ∈ E . By Claim 2 applied to y and −y, it follows
that �(z) = �(x̂), so that z ∈ L1(v). Thus, L1(v) ⊇ AC(L ∪ E, v) ∩ C(H ∪ E, v).


�
An immediate consequence of Theorems 5.3 and 4.7 and Lemma 5.2 is nonempti-

ness of the undominated set.

Corollary 5.4 L1(v) ⊆ UD(v) and in particular UD(v) �= ∅ for every game v.

The following result shows that for three-person games the L1-center and the
undominated set coincide.

Theorem 5.5 Let v be a three-person game. Then L1(v) = UD(v).

The proof of this theorem is based on an extensive case distinction, and deferred to
the appendix of this paper.

For games with more than three players the L1-center can be a strict subset of the
undominated set. This follows from the fact that the undominated set is not necessarily
convex, as was shown by Example 4.6.

6 Excess Pareto optimal allocations

The L1-center of a game v contains the efficient allocations that minimize the sum
of the absolute values of the excesses. In this section we further study the relation
between these excesses and the undominated set. For a game v, a coalition S ⊆ N ,
and an allocation x ∈ X (v) we define

3 Observe that (L ∪ E, H ∪ E) is a standard constellation for v. Its construction is similar to the one in the
proof of Lemma 4.10.
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f (S, x, v) = f (S, x) = |v(S) − x(S)| + |v(N \ S) − x(N \ S)|

and f (x, v) = f (x) = ( f (S, x))S⊆N ∈ R2N
. We also define the set D(x, v) = D(x)

by

D(x) = {x ′ ∈ X (v) | f (x ′) � f (x), f (x ′) �= f (x)} .

Definition 6.1 Let v be a game and x ∈ X (v). Then x is excess Pareto optimal if
D(x) = ∅. The set of excess Pareto optimal allocations is denoted by EP(v).

The amount f (S, x) is the total absolute excess of the coalition S and its complement
at x . If x ∈ X (v) is excess Pareto optimal, then there is no efficient allocation that
has all these amounts lower, and at least one of them strictly lower.4 Since �(x) =
1
2

∑
S⊆N f (S, x), and �(x) is minimal exactly on L1(v), it follows that L1(v) ⊆

EP(v). Below we show that EP(v) is a subset of UD(v), but we start by characterizing
EP(v) by balanced collections. For a game v and for x ∈ X (v) we define the following
collections of sets:

L H(x, v) = L H(x) = {S ∈ L(x) | N \ S ∈ H(x)}

and

L E H(x, v) = L E H(x) = {S ∈ L(x) ∪ E(x) | N \ S ∈ H(x) ∪ E(x)} .

Clearly, L H(x) ⊆ L E H(x).
The following lemma characterizes excess Pareto optimal allocations in terms of

sidepayments.

Lemma 6.2 Let v be a game and let x ∈ X (v). Then x ∈ EP(v) if and only if for
every sidepayment y ∈ RN with y(S) � 0 for all S ∈ L E H(x) we have y(S) = 0 for
all S ∈ L H(x).

Proof We will use the following claim, the straightforward proof of which is left to
the reader.

Claim Let y be a sidepayment. Then there is an ε > 0 with f (x + εy) � f (x) if and
only if y(S) � 0 for all S ∈ L E H(x).

For the only-if direction of the lemma, let x ∈ EP(v) and let y ∈ RN be a side-
payment with y(S) � 0 for all S ∈ L E H(x). Then by the Claim there is an ε > 0
such that f (x + εy) � f (x). Since x ∈ EP(v) this implies f (x + εy) = f (x). In
particular, consider S ∈ L H(x). Then f (S, x + εy) = f (S, x) implies

v(S) − x(S) − εy(S) + x(N \ S) + εy(N \ S) − v(N \ S)

= v(S) − x(S) + x(N \ S) − v(N \ S)

4 Hence, Pareto optimality means ‘Pareto minimality’ here.
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which in turn implies ε(y(N \ S) − y(S)) = 0, hence ε(−2y(S)) = 0 and thus
y(S) = 0.

For the if-direction assume that the sidepayment condition in the lemma holds for x .
Let z ∈ X (v) such that f (z) � f (x). Then by the Claim the sidepayment y = z − x
satisfies y(S) � 0 for all S ∈ L E H(x), so that y(S) = 0 for all S ∈ L H(x).
Therefore, if S ∈ L H(x), then f (S, z) = f (S, x), and if N \ S ∈ L H(x), then again
f (S, z) = f (S, x). Also, if S, N \ S ∈ L(x) ∪ E(x) or S, N \ S ∈ H(x) ∪ E(x),
then f (S, z) � f (S, x) implies f (S, z) = f (S, x), since in those cases f (S, x) is
minimal over all efficient allocations. Hence, f (z) = f (x), so that z /∈ D(x). Since z
was arbitrary we conclude that x ∈ EP(v). 
�

Lemmas 2.1 and 6.2 now imply:

Theorem 6.3 Let v be a game and let x ∈ X (v). Then x ∈ EP(v) if and only if L H(x)

is balanced within L E H(x).

We will use this characterization of EP(v) to show that it consists of a subset of the
finitely many polytopes that constitute UD(v). Define the subset Pc of P as follows.
A constellation (B1,B2) is in Pc if the set

{S ∈ B1 | N \ S ∈ B2}

is balanced.

Theorem 6.4 Let v be a game. Then

EP(v) =
⋃

(B1,B2)∈Pc

AC(B1, v) ∩ C(B2, v) .

Proof First suppose that (B1,B2) ∈ Pc and x ∈ AC(B1, v)∩C(B2, v). Let B = {S ∈
B1 | N \ S ∈ B2}. Then L H(x) ⊆ B ⊆ L E H(x). Since B is balanced, this implies
x ∈ EP(v) by Theorem 6.3.

Conversely, suppose that x ∈ EP(v). Then by Theorem 6.3 there is a balanced
collection B with L H(x) ⊆ B ⊆ L E H(x) and ∅, N ∈ B. Define

B1 = B ∪ {S ∈ L(x) | N \ S ∈ L(x) ∪ E(x)} ∪ {S ∈ L(x) ∪ E(x) | N \ S ∈ L(x)}

and

B2 = {S ∈ 2N | N \ S ∈ B} ∪ {S ∈ E(x) ∪ H(x) | N \ S ∈ E(x) ∪ H(x)}.

Then {S ∈ B1 | N \ S ∈ B2} = B is balanced, B1 and B2 are balanced, and
B1 ∪ B2 = 2N , so (B1,B2) ∈ Pc. Moreover, x ∈ AC(B1, v) ∩ C(B2, v). This proves
the converse inclusion in the theorem. 
�

Theorems 6.4 and 4.7 and our observation following Definition 6.1 imply the fol-
lowing result.

Corollary 6.5 For any game v, L1(v) ⊆ EP(v) ⊆ UD(v).
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Lemma 4.8 and Theorem 6.4 imply:

Corollary 6.6 For any game v, the set EP(v) is compact.

Corollary 6.5 and Theorem 5.5 imply that the L1-center, the excess Pareto optimal
set and the undominated set coincide for three-person games. The next example shows
that in general EP(v) can be a proper subset of UD(v).

Example 6.7 Let N = {1, 2, 3, 4} and let v be defined by

v(S) = 1 if S = {1} or |S| = 2, v(N ) = v(∅) = 0, v(S) = −1 otherwise.

We claim that x = 0 ∈ RN is an element of UD(v). Indeed, L(x) consists of coali-
tion {1} and all 2-person coalitions; E(x) = {∅, N }; and H(x) consists of all other
coalitions. So L(x) and H(x) are balanced and therefore x ∈ UD(v) by Theorem 4.2.
However, L H(x) = {1}, which is not balanced within L E H(x) = {∅, 1, N }, so that
x /∈ EP(v) by Theorem 6.3.

Like UD(v) the set EP(v) is not necessarily convex, as the following example
shows. This also implies that L1(v) can be a proper subset of EP(v).

Example 6.8 Let N = {1, . . . , 4} and let v be defined by

v(13) = v(14) = 1, v(N ) = v(∅) = 0, v(134) = −2,

v(12), v(234) = 14, and v(S) = −14, otherwise.

Let x = (0, 0, 0, 0) and x ′ = (9, 3,−6,−6). Since L(x) consists of the coalitions
12, 13, 14, and 234, x ∈ EP(v) by Theorem 6.3. Similarly, L(x ′) = {12, 134, 234}
is balanced so that x ′ ∈ EP(v). Now, let z = x ′/2. Then L(z) = {12, 234} and
E(z) = {∅, N } so that z /∈ EP(v).

In Sect. 7 we will show that although EP(v) is not necessarily convex, it is con-
tractible and in particular connected.

We proceed with an interesting class of games for which the undominated set and
the excess Pareto optimal set coincide. First, recall that the dual of a game (N , v) is
the game (N , v∗), defined by v∗(S) = v(N ) − v(N \ S) for all S ⊆ N . Of course,
v∗∗ = v. Further, for games (N , v) and (N , w) denote by (N , v∧w) the coalition-wise
minimum of v and w, i.e., (v ∧ w)(S) = min{v(S), w(S)} for all S ⊆ N . We start
with the following lemma.

Lemma 6.9 For any game v, EP(v) = EP(v ∧ v∗).

Proof Let v be an arbitrary game and write w = v ∧ v∗. It is straightforward to check
that for every S ⊆ N we have

w(S) = v(S) and w(N \ S) = v(N \ S) ⇔ v(S) + v(N \ S) � v(N )

w(S) = v∗(S) and w(N \ S) = v∗(N \ S) ⇔ v(S) + v(N \ S) � v(N ).
(7)

Moreover, v(N ) = w(N ) and therefore X (v) = X (w). Hence, if S ⊆ N and v(S) +
v(N \ S) � v(N ), then f (S, x, v) = f (S, x, w). If S ⊆ N and v(S) + v(N \ S) �
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v(N ), then f (S, x, v) = |v(S)− x(S)|+ |v(N \ S)− x(N \ S)| = |x(N \ S)−v∗(N \
S)| + |x(S) − v∗(S)| = f (S, x, w). Hence, EP(v) = EP(w) = EP(v ∧ v∗). 
�

The following definition presents weakenings of the familiar superadditivity and
subadditivity conditions.

Definition 6.10 A game v is proper if v(S) + v(N \ S) � v(N ) for all S ⊆ N , and
antiproper if v(S) + v(N \ S) � v(N ) for all S ⊆ N .5

Lemma 6.11 For any game v, the game v ∧ v∗ is proper. Moreover, v is proper if and
only if v = v ∧ v∗.

Proof Let v be a game and S an arbitrary coalition. Then (v∧v∗)(S)+(v∧v∗)(N\S) =
min{v(S), v(N )−v(N \S)}+min{v(N \S), v(N )−v(S)}. If v(S)+v(N \S) � v(N ),
then this expression is equal to v(S) + v(N \ S), and otherwise it is equal to 2v(N ) −
v(S)−v(N \S). In the first case, (v∧v∗)(S)+(v∧v∗)(N \S) � v(N ) = (v∧v∗)(N );
in the second case, (v ∧ v∗)(S) + (v ∧ v∗)(N \ S) = 2v(N ) − v(S) − v(N \ S) �
v(N ) = (v ∧ v∗)(N ). Hence v ∧ v∗ is proper.

Of the second statement we only still have to show the only-if statement, but this
follows from (7). 
�
Lemma 6.12 For any game v, EP(v) = UD(v ∧ v∗).
Proof Let v be an arbitrary game and write w = v ∧ v∗. By Lemma 6.9 and Corol-
lary 6.5 it is sufficient to show that UD(w) ⊆ EP(w). Let x ∈ UD(w). By Lemma 6.11,
w(S) + w(N \ S) � w(N ) for all S ⊆ N . Hence L H(x, w) = L(x, w) and
L E H(x, w) = L(x, w)∪ E(x, w). Hence L H(x, w) is balanced within L E H(x, w)

by Theorem 4.2, and thus x ∈ EP(w) by Theorem 6.3. 
�
It is straightforward to check that both EP and UD are self-dual, i.e., EP(v) =

EP(v∗) and UD(v) = UD(v∗).
Corollary 6.13 For any proper or antiproper game v, EP(v) = UD(v).

Proof If v is proper the corollary follows from Lemmas 6.11 and 6.12. If v is antiproper
then v∗ is proper so that EP(v∗) = UD(v∗) by the same lemmas. Now EP(v) = UD(v)

follows by self-duality of EP and UD. 
�
We conclude with the following theorem, which says that any efficient allocation

not in EP(v) is excess Pareto dominated by an allocation in EP(v). It shows that in a
specific sense EP(v) is the Pareto optimal set of X (v).

Theorem 6.14 Let v be a game and let x ∈ X (v) \ EP(v). Then D(x) ∩ EP(v) �= ∅.

Proof Define the set D(x) by D(x) = {z ∈ X (v) | f (z) � f (x)}. It can be checked
that z ∈ D(x) if and only if |v(N ) + v(S) − v(N \ S) − 2z(S)| � f (S, x) for all
S ⊆ N . This implies in particular that D(x) is a nonempty polytope. Since the map �

is continuous we have

∅ �= Dm(x) :=
{

z ∈ D(x) | �(z) � �(z′) for all z′ ∈ D(x)

}

.

5 The word ‘proper’ is usually employed for simple games, with the same meaning.
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Take any z ∈ Dm(x), then clearly D(z) = ∅ and z ∈ D(x). Hence, z ∈ EP(v) ∩
D(x). 
�

7 Contractibility of the set of excess Pareto optimal allocations

We have already seen that for a game v neither the set of excess Pareto optimal
allocations EP(v) nor the undominated set UD(v) have to be convex. In this section we
show that EP(v) satisfies the weaker condition of contractibility, implying, in particular
that it is connected. It follows (cf. Corollary 6.13) that if v is proper or antiproper then
also UD(v) is contractible and thus connected. Contractibility or connectedness of
UD(v) in general is left as an open problem.

For a game v define T v = { f (x) ∈ R2N | x ∈ EP(v)} and

T v+ = T v + R2N

+ = {t ∈ R2N | t � t ′ for some t ′ ∈ T v}.

Lemma 7.1 Let v be a game. Then T v+ is nonempty, closed, and convex.

Proof Nonemptiness of T v+ is obvious, and convexity follows from convexity of the

functions f (S, ·). For closedness, let t1, t2, . . . ,∈ T v+ converge to t ∈ R2N
and xk ∈

EP(v) with f (xk) � tk for each k ∈ N. Since EP(v) is compact (Corollary 6.6),
we may assume that x1, x2, . . . converges to some x ∈ EP(v). By continuity of
f (·), f (x) � t and thus t ∈ T v+. 
�

Recall that a set X ⊆ R
m is contractible if there exists a continuous map g :

[0, 1] × X → X and a point p ∈ X such that g(0, x) = x and g(1, x) = p for all
x ∈ X .6 Peleg (1972, Theorem 4.6) shows that the set of Pareto optimal elements of
any closed convex subset of some Euclidean space is contractible. Clearly, this result
also applies with Pareto optimality used in our sense of ‘Pareto minimality’. Hence,
with Lemma 7.1 we obtain the following result.

Lemma 7.2 For any game v the set T v is contractible.

For t ∈ T v we consider the inverse image f −1(t, v) = f −1(t) = {x ∈ X (v) |
f (x) = t}. By definition, f −1(t) ⊆ EP(v). If x ∈ f −1(t) and z ∈ X (v) then
z ∈ f −1(t) if and only if for all S ⊆ N

S ∈ L(x) and N \ S ∈ H(x) ⇒ z(S) = x(S)

S, N \ S ∈ L(x) ∪ E(x) ⇔ S, N \ S ∈ L(z) ∪ E(z)
S, N \ S ∈ H(x) ∪ E(x) ⇔ S, N \ S ∈ H(z) ∪ E(z) .

(8)

This implies that f −1(t) is a convex polytope for each t ∈ T v . Thus, f −1(·) is a
correspondence mapping elements of T v to convex compact subsets of EP(v). We
now show that this correspondence is continuous, i.e., upper hemicontinuous (uhc)
and lower hemicontinuous (lhc).

6 I.e., the set X is homotopic to p via the homotopy g.
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Lemma 7.3 The correspondence f −1(·) : T v � EP(v) is continuous.

Proof In order to show uhc of f −1(·), let t1, t2, . . . , t ∈ T v with tk → t and let
xk ∈ f −1(tk) for each k ∈ N such that xk → x ∈ EP(v). Then by continuity of f ,
we have f (x) = t , and hence x ∈ f −1(t).

For lhc, let again t1, t2, . . . , t ∈ T v with tk → t and let z ∈ f −1(t). We have to
show that there are zk ∈ f −1(tk) for k = 1, 2, . . . with zk → z. We take, for each
k, zk ∈ f −1(tk) such that |zk − z| (Euclidean distance) is minimal: these points zk

exist and are unique since f −1(tk) is a compact convex set. Since all these points zk

are in the compact set EP(v), there is a converging subsequence, say z1, z2, . . . itself,
with limit some z̃ ∈ EP(v). It is sufficient to show that z̃ = z. Note that z̃ ∈ f −1(t)
by continuity of f . Since zk → z̃ we may assume without loss of generality that there
is a δ > 0 such that for all S ⊆ N we have

S ∈ L(z̃) ⇒ zk(S) < v(S) − δ for all k

S ∈ H(z̃) ⇒ zk(S) > v(S) + δ for all k.
(9)

We assume that z̃ �= z and derive a contradiction. Since zk → z̃ �= z we may assume
without loss of generality that

|zk − z̃| < |zk − z| for all k. (10)

For ε > 0 and each k we define zk,ε = zk + ε(z − z̃). Then

|zk,ε − z| = |(1 − ε)zk − (1 − ε)z + ε(zk − z̃)|
� (1 − ε)|zk − z| + ε|zk − z̃|
< |zk − z|,

where the final inequality follows from (10). Hence, by the choice of zk , it follows that
zk,ε /∈ f −1(tk) for all k and ε > 0. Choose ε > 0 so small that ε(z(S)− z̃(S)) < δ for
all S ⊆ N . We will now show that then f (zk,ε) � f (zk) for all k, contradicting
zk,ε /∈ f −1(tk) in case f (zk,ε) = f (zk) and contradicting zk ∈ EP(v) in case
f (zk,ε) � f (zk), f (zk,ε) �= f (zk).

In order to show f (zk,ε) � f (zk) we distinguish the following four cases (the
remaining cases are analogous): (a) S ∈ L(z̃), N \ S ∈ H(z̃); (b) S ∈ L(z̃), N \ S ∈
L(z̃); (c) S ∈ L(z̃), N \ S ∈ E(z̃); and (d) S, N \ S ∈ E(z̃).

Case (a) S ∈ L(z̃), N \ S ∈ H(z̃). In this case, by (8), z̃(S) = z(S), hence
f (S, zk,ε) = f (S, zk).

Case (b) S ∈ L(z̃), N \ S ∈ L(z̃). In this case, by (9), zk(S) < v(S) − δ and
zk(N \ S) < v(N \ S) − δ. Since ε(z(T ) − z̃(T )) < δ for all T ⊆ N we obtain
zk,ε(S) < v(S) and zk,ε(N \ S) < v(N \ S), so that again f (S, zk,ε) = f (S, zk).

Case (c) S ∈ L(z̃), N \S ∈ E(z̃). In this case, by (8), S, N \S ∈ L(z)∪E(z), hence
zk,ε(N \S) = zk(N \S)+ε(z(N \S)−z̃(N \S)) � zk(N \S) and thus zk,ε(S) � zk(S).
Since, by (9), zk(S) < v(S) − δ and thus, by ε(z(T ) − z̃(T )) < δ, zk,ε(S) < v(S),
we conclude that f (S, zk,ε) � f (S, zk).

123

Author's personal copy



56 J. Derks et al.

Case (d) S, N \ S ∈ E(z̃). In this case, by (8), S, N \ S ∈ L(z)∪ E(z) or S, N \ S ∈
H(z) ∪ E(z). We assume the former, the argument for the latter is analogous. Then
zk,ε(T ) = zk(T ) + ε(z(T ) − z̃(T )) � zk(S) for both T = S and T = N \ S, so that
we have zk,ε(T ) = zk(T ) for both T = S and T = N \ S, and thus f (S, zk,ε) =
f (S, zk). 
�
Theorem 7.4 For any game v the set EP(v) is contractible.

Proof For every t ∈ T v let xt be the lexicographically maximal element of f −1(t).
Let EPlex(v) = {xt | t ∈ T v}. The map f : EPlex(v) → T v , i.e., the restriction of f
to EPlex(v), is a continuous bijection. Also its inverse, denoted by f −1, is continuous,
which can be seen as follows. Let t1, t2, . . . , t ∈ T v with tk → t . We have to show
that f −1(tk) → f −1(t), i.e., that xtk → xt . Since xtk

is an element of the bounded
(even compact) set EP(v) for each k, there is a converging subsequence, and it is
sufficient to prove that this subsequence has limit xt . For simplicity of notation let
(xtk

)k∈N be this subsequence. By Lemma 7.3 (specifically, by lhc of f −1(·)) there is
a sequence (xk)k∈N with xk ∈ f −1(tk) and xk → xt . Since xtk

is the lexicographic
maximum of f −1(tk) for each k and xt is the lexicographic maximum of f −1(t), we
have xtk → xt .

Thus, f is a homeomorphism between EPlex(v) and T v and therefore, by
Lemma 7.2, EPlex(v) is contractible. This implies that there is an x̂ ∈ EPlex(v) and
a continuous function g : [0, 1] × EPlex(v) → EPlex(v) such that g(0, x) = x and
g(1, x) = x̂ for all x ∈ EPlex(v). Define the function h : [0, 1] × EP(v) → EP(v)

by

h(α, x) =
{

(1 − 2α)x + 2αx f (x) if 0 � α � 1
2

g(2α − 1, x f (x)) if 1
2 � α � 1

for all (α, x) ∈ [0, 1]×EP(v). Then, by convexity of the set f −1(t), we have h(α, x) ∈
f −1(t) for all x ∈ EP(v), t = f (x), and 0 � α � 1

2 ; and h is continuous, in
particular, since g is. Also, h(0, x) = x and h(1, x) = x̂ for all x ∈ EP(v). Thus,
EP(v) is contractible. 
�

8 The min-prenucleolus

An interesting question is whether there exists a single-valued solution for TU-games
which always assigns a point in UD(v) or EP(v). An obvious candidate for such a
solution is the prenucleolus (Schmeidler 1969), since this is contained in the core if
the core is not empty. It is defined as follows. Recall that for a game (N , v), a coalition
S and an allocation x ∈ X (v), e(S, x, v) = v(S) − x(S) denotes the excess of S at x .
By θ(x) ∈ R2|N |−2 we denote the vector in which the excesses of all nonempty proper
coalitions in N are arranged in nonincreasing order. The prenucleolus of (N , v) is the
efficient allocation, denoted ν(N , v) = ν(v), which lexicographically minimizes θ(x)

over all x ∈ X (v).
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The following example, however, shows that even in three-player games, where
the undominated set, the excess Pareto optimal set, and the L1-center coincide, the
prenucleolus does not have to be in the undominated set.

Example 8.1 Consider the three-player game v with

v(1) = v(2) = v(3) = v(23) = 1, v(12) = v(13) = −1, and v(123) = 0.

The prenucleolus of this game is x = (0, 0, 0) but E(x, v) = {N ,∅} and H(x, v) =
{12, 13}, so that by Theorem 4.2 we have x /∈ UD(v).

We now propose a modification of the prenucleolus and prove that this solution
always assigns a point in EP(v) and hence in UD(v).

Definition 8.2 The min-prenucleolus of v, denoted by ν∧(v), is defined by ν∧(v) =
ν(v ∧ v∗).

If the game v is proper then by Lemma 6.11 the min-prenucleolus of v is just
the prenucleolus of v. The game in Example 8.1 is not proper, and as the following
example shows its min-prenucleolus is in the undominated set.

Example 8.3 Consider the three-player game v from Example 8.1. Then v∗ is given
by

v∗(2) = v∗(3) = 1, v∗(1) = v(12) = v(13) = v∗(23) = −1, and v∗(123) = 0.

Then the game w = v ∧ v∗ is equal to v∗ and has min-prenucleolus equal to x =
(− 4

3 , 2
3 , 2

3 ). Now L(x, v) = {1, 2, 3}, E(x, v) = {∅, N }, and H(x, v) = {12, 13, 23},
so that x ∈ UD(v) by Theorem 4.2.

Proposition 8.4 For any game v, ν∧(v) ∈ EP(v).

Proof Let w = v ∧ v∗ and x = ν(w). By Lemma 6.9 it is sufficient to show that
x ∈ EP(w). As w(S) + w(N \ S) � w(N ), S ∈ L(x, w) implies N \ S ∈ H(x, w),
i.e., L H(x, w) = L(x, w). By the characterization of the prenucleolus by Kohlberg
(1971), {N } ∪ L(x, w) is balanced so that the proof is complete by Theorem 6.3. 
�

The min-prenucleolus does not have to be in the L1-center, as the following example
shows.

Example 8.5 Let v be the four-person game defined in Example 6.8. For this game
L1(v) �= EP(v) and the game is proper so that its min-prenucleolus is equal to its prenu-
cleolus x = (−5 1

5 , 10 2
5 ,−2 3

5 , −2 3
5 ). Then one can check that �(x) > �(0, 0, 0, 0),

so that x /∈ L1(v).

We present an axiomatization of the min-prenucleolus based on a reduced game
property, among other axioms. To this end we make the set of players variable. The
universe of potential players is U ⊆ N, with {1, 2, 3, 4} ⊆ U . A game is now any
pair (N , v) such that ∅ �= N ⊆ U is finite and v : 2N → R, v(∅) = 0. The set of all
games is denoted by 	U .

Let σ be a solution, i.e., σ(N , v) ⊆ {x ∈ RN | x(N ) � v(N )} for all (N , v) ∈ 	U .
Then σ satisfies
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(i) single-valuedness (SIVA) if |σ(N , v)| = 1 for all (N , v) ∈ 	U ;7

(ii) Pareto optimality (PO) if σ(N , v) ⊆ X (N , v) for all (N , v) ∈ 	U ;
(iii) anonymity (AN) if, for any (N , v) ∈ 	U and any injection τ : N →

U, σ (τ (N ), τv) = τ(σ (N , v)), where τv(S) = v(τ−1(S)) for all S ⊆ τ(N ),
and τ(x)i = xτ−1(i) for all i ∈ τ(N ) and x ∈ RN ;

(iv) covariance under strategic equivalence (COV) if σ(N , av + b) = aσ(N , v) + b
for any (N , v) ∈ 	U , a > 0, b ∈ RN ;

(v) the reduced game property (RGP) if, for (N , v) ∈ 	U and ∅ �= S ⊆ N , xS ∈
σ(S, vS,x ) for all x ∈ σ(N , v), where xS := (xi )i∈S and where the reduced
game (S, vS,x ) is defined by

vS,x (T ) =
⎧
⎨

⎩

v(N ) − x(N \ S) if T = S,

maxQ⊆N\S v(T ∪ Q) − x(Q) if ∅ �= T � S,

0 if T = ∅.

(vi) self-duality (SD) if σ(N , v) = σ(N , v∗) for all (N , v) ∈ 	U .

Remark 8.6 Sobolev (1975) showed that the prenucleolus is the unique solution that
satisfies SIVA, COV, AN and RGP, provided that |U | = ∞.

Our solution ν∧ satisfies all of the foregoing properties except RGP. We weaken
this property, as follows. A solution σ satisfies

(viii) the min-reduced game property (min-RGP) if, for (N , v) ∈ 	U , ∅ �= S ⊆ N ,
and x ∈ σ(N , v) we have: if vS,x = vS,x ∧ (vS,x )∗ (i.e., if vS,x is proper), then
xS ∈ σ(S, vS,x ).

Moreover, we need the following property, which is stronger than SD. A solution
σ satisfies

(ix) min-self-duality (min-SD) if σ(N , v ∧ v∗) = σ(N , v) for all (N , v) ∈ 	U .

Observe that, indeed, min-SD implies SD: for a game v, we have σ(N , v) =
σ(N , v ∧ v∗) = σ(N , v∗ ∧ v) = σ(N , v∗) since v∗∗ = v.

Now, ν∧ can be characterized as follows.

Theorem 8.7 The solution ν∧ is the unique solution that satisfies SIVA, COV, AN,
min-RGP, and min-SD, provided that |U | = ∞.

Proof Let (N , v) ∈ 	U , let τ : N → U be an injection, b ∈ R
N , a > 0, and

w = v ∧ v∗. Then τw = τv ∧ τv∗ and aw + b = (av + b) ∧ (av + b)∗. Hence ν∧
satisfies SIVA, COV, and AN because ν satisfies these properties (see Remark 8.6),
and it satisfies min-SD because w ∧ w∗ = w. In order to show that ν∧ satisfies min-
RGP, let x = ν(N , w) and ∅ �= S ⊆ N such that u = u ∧ u∗, where u = vS,x .
Since the prenucleolus satisfies RGP, it suffices to show that u = wS,x . As w � v, we
have wS,x � u. Let T ⊆ S. It remains to show that u(T ) � wS,x (T ). If T = ∅ then
wS,x (T ) = 0 = u(T ). If T = S then u(T ) = v(N )− x(N \ S) = w(N )− x(N \ S) =
wS,x (T ) since v(N ) = v∗(N ). If ∅ �= T � S, then there exists Q ⊆ N \ S such that

7 In case σ is single-valued we identify σ(N , v) with its unique element.
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u(T ) = v(T ∪Q)−x(Q). Let R = (N \S)\Q. Then u(S\T ) � v((S\T )∪R)−x(R).
Since u(T ) + u(S \ T ) � u(S) = v(N ) − x(N \ S), we have

v(T ∪ Q) − x(Q) + v((S \ T ) ∪ R) − x(R) � v(N ) − x(N \ S)

hence v(T ∪ Q) � v(N ) − v((S \ T ) ∪ R). Then

w(T ∪ Q) = min{v(T ∪ Q), v(N ) − v((S \ T ) ∪ R)}
= v(T ∪ Q) .

Thus,

wS,x (T ) = max
P⊆N\S

{w(T ∪ P) − x(P)}
� w(T ∪ Q) − x(Q)

= v(T ∪ Q) − x(Q)

= u(T ).

In order to show uniqueness, let σ be a solution that satisfies the five axioms. We
show first that σ satisfies PO. Let (N , v) ∈ 	U and x = σ(N , v). If |N | = 1, i.e.,
N = {i} for some i ∈ U , then xi � v({i}). By COV we may assume v({i}) = 0. If we
had xi < 0, then 2xi �= xi whereas v = 2v, so that COV is violated. Hence, xi = 0. If
|N | � 2, then for any i ∈ N , ({i}, v{i},x ) coincides with its dual so that, by min-RGP,
xi = v{i},x ({i}) = v(N ) − x(N \ {i}). Hence, x(N ) = v(N ).

Now we are able to finish the proof. Let (N , v) ∈ 	U and x = ν∧(N , v). In order
to show that x = σ(N , v), by min-SD and COV we may assume that v = v ∧ v∗ and
x = 0 ∈ RN . Hence, in particular, 0 = ν(N , v). According to Sobolev (1975) there
exists a game (M, u) ∈ 	U with the following properties: (1) N ⊆ M ; (2) u(N ) = 0;
(3) for all i, j ∈ M there exists a permutation τ : M → M such that τu = u and
τ(i) = j ; and (4) with y = 0 ∈ RM , uN ,y = v. Then, by PO and AN, σ(M, u) = y.
By min-RGP, yS = 0 = x = σ(N , v). 
�

We conclude this section with a few remarks.

Remark 8.8 A careful inspection of Sobolev’s (1975) proof shows that the game
(M, u) in the proof of Theorem 8.7 is proper. Hence, on the set of proper games
the prenucleolus is characterized by SIVA, COV, AN, and min-RGP, provided that
|U | = ∞. This suggests that a characterization of the prenucleolus on other classes of
games may be obtained by modifying the axioms in an appropriate way. In particular,
RGP should be restricted to hold for those reduced games that are in the class of games
under consideration.

Remark 8.9 We show that each of the axioms in Theorem 8.7 is logically inde-
pendent of the remaining axioms. Define, for any (N , v) ∈ 	U , σ 1(N , v) =
X (N , v), σ 2(N , v) = x to be the “equal split solution”, i.e., xi = v(N )/|N | for
all i ∈ N , σ 4(N , v) = ν(N , v), σ 5(N , v) to be the Shapley value of v ∧ v∗. Then
σ j , j = 1, 2, 4, 5 satisfies all axioms except the j th one. We recall that
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C+(N , v) = {x ∈ X (N , v) | v(S) − x(S) � (v(S) − ν(S))+},

where t+ = max{0, t} for t ∈ R and ν = ν(N , v), is called the positive core of (N , v)

(see Orshan and Sudhölter 2010). Select a total order � on U and define

σ 3(N , v) = {x ∈ C+(N , v ∧ v∗) | x �lex y for all y ∈ C(N , v ∧ v∗)},

where �lex is the lexicographic order induced by �, i.e., if x, y ∈ RN , then x �lex y
is defined by

i ∈ N , yi > xi �⇒ there exists j ∈ N with x j > y j and j � i.

Similarly to Lemma 6.3.15 of Peleg and Sudhölter (2007) it may be shown that σ 3

satisfies SIVA, COV, min-RGP, min-SD, and violates AN. Finally, if 4 � |U | < ∞
then there exists a solution that satisfies all five axioms, coincides with ν∧(N , v) for
all (N , v) ∈ 	U with |N | < |U |, and does not coincide with ν∧(U, w) for some
(U, w) ∈ 	U . For a construction of such a solution see Peleg and Sudhölter (2007),
Remark 6.3.3 and Exercises 6.2.3 and 6.3.3).

Remark 8.10 Spinetto (1971) proposes the absolute prenucleolus, which is defined as
the prenucleolus but then replacing the excesses by their absolute values. Consider the
three-person game v with v(N ) = v(123) = 0, v(1) = v(2) = v(3) = v(23) = −1,
and v(12) = v(13) = 1. For this (proper) game the absolute prenucleolus is x =
(0, 0, 0), which however does not belong to UD(v): L(x) = {12, 13} and E(x) =
{∅, N }, so that L(x) is not balanced within L(x)∪ E(x). So the absolute prenucleolus
does not select from UD nor from EP.

9 Proper games

We have seen that on the interesting class of proper games some of the concepts
above simplify. In particular, the undominated set and the excess Pareto optimal set
coincide, and the min-prenucleolus is by definition just the prenucleolus, and chooses
an allocation from the undominated set.

In this section we reconsider the definition of the undominated set from Sect. 3,
and show that it can be simplified in an appealing manner if we restrict attention to
proper games. For a game v call an allocation x ∈ X (v) payoff-undominated if there
is no z ∈ X (v) such that

min{z(S), v(S)} � min{x(S), v(S)} for all S ∈ 2N ,

with at least one strict inequality. Let U (v) denote the set of all payoff-undominated
allocations. It is not difficult to see that x ∈ U (v) if and only if there is no z ∈ X (v)

with z(S) � x(S) for all S ∈ L(x), at least one inequality strict, and z(S) � v(S)

for all S ∈ E(x) ∪ H(x). In other words, it is not possible to make all coalitions that
receive less than their worth in x at least as well off and some strictly better off, while
giving all other coalitions still at least their worth. From the proof of Theorem 4.2 it
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follows that x ∈ U (v) if and only if L(x) is balanced within L(x)∪ E(x). Obviously,
UD(v) ⊆ U (v) for any game v. For proper games the two sets coincide.

Theorem 9.1 Let v be a proper game. Then U (v) = UD(v).

Proof Let x ∈ U (v). It is sufficient to prove that x ∈ UD(v) and for this it is sufficient
to prove that H(x) is balanced within H(x) ∪ E(x). We will actually prove that
H(x)∪E(x) is balanced. Let B be a balanced collection with L(x) ⊆ B ⊆ L(x)∪E(x)

and let y be a sidepayment with y(S) � 0 for all S ∈ H(x) ∪ E(x). Then for each
S ∈ B we have y(S) � 0 since N \ S ∈ H(x) ∪ E(x) by properness of v. Since B is
balanced, y(S) = 0 for all S ∈ B by Lemma 2.1. Since B ∪ H(x) ∪ E(x) = 2N we
have y(S) � 0 for all coalitions S, implying y = 0. Hence, H(x) ∪ E(x) is balanced
by Lemma 2.1. 
�

10 Concluding remarks

This paper presents an extensive study of four increasing set extensions of the core and
the anticore: the L1-center, the excess Pareto optimal set, the undominated set, and the
set of payoff-undominated allocations. It also presents a single-valued selection from
the excess Pareto optimal set, namely the min-prenucleolus.

We have focussed on geometric properties of these sets and on balancedness con-
ditions. An interesting avenue for further research is to develop axiomatic characteri-
zations, perhaps by using reduced game properties such as in the characterization of
the core by Peleg (1986).

We finally mention that many of our results will go through, with appropriate
modifications, if the set of all coalitions 2N is replaced by a balanced collection B
containing the empty set and the grand coalition.
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Appendix

Proof of Theorem 5.5 Since the correspondence UD(·) satisfies COV (property (iv)
in Sect. 8) we may normalize the game v such that v({i}) = 0 for each i ∈ N and
v(N ) = 1, assuming that v(N ) >

∑
i∈N v({i}). The proof is analogous in the case

v(N ) <
∑

i∈N v({i}), or we may use UD(−v) = −UD(v) in that case. The case
v(N ) = 0 will be considered later.

For an x ∈ UD(v) the collections L(x, v)∪E(x, v) and H(x, v)∪E(x, v) each must
contain a balanced sub-collection. Writing, respectively, LE and HE for potential can-
didates, ignoring N and ∅, and assuming that v is not balanced or antibalanced—these
cases are covered by Theorem 4.5—so that we exclude LE = {∅, N } and HE = {∅, N },
we have the following seven cases, where in each case some necessary conditions are
added for the associated polytope to be nonempty:
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1. LE ⊇ {2, 3, 12, 13}, HE ⊇ {1, 23}; this implies v(23) � 0, v(13) � 1,

v(12) � 1.
2. LE ⊇ {1, 3, 12, 23}, HE ⊇ {2, 13}; this implies v(13) � 0, v(12) � 1,

v(23) � 1.
3. LE ⊇ {1, 2, 13, 23}, HE ⊇ {3, 12}; this implies v(12) � 0, v(13) � 1,

v(23) � 1.
4. HE ⊇ {2, 3, 12, 13}, LE ⊇ {1, 23}; this implies v(23) � 1, v(13) � 1,

v(12) � 1, v(12) + v(13) � 1.
5. HE ⊇ {1, 3, 12, 23}, LE ⊇ {2, 13}; this implies v(13) � 1, v(12) � 1,

v(23) � 1, v(12) + v(23) � 1.
6. HE ⊇ {1, 2, 13, 23}, LE ⊇ {3, 12}; this implies v(12) � 1, v(13) � 1,

v(23) � 1, v(13) + v(23) � 1.
7. LE ⊇ {12, 13, 23}, HE ⊇ {1, 2, 3}; this implies v(12) � 0, v(13) � 0,

v(23) � 0, v(12) + v(13) + v(23) � 2.

There is prima facie another case, namely as case 7 but with the roles of H and L
swapped, but this is not possible: we cannot have x(N ) = 1 and xi � 0 for i = 1, 2, 3.
Clearly, in each of these seven cases the set of efficient allocations under consideration
forms a polytope in UD(v). We now show that for each instance where two of these
cases are not disjoint, the set UD(v) consists again of exactly one polytope. Thus,
UD(v) always consists of exactly one polytope, and the theorem (for v(N ) = 1)
follows from Theorem 5.3 and Corollary 5.4.

Consider case 1. Clearly, cases 2, 3, and 4 are not compatible with case 1. If cases
1 and 5 are compatible then v(23) � 0 and v(12) = v(13) = 1; then the game is
balanced (with for instance (1, 0, 0) ∈ C(v)), but this was already excluded. If cases
1 and 6 are compatible then v(13) = 1, v(12) � 1, v(23) � 0; also in this case
the game is balanced with (1, 0, 0) ∈ C(v). If cases 1 and 7 are compatible then
v(23) = 0, v(13) � 1, v(12) � 1; again, (1, 0, 0) ∈ C(v).

Cases 2 and 3 are analogous to case 1. Consider case 4. If cases 4 and 5 are
compatible then v(13) = v(23) = 1 and v(12) � 0; then (0, 0, 1) ∈ C(v) and
the game is balanced. If cases 4 and 6 are compatible then v(12) = v(23) = 1 and
v(132) � 0; now (0, 1, 0) ∈ C(v), so v is balanced. If cases 4 and 7 are compatible then
v(23) � 1, 0 � v(12), v(13) � 1, and v(12) + v(13) � 1; also in this case the game
is balanced with C(v) the convex hull of {(0, v(12), 1−v(12)), (0, 1−v(13), v(13)}.

The cases 5 and 6 are analogous to case 4. This concludes the proof when v(N ) = 1.
We finally consider the case v(N ) = 0, again assuming that the game is not balanced

or antibalanced. Now we have eight cases:

1’. LE ⊇ {2, 3, 12, 13}, HE ⊇ {1, 23}; this implies v(23) � 0, v(13) � 0,

v(12) � 0.
2’. LE ⊇ {1, 3, 12, 23}, HE ⊇ {2, 13}; this implies v(13) � 0, v(12) � 0,

v(23) � 0.
3’. LE ⊇ {1, 2, 13, 23}, HE ⊇ {3, 12}; this implies v(12) � 0, v(13) � 0,

v(23) � 0.
4’. HE ⊇ {2, 3, 12, 13}, LE ⊇ {1, 23}; this implies v(23) � 0, v(13) � 0,

v(12) � 0.
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5’. HE ⊇ {1, 3, 12, 23}, LE ⊇ {2, 13}; this implies v(13) � 0, v(12) � 0,

v(23) � 0.
6’. HE ⊇ {1, 2, 13, 23}, LE ⊇ {3, 12}; this implies v(12) � 0, v(13) � 0,

v(23) � 0.
7’. LE ⊇ {12, 13, 23}, HE ⊇ {1, 2, 3}; this implies v(12) � 0, v(13) � 0,

v(23) � 0.
8’. HE ⊇ {12, 13, 23}, LE ⊇ {1, 2, 3}; this implies v(12) � 0, v(13) � 0,

v(23) � 0.

Like in the first part we consider what happens if two cases are compatible. If cases
1 and 2 or 1 and 3 are compatible then the game has a nonempty anticore. If cases 1
and 4 are compatible then the game is the (additive) zero-game with zero being the
unique allocation in the core or anticore. If case 1 is compatible with any of the cases
6–8 then the zero allocation is in the core. Cases 2 and 3 are analogous to case 1. If
case 4 is compatible with any of the cases 5–8 then again the zero allocation is in the
core. Cases 5 and 6 are analogous to case 4. If, finally, cases 7 and 8 are compatible
then v is again the zero-game. 
�
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