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a b s t r a c t

We show the generic finiteness of the number of probability distributions on outcomes induced by Nash
equilibria for two-person game forms such that either (i) one of the players has no more than two
strategies or (ii) both of the players have three strategies, and (iii) for outcome game forms with three
players, each with at most two strategies. Finally, we exhibit an example of a game form with three
outcomes and three players for which the Nash equilibria of the associated game induce a continuum
of payoffs for an open non-empty set of utility profiles.
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1. Introduction

In normal form games with an arbitrary number of players
the payoffs of which may be perturbed independently Rosen-
müller (1971) and Wilson (1971) simultaneously proved (see also
Harsanyi, 1973) that generically there is a finite number of equi-
libria. This result was extended to extensive form games by Kreps
and Wilson (1982). On the other hand, Govindan and McLennan
(2001) and Kukushkin et al. (2008) show that the situation for
outcome game forms is entirely different. These authors construct
some game forms for which there is a continuum of equilibrium
distributions on outcomes (i.e., probability distributions on out-
comes induced by Nash equilibria) of the associated games for an
open non-empty set of utility profiles.

A natural question is to determine which outcome game forms
admit a finite number of equilibrium distributions on outcomes.
For example, Mas-Colell (2010) proved that for two player game
forms the number of equilibrium payoffs are generically finite,
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and Govindan and McLennan (2001) proved that for game forms
with two outcomes and any number of players the number of
equilibrium distributions is generically finite. Similar results were
obtained for game forms with two players and three outcomes
(González-Pimienta, 2010) and sender–receiver cheap-talk games
(Park, 1997). Using semi-algebraic geometry techniques Govindan
and McLennan (1998) showed in an unpublished manuscript the
generic finiteness of the number of equilibrium distributions on
outcomes, when the associated game is either a two player zero
sum or a common interest game. This result is also proved by Litan
and Marhuenda (2012) using elementary linear algebra.

In this paper we prove the generic finiteness of the number
of equilibrium distributions on outcomes for two-person outcome
game forms in which one of the players has no more than two
strategies or both of the players have three strategies. The results
of González-Pimienta (2010) and Govindan and McLennan (2001)
imply that for two-person outcome game formswith atmost three
outcomes the number of equilibrium distributions is generically
finite.We provide an example of an outcome game formwith three
outcomes and three players for which the Nash equilibria of the
associated games induce a continuum of probability distributions
on outcomes for an open non-empty set of utility profiles. Finally,
we show that for outcome game forms with three players, each
with at most two strategies, generic finiteness of the number of
equilibrium distributions on outcomes is obtained.

2. Outcome game forms

Let Ω be a finite nonempty set. Denote by ∆(Ω) the set of
probability measures on Ω , and let ∆+(Ω) denote its subset of
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strictly positive elements. A (finite, pure) L-person outcome game
form (on Ω) is defined by Govindan and McLennan (2001) as a
tuple (S1, . . . , SL, φ) such that, for all ℓ ∈ {1, . . . , L}, Sℓ is a finite
nonempty set, and φ = (φs)s∈S ∈ ΩS , where Ω is called the set
of outcomes and S = S1 × · · · × SL. Note that we do not consider
general outcome game forms the definition of which only requires
that φ ∈ ∆(Ω)S . A profile u = (u1, . . . , uL) ∈ RΩ

× · · · × RΩ

defines the associated finite L-person game gφu = (S1, . . . , SL, u1
◦

φ, . . . , uL
◦φ), where ‘‘◦’’ denotes ‘‘composition’’. Recall that aNash

equilibrium (NE) of gφ
u is a tuple x = (x1, . . . , xL) such that, for all

ℓ ∈ {1, . . . , L}, xℓ
∈ ∆(Sℓ), and for all sℓ ∈ Sℓ,

xℓ(sℓ) > 0 ⇒


s−ℓ∈S−ℓ

 
ℓ′∈{1,...,L}\{ℓ}

xℓ′

(sℓ
′

)


uℓ

φ(sℓ,s−ℓ)


− uℓ


φ(sℓ,s−ℓ)


> 0 for allsℓ ∈ Sℓ,

where S−ℓ
=
Ś

ℓ′∈{1,...,L}\{ℓ} Sℓ′

. Moreover, recall that an NE (x1,
. . . , xL) is a completely mixed NE (CMNE) if xℓ

∈ ∆+(Sℓ) for all
ℓ = 1, . . . , L.

We say that a subset of a Euclidean space is generic if it contains
an open and dense subset of this Euclidean space. Let R[Ω] denote
the ring of real polynomials in the |Ω| variables ω ∈ Ω . Note that
a polynomial f of R[Ω] defines a continuous polynomial function
RΩ

→ R thatwe again denote by f .We frequently use the fact that,
if 0 ≠ f ∈ R(Ω), then {u ∈ RΩ

: f (u) ≠ 0} is an open and dense,
hence generic, subset of RΩ . With f =


ω∈Ω


ω′∈Ω\{ω}

(ω − ω′)
we obtain that

V =

u ∈ RΩ

: u(ω) ≠ u(ω′) for all ω, ω′
∈ Ω with ω ≠ ω′


is a generic subset of RΩ .

3. Distributions on outcomes and minimality for two-person
outcome game forms

Let (S1, S2, φ) be an outcome game form with two players,
where S1 = {1, 2, . . . ,m}, S2 = {1, 2, . . . , n} and S = S1 × S2.

Kukushkin et al. (2008) provide an example of an outcome
game form with two players in which, for a non-empty open set
of utility profiles, there is a continuum of outcome distributions
induced by the Nash equilibria. In that example the first player has
three strategies and the second player has four strategies. The next
theorem shows that the example is minimal in terms of strategies.

Theorem 3.1. If (S1, S2, φ) is a 2-person outcome game form such
that

min{|S1|, |S2|} 6 2 or |S1| = |S2| = 3,

then there is a generic set W ⊆ RΩ such that for any u1, u2
∈ W

the set of CMNEs of the game gφu induce finitely many probability
distributions on outcomes.

Proof. We may assume that the rows of φ (that is, φi· =

(φij)j∈S2 , i ∈ S1) are pairwise distinct. Indeed, for any utility profile
in RΩ

× RΩ the set of distributions on outcomes induced by
(completelymixed) Nash equilibria is not changed if multiple rows
are eliminated. A similar assumption refers to the columns of φ
(that is, φ·j = (φij)i∈S1 , j ∈ S2). Hence, we may assume without
loss of generality that

|{φi· : i ∈ S1}| = m, |{φ·j : j ∈ S2}| = n, and m 6 n. (1)
Let (u1, u2) ∈ V × V . For (i, j) ∈ S1 × S2 denote uij = u2(φij). We
distinguish three cases.

Case 1: m = 1.
As u2

∈ V , any Nash equilibrium selects the unique
argmaxj∈S2 u1j, and, hence a CMNE can only exist if n = 1.

Case 2: m = 2.
If n = 2 and there exists a CMNE (x, y), then x1u11 + x2u21 =

x1u12+x2u22 because player 2 is indifferent between her strategies.
As x2 = 1 − x1, we conclude that

x1(u11 + u22 − u21 − u12) = u22 − u21 and
x2(u11 + u22 − u21 − u12) = u11 − u12.

By (1) and as u2
∈ V, u22 ≠ u21 or u11 ≠ u12 so that x is uniquely

determined. By exchanging the roles of the players, it follows that
y is also unique.

We now assume that n > 3.
If there are j, j′ ∈ S2, j ≠ j′, such that φ1j = φ1j′ , then by (1) we

may assume that u2j < u2j′ so that column j is not a best response
to any completelymixed strategy of player 1. Therefore, there does
not exist any CMNE in this subcase. Similarly, we may proceed if
φ2j = φ2j′ . Therefore, we shall now assume that

n = |{φij : j ∈ S2}| for i = 1, 2. (2)

By (1) there exists j ∈ S2 such that φ1j ≠ φ2j. By (2) there exists
j′ ∈ S2 \ {j} such that φ2j′ ≠ φ1j so that we may assume without
loss of generality that

φ11 ≠ φ21 and φ11 ≠ φ22. (3)

By (2) and (3),

φ11 ∉ {φ12, φ13, φ21, φ22}. (4)

Define f ∈ R[Ω] by

f = (φ11 − φ12)(φ21 − φ23) − (φ11 − φ13)(φ21 − φ22). (5)

Claim. If f (u2) ≠ 0 then the game gφu has no CMNE.

If x is a mixed strategy of player 1 such that player 2 is
indifferent between the payoff columns u·1, u·2, and u·3, then

x ·


u11 − u12 u11 − u13 1
u21 − u22 u21 − u23 1


= (0, 0, 1). (6)

We conclude that

det

u11 − u12 u11 − u13 1
u21 − u22 u21 − u23 1

0 0 1


= 0.

Therefore, f (u2) = 0 so that our claim has been proved.
Now the proof in this case can be completed. Indeed, it suffices

to show that f ≠ 0 because then V × {u2
∈ V : f (u2) ≠ 0} is a

generic set of utility profiles for which no CMNE exist. Define ω :=

φ11.Wemay assume that there exists u ∈ V such that f (u) = 0. For
ε > 0 let uε

∈ RΩ differ from u only inasmuch as uε(ω) = u(ω)+ε.
If φ23 ≠ ω, then f (uε) = f (u)+ ε(uε22 − uε23) = ε(u22 − u23) ≠ 0.
If φ23 = ω, then

f (uε) = ε(u22 + u12 − 2u11) − ε2.

Hence, we conclude that f ≠ 0.
Case 3: m = n = 3.
It suffices to describe a suitable generic set of utilities for player

2. We distinguish two cases.
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(1) There exists i ∈ S1 such that φi1 = φi2 = φi3. We may assume
that i = 3. Let u ∈ V . If x′ is a completely mixed strategy of
player 1 such that player 2 is indifferent between the columns,
then let x =

1
x′1+x′2

(x′

1, x
′

2) ∈ ∆+({1, 2}) and observe that
(6) must hold. Also, we may assume that (2) holds because
otherwise there exist two payoff columns that differ only in
one coordinate so that a completely mixed Nash equilibrium is
ruled out. By (1) there exists ℓ ∈ S2 such that φ1ℓ ≠ φ2ℓ so that
(3) may be assumed and the proof may be finished by literally
copying the corresponding part of the casem = 2.

(2) For any i ∈ S1, |{φij : j ∈ S2}| > 2.

Consider again the polynomial f defined in (5). If x is a mixed
strategy that makes player 2 indifferent between all columns, then

x ·

u11 − u12 u11 − u13 1
u21 − u22 u21 − u23 1
u31 − u32 u31 − u33 1


= (0, 0, 1). (7)

Claim. If the system of equations (7) has multiple solutions, then
f (u2) = 0 and |{φij : j ∈ S2}| = 3, for every i ∈ S1.

As (7) has multiple solutions, the columns of the matrix are not
linearly independent. Thus, there exists z ∈ R3, z ≠ 0, such thatu11 − u12 u11 − u13 1
u21 − u22 u21 − u23 1
u31 − u32 u31 − u33 1


· z = (0, 0, 0).

Multiplying both sides of (7) by z yields z3 = 0.Moreover, asu ∈ V ,
by (1), φ·1 ≠ φ·2 so that z1 ≠ 0, and similarly z2 ≠ 0. Hence, we
may assume (after replacing z by z/z1 if necessary) that z1 = 1.
Hence, with λ = −z2, we have

u11 − u12 = λ(u11 − u13)
u21 − u22 = λ(u21 − u23) and
u31 − u32 = λ(u31 − u33).

Since u ∈ V and every row has at least two outcomes, all of the
above differences are nonzero. We conclude that |{φij : j ∈ S2}| =

3 for all i ∈ S1 and the claim follows.
Now the proof can be completed. If, for any u ∈ V , (7) has one

or no solution, then W = V has the desired properties. In the
other case, let u ∈ V such that (7) has multiple solutions. Hence,
|{φij : j ∈ S2}| = 3 for all i ∈ S1 so that (2) holds. Now the proof
may be finished by literally copying the relevant part of Case 2: By
(1) there exists j ∈ S2 such that φ1j ≠ φ2j, and by (2) there exists
j′ ∈ S2 \ {j} such that φ1j ≠ φ2j′ . We may assume without loss of
generality that j = 1 and j′ = 2 so that f ≠ 0. �

4. Outcome game forms with three players

The first example of an outcome game form in which there is
a continuum of distributions on outcomes induced by the Nash
equilibria of the associated games for an open non-empty set of
utility profiles was provided by Govindan and McLennan (2001).
Their example had three players and six outcomes. On the other
hand, for any outcome game form with two outcomes they prove
generic finiteness of the number of Nash equilibrium outcome
distributions, and González-Pimienta (2010) shows this generic
finiteness for two-person game formswith three outcomes. Finally,
Kukushkin et al. (2008) provide an example of an outcome
game form with two players and four outcomes in which there
is a continuum of outcome distributions induced by the Nash
equilibria of the associated games for an open non-empty set of
utility profiles. Thus, it is natural to ask if four is the minimum
number of outcomes needed to construct outcome game forms
which do not generically have finitely many distributions on Ω

induced by Nash equilibria. However, the next example shows
that the results in González-Pimienta (2010) cannot be extended
to three players. That is, a three-person game form with three
outcomes a, b, and c may allow a continuum of outcome
distributions induced by Nash equilibria for an open non-empty
set of utility profiles.

In Section 4.2 we show the generic finiteness for outcome game
forms with three players, each with at most two strategies.

4.1. An example with three players and three outcomes

Let Ω = {a, b, c}, S1 = {N, E, S,W }, S2 = {L, R} and S3 =

{U,D}.Weuse the notation of Section 3 of Govindan andMcLennan
(2001) and consider the game form

U D
L R L R

N
E
S
W

a a
b b
a c
b a

 N
E
S
W

c c
a a
a c
b a


so that player 1 selects the row, player 2 the column, and player
3 the matrix. Moreover, for i ∈ {1, 2, 3}, ai = ui(a), bi = ui(b),
and ci = ui(c). If ai > max{bi, ci} for all i ∈ {1, 2, 3}, then we may
define, for any p with 0 6 p 6 t :=

a3−b3
2a3−b3−c3

, the strategy profile
X(p) = ((p, q, r, s), (y, 1 − y), (z, 1 − z)) by

z =
a1 − c1

2a1 − b1 − c1
= y; (8)

q =
a3 − c3
a3 − b3

p; (9)

r =


1 −


2a3 − b3 − c3

a3 − b3


p


a2 − b2
2a2 − b2 − c2

; (10)

s =
a2 − c2
a2 − b2

r. (11)

It is straightforward to show thatX(p) is aNash equilibrium that

induces the payoff a21−b1c1
2a1−b1−c1

for the row player. Let π2(p) denote
the payoff of the column player. We may easily compute

π2(0) =
a22 − b2c2

2a2 − b2 − c2
and

π2(t) =
(a3 − b3)((a1 − c1)a2 + (a1 − b1)c2) + (a3 − c3)((a1 − c1)b2 + (a1 − b1)a2)

(2a3 − b3 − c3)(2a1 − b1 − c1)

so that π2(0) ≠ π2(t) for a nonempty open subset of utility
profiles. Moreover, if π2(0) ≠ π2(t), then by continuity of π2 :

[0, t] → R, there is a continuum of payoffs of the column player
induced by the completely mixed Nash equilibria X(p), 0 < p < t .
A similar statement is valid for the matrix player.

On the other hand, we show in Section 4.2 that if each of
the players has at most two strategies, generically the number
of probability distributions on outcomes induced by the Nash
equilibria of the game is finite.

4.2. Outcome game forms with three players and two strategies each

Let Ω be the finite non-empty set of outcomes. We consider
an outcome game form (S1, S2, S3, φ) with three players and two
strategies each, i.e., we assume that S1 = S2 = S3 = {1, 2}.
We denote the 3|Ω| variables of a polynomial in R[Ω × {1, 2, 3}]
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by ωℓ, where ω ∈ Ω and ℓ ∈ {1, 2, 3}. For any finite F ⊆

R[Ω × {1, 2, 3}], let UF be defined by

UF =


u ∈ RΩ

× RΩ
× RΩ

:


f∈F \{0}

f (u) ≠ 0


.

As remarked in Section 2,UF is an open and dense subset of

RΩ
3.

Now we are able to prove the following main result of this
section.

Theorem 4.1. For any three-person pure outcome game form
(S1, S2, S3, φ) with S1 = S2 = S3 = {1, 2} there is a generic set
U of utility profiles such that, for any u = (u1, u2, u3) ∈ U, the set of
CMNEs of the game gφ

u induce finitely many probability distributions
on outcomes.

Proof. By Theorem 3.1, we may assume that none of the players
i = 1, 2, 3 is a dummy, where i is dummy if φ is invariant under
any permutation of S i.

Note that a generic set U of utility profiles has the requested
property if and only if, for each u ∈ U such that gφ

u has infinitely
many CMNEs, these CMNEs only induce finitely many probability
distributions on Ω . As finite intersections of generic sets are
generic, it suffices to find, for each player i = 1, 2, 3, a generic set
U ′ of utility profiles with the following property: For each u ∈ U ′

such that infinitely many values of xi ∈ ∆+(S i) can be extended
to CMNEs of gφ

u , i.e., |{xi : x is a CMNE of gφ
u }| = ∞, all those

CMNEs induce only finitely many probability distributions on Ω .
In what follows, we construct F ⊆ R[Ω × {1, 2, 3}] such that
U ′

= UF has the aforementioned property for an arbitrary player,
say player i = 1. In fact we show that the probability distribution
on Ω induced by the mentioned infinitely many CMNEs is unique.

The proof is organized as follows. Given a CMNE, an inspection
of the polynomial (denoted by H in the sequel) the coefficients of
which are the probabilities of the outcomes enables us to construct
the aforementioned set F of polynomials that do not depend on
the CMNE. By distinguishing cases the proof is finished.

Let u = (u1, u2, u3) ∈

RΩ
3 and let ((x1, x2), (y1, y2), (z1, z2))

be a CMNE of gφ
u . Define the polynomial H ∈ R[Ω] by

H =

2
i,j,k=1

φijkxiyjzk.

Hence, the probability of each outcome ω is its coefficient in the
polynomial H . Let x = x1, x2 = 1 − x, y = y1, y2 = 1 − y, z =

z1, z2 = 1 − z. The polynomial H may be written as

H = Axyz + Bxy + Cxz + Dyz − Ex − Fy − Gz + φ222,

where A, . . . ,G ∈ R[Ω] are defined by

A = φ111 − φ121 − φ112 + φ122 − φ211 + φ221 + φ212 − φ222,

B = φ112 − φ122 − φ212 + φ222,

C = φ121 − φ122 − φ221 + φ222,

D = φ211 − φ212 − φ221 + φ222,

E = φ222 − φ122,

F = φ222 − φ212,

G = φ222 − φ221.

(12)

For i ∈ {1, 2, 3}, each of the polynomials A, . . . ,G may be identi-
fied with a polynomial Ai in R[Ω ×{1, 2, 3}] by formally replacing
the variable ω with the variable ωi. Note that with this identifica-
tion, Ai ≠ Aj for i ≠ j, since Ai and Aj are defined on a different sets
of variables. Let ai = A(ui), . . . , gi = G(ui). As ((x, 1 − x), (y, 1 −
y), (z, 1− z)) is a CMNE, each of the players is indifferent between
her pure strategies. Therefore, we have the equations

a1yz + b1y + c1z = e1; (13)
a2xz + b2x + d2z = f2; (14)
a3xy + c3x + d3y = g3. (15)

By (13) and (15),

y(a1z + b1) = e1 − c1z and y(a3x + d3) = g3 − c3x

so that

(e1 − c1z)(a3x + d3) = (a1z + b1)(g3 − c3x). (16)

By (14), z(a2x + d2) = f2 − b2x and, by (16),

z(x(a3c1 − a1c3) + a1g3 + c1d3) = x(a3e1 + b1c3) + d3e1 − b1g3.

We conclude that

(x(a3c1 − a1c3) + a1g3 + c1d3)(f2 − b2x)
= (x(a3e1 + b1c3) + d3e1 − b1g3)(a2x + d2)

so that, with

r = a1b2c3 − a3b2c1 − a2a3e1 − a2b1c3,

p = a3c1f2 + a2b1g3 − a1c3f2 − a1b2g3
− b2c1d3 − a3d2e1 − b1c3d2 − a2d3e1,

q = a1f2g3 + c1d3f2 + b1d2g3 − d2d3e1,

(17)

we have

rx2 + px + q = 0. (18)

Let P,Q , R ∈ R[Ω × {1, 2, 3}] be the polynomials that
correspond to p, q, r , that is,

R = A1B2C3 − A3B2C1 − A2A3E1 − A2B1C3,

P = A3C1F2 + A2B1G3 − A1C3F2 − A1B2G3

− B2C1D3 − A3D2E1 − B1C3D2 − A2D3E1,
Q = A1F2G3 + C1D3F2 + B1D2G3 − D2D3E1.

(19)

We nowdefine the setF ⊆ R[Ω×{1, 2, 3}] as follows:F consists
of all polynomials of the form

P,Q , R, αi, αiβj ± αjβi, α1β2γ3 + α2β3γ1 with
α, β, γ ∈ {A, . . . ,G} and i, j ∈ {1, 2, 3}, i ≠ j.

Note that F is finite and it contains all polynomials that are
explicitly used in the present proof.

We now assume that u = (u1, u2, u3) ∈ UF and that there
are infinitely many, hence at least three, values of x that can be
extended to CMNEs of gφ

u . By (18), p = q = r = 0. Therefore,
P,Q , R ∈ F implies that P = Q = R = 0. In order to show that
all the CMNEs generate a unique probability distribution on Ω , we
distinguish the following cases:

Case 1: A = 0. The system of equations (13)–(15) is linear. The
determinant of the associated matrix is b1c3d2 + b2c1d3. There is
more than one solution if and only if this determinant vanishes. As
B1C3D2 + B2C1D3 ∈ F , we conclude that B1C3D2 + B2C1D3 = 0 so
that, in particular, BCD+BCD = 2BCD = 0. As the cases C = 0 and
D = 0 can be treated similarly, we only consider the case B = 0.
Then the system (13)–(15) becomes

c1z = e1; (20)
d2z = f2; (21)
c3x + d3y = g3. (22)

If, in addition, C = 0, then E1 ∈ F implies that E1 = 0, hence E = 0
so thatφ122 = φ222. From C = B = 0we conclude thatφ121 = φ221
and φ112 = φ212. Finally, A = 0 now implies φ111 = φ211 so
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that player 1 would be a dummy which was excluded. Similarly,
if D = 0, F2 ∈ F implies that F2 = 0, i.e., player 2 would be a
dummy which was also excluded. Hence, C ≠ 0 ≠ D. As z > 0,
(20) and (21) together with C1, E1,D2, F2, E1D2 − C1F2 ∈ F imply
that E1, F2 ≠ 0 and E1D2 − C1F2 = 0. Consequently, there is a
constant µ such that

f2
d2

=
e1
c1

= µ.

Therefore, F = µD, E = µC , and, by (20), z = µ so that z is
uniquely determined. The polynomialH becomesH = Cxz+Dyz−
Ex− Fy− Gz + φ222 = φ222 − Gµ, and the distribution induced on
outcomes is unique.

Case 2: A ≠ 0 and B = 0. As 0 = R = −A2A3E1, E = 0 because
A2, A3, E1 ∈ F . As z ≠ 0, (13) implies that a1y + c1 = 0 so that
C ≠ 0 and y is uniquely determined. As P = 0, (A3C1 − A1C3)F2 =

0, and, as Q = 0, (A1G3 + C1D3)F2 = 0. If F = 0, then, by (14),
a2x + d2 = 0 (because z ≠ 0) so that x is uniquely determined
which was excluded. Hence, A3C1 = A1C3 and A1G3 + C1D3 = 0.
As C ≠ 0, we may define µ = a1/c1. Then, A = µC and
D = −µG.

Now, from (13), we have that 0 = a1y + c1 = (µy + 1)c1.
Since c1 ≠ 0, we obtain µy + 1 = 0. Therefore, y is uniquely
determined and Ay = −C . Substituting in (15), we obtain G =

yD. The polynomial that determines the probabilities on outcomes
becomes H = Axyz +Cxz +Dyz − Fy−Gz +φ222 = −Cxz +Cxz +

Gz − Fy − Gz + φ222 = φ222 − Fy and the distribution induced on
outcomes is unique.

Case 3: A ≠ 0 and C = 0. This case may be treated analogously
to Case 2.

Case 4: ABC ≠ 0. We first claim that either A = µB or
A = µC , for some non null µ ∈ R. Since R = 0, we have that
B2(A1C3−A3C1) = A2(A3E1+B1C3). If A1C3−A3C1 = 0we conclude
that A1 =

a3
c3
C1, and the claim follows. Otherwise, we have that

A2 = B2
a1c3 − a3c1
a3e1 + b1c3

,

and again the claim follows. The following subcases might occur:

(1) A = µB for some µ ≠ 0. Hence, A1B2 = A2B1 and therefore
R = −µB2B3(C1 + µE1) so that R = 0 and µ, B ≠ 0 imply that
C1 = −µE1. It follows that C = −µE. Substituting A = µB and
C = −µE into (13), we obtain b1y(µz + 1) = e1(µz + 1). We
consider the following two subcases.
(1.1) µz + 1 ≠ 0. Then, y = e1/b1 and substituting this value

into (15), we obtain that

xµ

b3e1
b1

− e3


= g3 −

d3e1
b1

.

Since x is not uniquely determined and µ ≠ 0, b3e1 =

e3b1 and, hence, g3b1 = d3e1. With ν = e1/b1 we obtain
E = νB and G = νD so that y = ν. Therefore,
H = µνBxz + νBx − µνBxz + νDz − νBx

− νF − νDz + φ222 = φ222 − νF ,
and the distribution induced on outcomes is unique.

(1.2) z = −1/µ. From (14) we obtain that d2z = f2. Hence,
D = −µF . Therefore, Az = µBz = −B, Cz = −µzE = E
andDz = −µzF = F . Hence,H = φ222−Gz = φ222+µG.
Thus, the distribution induced on outcomes is unique.

(2) The subcase A = µC for some µ ≠ 0 can be treated similarly
to (1). �
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