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Abstract It is well-known that the core on several domains of cooperative transfer-
able utility (TU) and nontransferable utility (NTU) games is characterized by various
combinations of axioms containing some versions of the reduced game property, of
its converse, or of the reconfirmation property with respect to the Davis–Maschler
reduced game. We show that these characterizations are still valid for games with
communication structures à la Myerson when using the notion of the reduced commu-
nication structure that establishes a new link between two inside players if they can
communicate via outside players. Thus, it is shown that, if communication structures
are present, the core may still be characterized on balanced TU games, on totally bal-
anced TU games, on NTU games with a nonempty core, on the domains of all TU or
NTU games, and on several other interesting domains of TU and NTU games. As a
byproduct we construct, for any NTU game with communication structure, a certain
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classical NTU game with the same core that may be regarded as its Myerson restricted
NTU game.

1 Introduction

A cooperative transferable utility (TU) game models a situation in which each coali-
tion S in a finite set N of players can realize a certain joint profit, the worth v(S) of
the coalition, if it forms. The core applied to such a game is the set of all proposals of
how to share v(N ) such that each coalition S receives at least v(S). In a more general
model of TU games, Faigle (1989) has investigated the cores of games with restricted
cooperation, i.e., when the coalition function is restricted to a set of feasible coalitions.
In the present paper we consider the kind of restriction introduced by Myerson (1977)
that requires that only connected coalitions can form. A coalition is connected if its
members are able to communicate with each other using communication links inside
the coalition of a given simple graph. The grand coalition N is here replaced by the
natural coalition structure of connected components. For such games with communi-
cation structures Myerson introduced the Myerson value, namely the Shapley value
of the corresponding classical so-called “Myerson restricted” game. Two solutions
related to the core, namely versions of Schmeidler’s (1969) nucleolus and of Davis
and Maschler’s (1965) kernel have been characterized (Khmelnitskaya and Sudhölter
2013), and also the core has been investigated. For example, Herings et al. (2010)
checked if the core is nonempty for a subclass of games, and they discussed when
their solution lies in the core. Hence, the core has been considered as a “reference
solution”. As far as we know, all well-known characterizations of the core on several
domains of TU games with restricted cooperation (e.g., Bilbao 1999; Llerena 2007;
Pulido and Sánchez-Soriano 2006, 2009, or Grabisch and Sudhölter 2012) use that the
grand coalition N is a feasible coalition, and, hence cannot be applied to games with
communication structures. We show that some of the well-known characterizations of
the core of TU games also hold when communication structures are present.

We generalize some axiomatizations of the core also to nontransferable utility
(NTU) games with communication structures. The main employed axioms, both in
the TU and NTU cases, are the converse reduced game property and versions of the
reduced game property with respect to a reduced game à la Davis andMaschler (1965).

The definition of the reduced game property requires to additionally define the
reduced communication structure. A new link between two players of S in the reduced
communication structure Khmelnitskaya and Sudhölter (2013) on S is established
if these players can communicate via some players that do not belong to S. If all
members of N can communicate with each other, i.e., if the graph is complete (in
the classical case), the reduced game describes the “optimistic view” of the members
of S that is based on the assumption that the members of N\S still cooperate in the
reduced situation.Hence, if the graph is not complete, then the reduced communication
structure describes the optimistic view of the members of S that is based on the
assumption that all members of N\S still communicate.

Now, RGP, the reduced game property (Peleg 1985, 1986), basically requires that
the restriction xS to the coalition S ⊆ N of a proposal xN in the solution applied
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to the game on N be in the solution of the reduced game on S, whereas RCP, the
reconfirmation property (Hwang and Sudhölter 2001), basically (a slightly weaker
property will be employed) requires that for any element yS of the solution to the
reduced game on S, its combination with the remaining coordinates of x , (yS, xN\S)
also belongs to the solution to the game on N . Hence, for one-point solutions, RGP
and RCP coincide, and this property was first used by Sobolev (1975).

Finally, CRGP, the converseRGP (Peleg 1985, 1986), requires that a Pareto optimal
proposal belongs to the solution of a game if its restriction to any pair of players belongs
to the solution of the corresponding reduced game of these two players. Additional
interpretations of the foregoing consistency properties may be found in the mentioned
articles.

We also employ the following further well-known properties of a solution con-
cept: Non-emptiness (NE), individual rationality (IR), superadditivity (SUPA), the
zero-inessential game property (ZIG), anonymity (AN), covariance under strategic
equivalence (COV), boundedness (BOUND), and reasonableness frombelow (REAS).
NE and IR are self-explaining, SUPA requires that the sum of the solutions applied
to two games is contained in the solution applied to the sum of these games, COV
means scale covariant and translation covariant, ZIG requires non-emptiness only for
two-person games for which the singletons receive 0 and 0 is also Pareto optimal as
a total payoff. Moreover, a solution satisfies AN if it does not depend on the names
of the players, it satisfies BOUND if it assigns a bounded set to each game under
consideration, and it satisfies REAS if each player in each game at least receives his
minimal marginal contribution.

We show that the following characterizations of the core provided by Peleg also
hold for games with communication structures. The core is characterized

1. on balanced TU games by NE, IR, RGP, and SUPA;
2. on totally balanced TU games by NE, IR, the weak (W) RGP, CRGP, and SUPA;
3. on NTU games with nonempty cores by NE, IR, WRGP, and CRGP;
4. on NTU games with nonempty cores by NE, IR, and RGP.

Moreover, we show that the following axiomatizations (Hwang and Sudhölter 2001),

5. on TU or NTU games, by ZIG, AN, COV, WRGP, RCP, CRGP, and REAS;
6. on many classes of TU and NTU games, by ZIG, COV, WRGP, RCP, CRGP, and

REAS

can be generalized. For TU games, REASmay even be replaced by the weaker require-
ment BOUND.

Other axiomatizations of the core can be found in the literature. We mention only
two of them. Tadenuma (1992) characterizes the core for TU and NTU games by
NE, IR, and a reduced game property which refers to a reduced game that has not
been generalized to games with communication structures. Due to our focus on the
aforementioned versions of the reduced game property, we also did not generalize the
approach of Serrano and Volij (1998), who employ the requirement that, if the restric-
tion of an individually rational Pareto optimal proposal to any proper subcoalition
belongs to the solution of the corresponding reduced game, then the entire proposal
belongs to the solution of the original game.
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The paper is organized as follows. Section 2 is devoted to characterizations of
the core on TU games with communication structures, namely the generalizations
of the mentioned statements (1), (2), (5), and (6). In Sect. 2.1 basic definitions of
the reduced communication structure and of possible intuitive properties of solutions
for the TU case are recalled, some notation is provided, and it is remarked that the
core of a TU game with communication structure coincides with the core of the
corresponding classical Myerson restricted TU game. Section 2.2 is devoted to the
aforementioned generalizations of (1) and (2), while Sect. 2.3 is devoted to generalize
the aforementioned axiomatizations (5) and (6) to TU games with communication
structures. It is shown that (1) is no longer valid for communication structures unless
there exists an infinite universe of potential players, whereas classically a universe of
three players was already sufficient.

Section 3 is devoted to the characterizations of the core in the NTU case, i.e., the
generalizations of the statements (3), (4), (5), and (6). Section 3.1 introduces some
notation on NTU games and presents the definition of the Myerson restricted NTU
game of an NTU game with communication structure with the following properties:
The Myerson restricted NTU game generalizes the Myerson restricted TU game, and
the core of theMyerson restrictedNTUgame coincides with the core of theNTU game
with communication structure. Hence, one may define balanced and totally balanced
NTU games with communication structures. Section 3.2 deals with the characteriza-
tions (3) and (4), and Sect. 3.3 with (5) and (6) on NTU games. In Sect. 4 it is shown
that each axiom in each of the four characterizations corresponding to (5) and (6) is
logically independent of the remaining axioms.

In Sect. 5 we show that all results may be extended to TU and NTU games with
conference structures à la Myerson (1980). Finally, in Sect. 6 we remark that the
intersection of the prekernel and the core on balanced TU games with communication
structures is characterized similarly to the classical case, that our employed CRGP
may be replaced by a weaker version, and how suitable modifications of the results of
Pulido and Sánchez-Soriano (2006) may be obtained.

2 The TU case

This section is devoted to generalize several known characterizations of the core on
classes of classical TU games to the wider corresponding classes of TU games with
communication structures. In the first subsection we introduce some suitable notation
and present necessary definitions. The second and third subsection provide characteri-
zations of the core thatmay be regarded as generalizations of the results of Peleg (1986,
1989), Sudhölter and Peleg (2002) and Hwang and Sudhölter (2001), respectively.

2.1 Preliminaries

LetU be a set, the universe of players, let F denote the set of all coalitions, i.e., finite
nonempty subsets of U , and, for N ∈ F , let FN denote the set of subcoalitions of N ,
i.e., FN = {S ⊆ N | S �= ∅}. A (cooperative) transferable utility (TU) game with
communication structure is a triple (N , v, g) such that N is a coalition, v : 2N → R,
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v(∅) = 0 [i.e., (N , v) is a TU game], and (N , g) is a simple graph (i.e., g is a
set of 2-element subsets of the vertex set N ), called communication structure. Let
(N , g) be a communication structure, (N , v) be a TU game, S ∈ FN , and i, j ∈ S.
Then the vertices i and j are connected in S by g if i = j or there exist vertices
i = k1, . . . , k� = j ∈ S such that {kt , kt+1} ∈ g for all t = 1, . . . , � − 1. Let S/g =
{{i ∈ S | i and j are connected in S by g} | j ∈ S} denote the set of components
of S with respect to (w.r.t.) g and say that S is connected by g if |S/g| = 1. Here
and in the sequel |D| denotes the cardinality of D if D is a set. Let FN

g denote the
set of connected coalitions of N w.r.t. g. A TU game with communication structure
(N , v, g) models a situation in which only the connected coalitions may form. Hence,
theworth v(S) of S ∈ FN\FN

g is regarded as virtual only. In the case that (N , g) is the
complete graph, i.e., FN

g = FN , (N , v, g) is identified with the (classical) TU game
(N , v). Let X∗(N , v, N/g) denote the set of feasible payoffs and let X (N , v, N/g)
denote the set of preimputations (i.e., Pareto optimal, also called component efficient,
payoffs), that is,

X∗(N , v, N/g) = {x ∈ R
N | x(R) � v(R) for all R ∈ N/g} and

X (N , v, N/g) = {x ∈ R
N | x(R) = v(R) for all R ∈ N/g},

where

x(S) =
∑

i∈S
xi (x(∅) = 0) for S ⊆ N and x ∈ R

N . (2.1)

We also denote by xS = (xi )i∈S ∈ R
S the restriction of x to S and write x =

(xS, xN\S).
Hence, the core of (N , v, g), denoted by C(N , v, g), is defined by

C(N , v, g) = {x ∈ X∗(N , v, N/g) | x(S) � v(S) for all S ∈ FN
g }

so that C(N , v, g) ⊆ X (N , v, N/g). Note in particular that each element x of
C(N , v, g) is an imputation, i.e., a preimputation that is individually rational (xi �
v({i}) for all i ∈ N ) because all singletons are connected.

Recall that the Myerson restricted (classical) TU game (N , v/g) is defined by

(v/g)(S) =
∑

T∈S/g

v(T ) for all S ⊆ N .

Thus,

C(N , v, g) = C(N , v/g). (2.2)

We now recall (Khmelnitskaya and Sudhölter 2013, Definition 2.4) that the reduced
game à la Davis and Maschler (1965) with communication structure of (N , v, g)w.r.t.
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S ∈ FN and x ∈ X∗(N , v, N/g) is denoted by (S, v
S,x
g , gS), where the reduced

communication structure (S, gS) is defined by

gS = {{i, j} ⊆ S | i �= j and i and j are connected in {i, j} ∪ (N\S) by g}
(2.3)

and the reduced coalition function v
S,x
g is defined by

vS,x
g (T )

=

⎧
⎪⎨

⎪⎩

v(R) − x(R\T ), if T = S ∩ R for some R ∈ N/g,
max{v(T ∪ Q) − x(Q) | Q ⊆ N\S, T ∪ Q ∈ FN

g }, if T ∈ F S
gS

and T /∈ S/gS,

max{v(T ∪ Q) − x(Q) | Q ⊆ N\S}, if T ∈ F S\F S
gS

.

(2.4)

Remark 2.1 The classical reduced game (S, vS,x ) (that arises if the graph g is complete
inwhich casewe delete the lower index g) describes the situation inwhich all members
of N agree that the members of N\S get xN\S and continue to cooperate so that the
members of S may distribute v(N ) − x(N\S) and the maximal expected total payoff
of each ∅ �= T � S is vS,x (T ). If the graph g is not complete but still connected,
then cooperation can only occur within the connected coalitions so that v

S,x
g (T ) still

describes the maximal expected total payoff of T if the members of N\S continue
cooperating because they can only cooperate if they can communicate. Hence, in the
reduced communication structure two players k, � in S have to be linked by an edge
if they are either linked already in g or if they may communicate with each other with
the help of some members of N\S, i.e., if there is a connected subset of {k, �} ∪ N\S
containing k and �. Precisely this requirement is reflected by the definition of the
reduced graph (S, gS). For a disconnected communication structure, each member
of N can not cooperate with anybody who does not belong to the same connected
component so that she only considers her connected component. Hence, the worth of
any disconnected coalition is only virtual and we do not change the classical definition
of the reduced game for virtual coalitions.

Note that

• the reduced game with communication structure (S, v
S,x
g , gS) is defined w.r.t. any

coalition S, and therefore it is not necessary that the players in S are connected by
g;

• v
S,x
g coincides with the coalition function, denoted vS,x , of the classical reduced

TU game if (N , g) is complete – the first row of (2.4) only applies to R = S, in
the second row “T ∪ Q ∈ FN

g ” and “T ∈ F S
gS
” are vacuously satisfied so that the

case of the third row does not occur;
• v

S,x
g is well-defined because F S

gS
= {T ∩ S | T ∈ FN

g }\{∅};
• we adopted the classical definition of Davis and Maschler for the worth if the
coalition T is not connected, i.e., T ∈ F S\F S

gS
[see the third row of (2.4)], because

there is no need to change the definition of a virtual worth.
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Note that reducing andMyerson restrictingmaynot commute even for core elements
in the following sense: If x ∈ C(N , v, g) = C(N , v/g) and S ∈ FN , then the reduced
coalition function of the Myerson restricted TU game (v/g)S,x may differ from the
coalition function of the Myerson restricted reduced TU game (v

S,x
g )/gS . Indeed, if

|N | � 4, g consists of all but one link {k, �} (i.e., g = {S ⊆ N | 2 = |S|}\{{k, �}}),
and if v(S) = 0 for all but one coalition T = { j, k, �} of cardinality 3, whereas
v(T ) = −1, then x = 0 ∈ R

N is the unique core element and, with S = N\{ j},
(S, gS) is complete and v

S,x
g ({k, �}) = v(T ) − x j = −1, whereas (v/g)S,x ({k, �}) =

max{v({k}) + v({�}), v(T ) − x j } = 0.
Let �U and �U,class denote the set of TU games with communication structures

and the subset of (classical) TU games, respectively. A solution is a mapping σ that
assigns a subset σ(N , v, g) of X∗(N , v, N/g) to any TU game with communication
structure (N , v, g). Its restriction to a set � ⊆ �U is again denoted by σ . Moreover, a
solution on� is the restriction to� of some solution. A solution σ on� ⊆ �U satisfies

• non-emptiness (NE) if σ(N , v, g) �= ∅ for all (N , v, g) ∈ �;
• the zero inessential 2-person game property (ZIG) if for every (N , v, g) ∈ � such
that |N | = 2 and v(S) = 0 for all S ⊆ N , σ(N , v, g) �= ∅;

• boundedness (BOUND) if σ(N , v, g) is a bounded set for all (N , v, g) ∈ �;
• reasonableness from below (REAS) if for all (N , v, g) ∈ � and x ∈ σ(N , v, g),

xi �min{v(S ∪ {i})−v(S) | S ⊆ N\{i}, S, S ∪ {i} ∈ FN
g ∪ {∅}} for all i ∈ N ;

• Pareto optimality (PO) if σ(N , v, g) ⊆ X (N , v, N/g) for all (N , v, g) ∈ �;
• anonymity (AN) if the following condition is satisfied: If (N , v, g) ∈ �, π :

N → U is an injection, and if (π(N ), πv, πg) ∈ �, then σ(π(N ), πv, πg) =
π(σ(N , v, g)), where (πv)(π(S)) = v(S) for all S ⊆ N , πg = {{π(i), π( j)} |
{i, j} ∈ g}, and π(x) = y ∈ R

π(N ) is defined by yπ(i) = xi for all x ∈ R
N and

all i ∈ N ;
• covariance under strategic equivalence (COV) if for all (N , v, g), (N , w, g) ∈

�, β ∈ R
N , and α ∈ R with α > 0 the following condition holds: If

w(S) = αv(S) + β(S) for all S ⊆ N (the TU games (N , v) and (N , w)

are strategically equivalent) where β(S), S ⊆ N , is defined by (2.1), then
σ(N , w, g) = ασ(N , v, g) + β;

• the reduced game property (RGP) if for any (N , v, g) ∈ � and any x ∈ σ(N , v, g)
the following condition holds: If S ∈ FN , then (S, v

S,x
g , gS) ∈ � and xS ∈

σ(S, v
S,x
g , gS);

• the converse reduced game property (CRGP) if the following condition holds
for any (N , v, g) ∈ � with |N | − |N/g| � 1: If x ∈ X (N , v, N/g), if
(S, v

S,x
g , gS) ∈ � and xS ∈ σ(S, v

S,x
g , gS) for all S ∈ {{k, �} ⊆ N | k �=

� and k, � ∈ R for some R ∈ N/g}, then x ∈ σ(N , v, g);
• the reconfirmation property (RCP) if the following condition is satisfied for every

(N , v, g) ∈ �, x ∈ σ(N , v, g), and S ∈ FN : If (S, v
S,x
g , gS) ∈ �, y ∈

σ(S, v
S,x
g , gS), and y(R) � x(R) for all R ∈ S/gS , then (y, xN\S) ∈ σ(N , v, g);

• individual rationality (IR) if for any (N , v, g) ∈ � and x ∈ σ(N , v, g), xi � v({i})
for all i ∈ N ;
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• superadditivity (SUPA) if for any (N , v, g), (N , w, g) ∈ � the following condition
holds: If (N , v + w, g) ∈ �, then σ(N , v, g) + σ(N , w, g) ⊆ σ(N , v + w, g).

Recall that the definition of the weak reduced game property (WRGP) differs from
that of RGP only inasmuch as |S| � 2 is additionally required. Moreover, note that
with the condition y(R) � x(R) for all R ∈ S/gS our RCP is a generalization of a
property that Hwang and Sudhölter (2001) calledweak RCP [see also Remark 3.2 (1)].
For interpretations of and further references to the foregoing properties in the case that
� is a set of games, i.e., if (N , g) is the complete graph for each (N , v, g) ∈ �, see
Peleg (1986) and Hwang and Sudhölter (2001). Finally, note that RGP and CRGP are
used in characterizations of the prenucleolus and prekernel on �U (Khmelnitskaya
and Sudhölter 2013).

2.2 Characterizations of the core on balanced TU games and on totally
balanced TU games

Weshow that Peleg’s (1986) characterization of the core on balancedTUgames byNE,
IR, RGP, and SUPAmay be generalized to TU games with communication structures,
provided that |U | = ∞. For this purpose we first have to generalize the expression
“balanced TU game” to TU games with communication structures. To this end we
generalize the expression “subgame” to games with communication structures: Let
(N , v, g) ∈ �U and S ∈ FN . The subgame on S, (S, v′, g′), is defined by v′(T ) =
v(T ) for all T ⊆ S [i.e., (S, v′) is the classical subgame of (N , v) where the coalition
function v′ is the restriction of v to the subsets of S] and g′ = {{k, �} ∈ g | {k, �} ⊆ S}
[i.e., (S, g′) is the induced subgraph on S of (N , g)]. By slightly abusing notation we
denote this subgame by (S, v, g). Moreover, note that the Myerson restricted game of
the subgame (S, v, g) is the subgame on S of the Myerson restricted game (N , v/g),
hence this TU game is denoted by (S, v/g).

With this notation, (N , v, g) is called (totally) balanced if (N , v/g) is (totally)
balanced. According to Bondareva (1963) and Shapley (1967) and by (2.2), (N , v, g)
is (totally) balanced if and only if C(N , v, g) �= ∅ (C(S, v, g) �= ∅ for all S ∈ FN ).
Let �tb

U denote the set of totally balanced TU games with communication structures.

Remark 2.2 The core satisfies ZIG, AN, COV, RCP, CRGP, IR, SUPA, and BOUND
on any subset of �U . Moreover, on subsets of �U that contain with each TU game and
core element all (2-person) reduced TU games, the core satisfies (W)RGP.

Indeed, if (N , v, g) ∈ �U satisfies v(S) = 0 for all S ⊆ N , then C(N , v, g)
consists of the single element 0 ∈ R

N . This observation shows ZIG. Moreover, as
its definition does not depend on the names of the players, the core satisfies AN. It
is straightforward to verify that the core satisfies COV. RGP, RCP, SUPA, and CRGP
may be verified precisely as in the case of ordinary TU games. By definition, the core
is individually rational. Finally, as all singletons {i}, i ∈ N , of any (N , v, g) ∈ �U

are connected coalitions, C(N , v, g) is bounded.

For completeness we present the proof of the following lemma that is similar to the
proof of Peleg’s (1986, Lemma 5.6).
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Lemma 2.1 If a solution σ on� ⊆ �U satisfies IR andWRGP, then it is a subsolution
of the core.

Proof Let (N , v, g) ∈ � and x ∈ σ(N , v, g). We first show PO, i.e., x ∈
X (N , v, N/g). Assume, on the contrary, that x(R) < v(R) for some R ∈ N/g.
Let i ∈ R, then xi < v(R) − x(R\{i}) = v

{i},x
g ({i}) so that a contradiction to IR and

WRGP has been obtained.
Let n = |N |. If n � 2, PO and IR imply that x ∈ C(N , v, g). If n > 2 and

x(S) < v(S) for some S ∈ FN
g , then let R ∈ N/g such that S ⊆ R. By PO, S �= R

so that there exists j ∈ R\S. As S �= ∅, there exists i ∈ S. Then xi < v
{i, j},x
g ({i}) so

that WRGP and IR yield the desired contradiction. �
Theorem 2.1 If |U | = ∞, then on �b

U the core is the unique solution that satisfies
NE, IR, RGP, and SUPA.

In the proof of this theorem and in the definition of the Myerson restricted NTU
game [see (3.6)] let, for T ⊆ M ∈ F , χT,M ∈ R

M denote the indicator vector of T
w.r.t. M defined by

χ
T,M
i =

{
1, if i ∈ T,

0, if i ∈ M\T .
(2.5)

If the ground set M = N is clear from the context, then we sometimes omit the second
superscript M , i.e., use the notation χT = χT,N .

Proof By definition of �b
U , the core satisfies NE so that, by Remark 2.2, only the

uniqueness part has to be shown. Let σ be a solution on �b
U that satisfies the desired

properties and let (N , v, g) ∈ �b
U . Denote n = |N |. By Lemma 2.1, it remains to show

that C(N , v, g) ⊆ σ(N , v, g). Let x ∈ C(N , v, g). Recall that T ∈ FN is a clique
of (N , g) if the induced subgraph on T is complete. We first consider the case that
N is the disjoint union of cliques that have cardinalities of at least 3, i.e., there exists
a partition T of N such that |T | � 3 and the induced subgraph (T, g) is complete
for all T ∈ T . Define (N , u, g) by u({i}) = v({i}) for all i ∈ N and u(S) = x(S)

for all other coalitions S ⊆ N . Then x ∈ C(N , u, g). Moreover, for any S ⊆ N with

|S| � 2,
∑

i∈S
χ S\{i}
|S|−1 = χ S . As N = ⋃

T∈T T and T ∩ T ′ = ∅ for all T, T ′ ∈ T with
T �= T ′, we have

∑
{

∑

i∈T

χT \{i}

|T | − 1

∣∣∣∣∣ T ∈ T
}

= χN ,

i.e., {T \{i} | T ∈ T } is a balanced collection of connected coalitions. Moreover,
the vectors χT \{i} where T ∈ T and i ∈ T span R

N – in fact these vectors form a
vector space basis of R

N . Therefore, C(N , u, g) = {x}. By NE, x ∈ σ(N , u, g). As
(v − u)({i}) = (v − u)(R) = 0 for all i ∈ N and R ∈ N/g and (v − u)(S) � 0
for all S ∈ FN

g , C(N , v − u, g) = {0}. By NE, 0 ∈ σ(N , v − u, g) and, by SUPA,
x = x + 0 ∈ σ(N , u + (v − u), g) so that the proof is finished in this case.
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Now, we can complete the proof. In the general case, as |U | = ∞, there exists
M ⊆ U such that N ⊆ M and |M | = 3n. For each i ∈ N choose i ′, i ′′ ∈ M such that
M is the disjoint union of N , N ′ = {i ′ | i ∈ N }, and N ′′ = {i ′′ | i ∈ N }. Define the
graph (M, h) by

h = g ∪ {{i, i ′} | i ∈ N } ∪ {{i, i ′′} | i ∈ N } ∪ {{i ′, i ′′} | i ∈ N }.

Hence, all of the sets {i, i ′, i ′′}, i ∈ N , are cliques of (M, h) of cardinality 3 that form
a partition of M . Moreover, let the TU game (M, w) be defined by w(S) = v(S ∩ N )

for all S ⊆ M , i.e., all players in M\N are null-players. Then, for S ⊆ M , if S ∈ FM
h ,

then S ∩ N ∈ FN
g . Let y ∈ R

M be determined by yN = x and yM\N = 0 ∈ R
M\N .

Then y ∈ C(M, w, h), hence y ∈ σ(M, w, h) by the former case. As v = w
N ,y
h ,

hN = g, and yN = x , RGP finishes the proof. �
Theorem 2.1 generalizes Peleg’s (1986, Theorem 5.4). However, for classical TU

games |U | = ∞ may be replaced by |U | � 3 and RGP may be replaced by WRGP.
We now show by means of the following two examples that without the assumption
|U | = ∞ our theorem is not valid and that WRGP does not replace RGP.

Example 2.1 Recall that a solution σ on � ⊆ �U is a standard solution if, for any
({i, j}, w) ∈ � such that i �= j , with y ∈ R

{i, j} defined by yi = w({i})−w({ j})+w(N )
2 ,

σ ({i, j}, w) = {y}. Thus, y ∈ C({i, j}, w) if ({i, j}, w) is balanced. Now, for
(N , v, g) ∈ �U , define σ̂ as follows: If N = U, then x ∈ σ̂ (N , v, g) if and only
if for any S ∈ N/g, {xS} is the standard solution applied to the subgame (S, v, g) if
|S| = 2, and xS ∈ C(S, v, g) if |S| �= 2. If N � U , then σ̂ (N , v, g) = C(N , v, g). On
�b
U our solution σ̂ satisfies NE because the reduced game w.r.t. any connected com-

ponent with a complete induced subgraph coincides with the corresponding subgame
and the core satisfies RCP. As the standard solution is additive, σ̂ satisfies SUPA. As
a subsolution of the core it satisfies IR. As it coincides with the core whenever not all
players are present, it satisfies RGP. Finally, if 2 � |U | < ∞, then σ̂ �= C .

We now present an example of a solution on �b
U that satisfies NE, IR, WRGP, and

SUPA, but violates RGP if |U | � 3.

Example 2.2 Recall that i ∈ N is a leaf vertex of the graph (N , g) if i has a unique
adjacent vertex, i.e., if the degree of i is 1. Let L(g) be the set of leaf vertices whose
adjacent vertices have at least degree 2. For any (N , v, g) ∈ �b

U define σ̃ (N , v, g) =
{x ∈ C(N , v, g) | xi = v({i}) for all i ∈ L(g)}. If a graph (N , g) has at most two
vertices, then L(g) = ∅. Hence, σ̃ coincides with the core for TU games with at most
2 players so that σ̃ satisfies IR and WRGP. It is straightforward to verify that it also
satisfies SUPA. Moreover, if y ∈ C(N , v, g) and x ∈ R

N is defined, for i ∈ N , by

xi =
{

v({i}), if i ∈ L(g),
yi + ∑{y j − v({ j}) | j ∈ L(g), {i, j} ∈ g}, if i ∈ N\L(g),

then x ∈ σ̃ (N , v, g) so that σ̃ satisfies NE. Finally, if |U | � 3, say N = {1, 2, 3} ∈ U ,
then let (N , v)be the unanimity game, i.e., the gamedefinedbyv(N ) = 1andv(S) = 0
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for all S � N , and (N , g) be the graph defined by g = {{1, 2}, {2, 3}}, then (0, 1, 0)
is the unique element of σ̃ (N , v, g) whereas C(N , v, g) is the entire unit simplex in
R

N . Hence, σ̃ �= C so that σ̃ must violate RGP.

As stated by Peleg (1989) and proved by Sudhölter and Peleg (2002, Theorem 3),
the core on totally balanced TU games is characterized by NE, IR, WRGP, CRGP,
and SUPA, provided that |U | � 4. The following theorem generalizes the foregoing
characterization to totally balanced TU games with communication structures. Its
proof is based on the following remark.

Remark 2.3 Let � ⊆ �U and let σ 1 and σ 2 be solutions on �. If σ 1 satisfies PO and
WRGP and σ 2 satisfies CRGP and if σ 1(N , v, g) ⊆ σ 2(N , v, g) for every (N , v, g) ∈
� with |N | � 2, then σ 1 is a subsolution of σ 2, i.e., σ 1(M, w, h) ⊆ σ 2(M, w, h) for
all (M, w, h) ∈ �. Indeed, this remark may be shown by suitably rewriting the proof
of Remark 3.7 of Hwang and Sudhölter (2001).

Theorem 2.2 If |U | � 4, then on �tb
U the core is the unique solution that satisfiesNE,

IR, WRGP, CRGP, and SUPA.

Proof By Remark 2.2, only the uniqueness part is left. Let σ be a solution on �tb
U that

satisfies the desired properties and let (N , v, g) ∈ �tb
U . By Lemma 2.1, σ(N , v, g) ⊆

C(N , v, g), and, by the aforementioned Theorem 3 of Sudhölter and Peleg (2002),
σ(N , v, g) = C(N , v, g) whenever (N , g) is a complete graph. If |N | = 2 and
(N , g) is not the complete graph, then C(N , v, g) is a singleton so that σ(N , v, g) =
C(N , v, g) by NE in this case. Hence, Remark 2.3 applied to σ 1 = C and σ 2 = σ

completes the proof. �
Remark 2.4 Note that Peleg’s (1989, Theorem 7.1) may be generalized as well: The-
orem 2.2 remains valid if �tb

U is replaced by an arbitrary set � of games such that
�tb
U ⊆ � ⊆ �b

U .

We now expand examples of the literature in order to show that each of the axioms
in Theorems 2.1 and 2.2 is logically independent of the remaining axioms. The
empty solution satisfies IR, RGP, CRGP, and SUPA, but violates NE. The solution
σ defined by σ(N , v, g) = C(N , v, g) for all TU games with communication struc-
tures (N , v, g) with |N | � 2 and σ({i}, v) = X∗({i}, v, {{i}}) for all one-person TU
games ({i}, v) satisfies NE, CRGP,WRGP, and SUPA on�tb

U and�b
U , and RGP on�b

U ,
but violates IR (on one-person games). The solution that assigns to each game with
communication structure its set of imputations (individually rational preimputations)
satisfies NE, IR, CRGP, and SUPA, but violates WRGP.

In order to show that SUPA is logically independent of the remaining axioms in
both, we generalize Peleg’s (1986) example: For every TU game with communication
structure (N , v, g) ∈ �U the prekernel (Maschler et al. 1972; Davis and Maschler
1965) of (N , v, g), denoted PK(N , v, g), is defined by

PK(N , v, g) = {x ∈ X (N , v, N/g) | sk�(x, v, g)

= s�k(x, v, g) for all k, � ∈ R ∈ N/g, k �= �},
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where sk�(y, v, g) = max{v(S) − y(S) | S ∈ FN
g , k ∈ S �� �} for y ∈ R

N . As
for classical TU games, PK(N , v, g) contains the prenucleolus (Schmeidler 1969;
Sobolev 1975) point ν(N , v, g), and, if (N , v, g) is balanced, then1 ν(N , v, g) ∈
C(N , v, g). Hence, with

σ 0(N , v, g) = PK(N , v, g) ∩ C(N , v, g) (2.6)

the solution σ 0 satisfies NE on any subset of �b
U . As PK satisfies RGP and WRGP

when possible and CRGP on every set of TU games with communication structures
Khmelnitskaya and Sudhölter (2013, Sect. 6), σ 0 exclusively violates SUPA in The-
orems 2.1 and 2.2.

Peleg (1985, Example 5.5) presents a solution σ that satisfies NE, IR, WRGP, and
SUPA on the set of totally balanced TU games (N , v) ∈ �U , but does not coincide
with the core, and coincides with C(N , v) for all (N , v) ∈ �b

U with |N | � 2. If
we generalize this solution by defining σ ′(N , v, g) = σ(N , v) if (N , g) is complete
and (N , v) is totally balanced, and σ ′(N , v, g) = C(N , v, g) otherwise, then σ ′
exclusively violates CRGP in Theorem 2.2.

The following example shows that the assumption |U | � 4 is sharp in Theorem
2.2.

Example 2.3 Let |U | = 3, say U = {1, 2, 3} and define, for any (N , v, g) ∈ �tb
U ,

σ(N , v, b)

=
⎧
⎨

⎩

{x ∈ C(N , v, g) | xi = v({i})}, if {i, 3} ∈ N/g for some i ∈ {1, 2},
{x ∈ C(N , v, g) | x1 + x2 = v/g({1, 2})}, if {U } = N/g,
C(N , v, g), otherwise.

If N = U , then σ(N , v, g) �= ∅ because (N , v/g) is totally balanced. Hence, σ

satisfies NE. Moreover, σ inherits IR and SUPA from C . Finally, it is straightforward
to show that σ satisfies RGP and CRGP.

2.3 Characterizations of the core on the set of all TU games and on various
subsets

This subsection is devoted to generalize the characterizations of Hwang and Sudhölter
(2001) of the core on various sets of TU games to TU games with communication
structures. The main result is the following theorem.

Theorem 2.3 If |U | � 5, then on �U the core is the unique solution that satisfies
ZIG, AN, COV, WRGP, RCP, CRGP, and BOUND.

1 Note that ν(N , v, g) may not coincide with ν(N , v/g) in general already for |N | = 3 as shown by an
example Khmelnitskaya and Sudhölter (2013, p. 297), but using Kohlberg’s (1971) characterization of the
(pre)nucleolus by balanced collections of coalitions it may be deduced that ν(N , v, g) = ν(N , v/g) for all
balanced (N , v, g).
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When �U is replaced by �U,class, then the corresponding version of the foregoing
theorem is proved by Hwang and Sudhölter (2001, Theorem 4.2). The current gener-
alization is an immediate consequence of Lemma 2.2, Remark 2.3, and the following
lemma and remark.

Remark 2.5 If σ is a solution on some � ⊆ �U that satisfies COV, WRGP, and
BOUND, then σ satisfies PO. Indeed, this remark may be shown by suitably rewriting
the proof of Lemma 4.3 of Hwang and Sudhölter (2001).

Lemma 2.2 Assume that |U | � 3, �tb
U ⊆ �, and that σ satisfies ZIG, COV, WRGP,

CRGP, and BOUND. If σ coincides with C on the set of all 2-person classical games
in � ∩ �U,class, then σ coincides with C for each 2-person game in �.

Proof Let (N , v, g) ∈ �\�U,class be a 2-person game. Then N /∈ g. We may assume
that M = {1, 2, 3} ⊆ U and N = {1, 2}. Define x ∈ R

N by xi = v({i}) for i ∈ N . As
X (N , v, N/g) = C(N , v, g) = {x}, by Remark 2.5, it remains to show σ(N , v, g) �=
∅. Let (M, h) be the graph given by h = {{2, 3}} and let (M, w, h) ∈ �U be defined by
w(T ) = v(T ∩ N ) for all T ⊆ M . Then y = (x, 0) ∈ C(M, w, h). Let S = {2, 3}. As
(S, hS) is complete and yS ∈ C(S, w

S,y
h ) = σ(S, w

S,y
h ), y ∈ σ(M, w, h) by CRGP.

By WRGP, yN = x ∈ σ(N , w
N ,y
h , hN ) and (N , w

N ,y
h , hN ) = (N , v, g), the proof is

complete. �
Now, we are able to prove our theorem.

Proof of Theorem 2.3 By Remark 2.2, it remains to prove the uniqueness part. Let
σ satisfy the desired properties. By Theorem 4.2 of Hwang and Sudhölter (2001), σ
coincides with the core for each classical TU game. By Lemma 2.2, σ coincides with
C for any game (N , v, g) with communication structures that satisfies |N | � 2. By
Remark 2.5, σ satisfies PO. Remark 2.3 alternatingly applied to σ i = σ and σ 3−i = C
for i = 1, 2 shows that σ is a subsolution of C and, vice versa, C is a subsolution of
σ . �

We now show that similarly to the case of classical TU games, the statement of
Theorem 2.3 is still valid for many interesting subsets of �U .

Theorem 2.4 If |U | � 5 and if �tb
U ⊆ � ⊆ �U such that any (N , v, g) ∈ � with

|N | = 2 has an imputation, then on � the core is the unique solution that satisfies
ZIG, COV, WRGP, RCP, CRGP, and BOUND.

Proof Again just the uniqueness part has to be proved. Let σ be a solution that satisfies
the desired properties and let (N , v, g) ∈ �. If (N , g) is complete, then σ(N , v) =
C(N , v) by Theorem 5.1 of Hwang and Sudhölter (2001). By consecutively applying
Lemma 2.2, Remark 2.5, and twice Remark 2.3, the proof may be finished along the
corresponding part of the proof of Theorem 2.3. �

For examples of solutions that show the logical independence of each of the axioms
in Theorems 2.3 and 2.4 see Sect. 4.
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3 The NTU case

We proceed similarly as in the TU case by first introducing additional useful notation
and presenting additional definitions that are needed. The second subsection provides
generalizations of two characterizations of the core due to Peleg (1985), the third
subsection provides the counterparts of Theorems 2.3 and 2.4, thereby generalizing
the corresponding results of Hwang and Sudhölter (2001).

3.1 Preliminaries

Some additional notation is needed. For N ∈ F , x, y ∈ R
N , x � y if xi � yi for all

i ∈ N , x < y if x � y and x �= y, and x � y if xi < yi for all i ∈ N . The boundary
of a set X ⊆ R

N is denoted by ∂X and we denote R
N+ = {x ∈ R

N | x � 0}.
A cooperative nontransferable utility game (NTU game) is a pair (N , V ) where

N ∈ F is finite and V assigns to each S ∈ FN a subset V (S) ⊆ R
S such that

V (S) �= ∅, (3.1)

V (S) is closed, (3.2)

V (S) is comprehensive: x ∈ V (S), y ∈ R
S, y � x ⇒ y ∈ V (S), (3.3)

V (S) ∩ (x + R
S+) is bounded for all x ∈ R

S, (3.4)

V (S) is non-leveled: x, y ∈ ∂V (S), x � y ⇒ x = y. (3.5)

2Note that the foregoing definition of an NTU game is customary and may be found
in the literature Peleg (1985).

Let (N , V, g) be an NTU game with communication structure, i.e., (N , V ) is an
NTU game and (N , g) is a graph. The sets of feasible payoff vectors and of Pareto
optimal feasible payoff vectors (preimputations) of (N , V, g) are the sets

X∗(N , V, N/g) = {x ∈ R
N | xR ∈ V (R) for all R ∈ N/g} and

X (N , V, N/g) = {x ∈ R
N | xR ∈ ∂V (R) for all R ∈ N/g},

respectively. An imputation is a preimputation that is individually rational. Let x ∈ R
N

and S ∈ FN . Then S can improve upon x if there exists y ∈ V (S) such that y � xS .
The core of (N , V, g), denoted by C(N , V, g), is the set

C(N , V, g) = {x ∈ X∗(N , v, N/g) | No S ∈ FN
g can improve upon x}.

As V (R), R ∈ N/g, is non-leveled, C(N , V, g) ⊆ X (N , V, N/g). In order to gen-
eralize the Myerson restricted game to the NTU context, define with the notation of
(2.5), for any S ∈ FN ,

2 When applied to sets, the “+” denotes the “Minkowski sum”, i.e., x + R
S+ = {x + y | y ∈ R

S+}.
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(V/g)(S) =
⎧
⎨

⎩x +
∑

T∈S/g

λTχT,S ∈ R
S

∣∣∣∣∣∣
xT ∈ V (T ), λT ∈ R ∀T ∈ S/g,

⎛

⎝
∑

T∈S/g

λTχT,S

⎞

⎠ (S) = 0

⎫
⎬

⎭ . (3.6)

Note that the Myerson restricted NTU game (N , V/g) indeed satisfies (3.1)–(3.5)
and observe, moreover, that

C(N , V, g) = C(N , V/g) (3.7)

and that, if (N , V ) is associated to a TU game (N , v), then (N , V/g) is the NTU game
associated with (N , v/g).

Let S ∈ FN and x ∈ X∗(N , V, N/g). Then the reducedobjectwith communication
structure w.r.t. S and x of (N , V, g), denoted by (S, V S,x

g , gS), is, for each T ∈ F S ,
defined by

V S,x
g (T )

=

⎧
⎪⎨

⎪⎩

{y ∈ R
T | (y, xR\S) ∈ V (R)}, if T = S ∩ R for some R ∈ N/g,⋃

Q∈{Q⊆N\S|T∪Q∈FN
g }{y ∈ R

T | (y, xQ) ∈ V (T ∪ Q)}, if T ∈ F S
gS

\ (
S/gS

)
,

⋃
Q⊆N\S{y ∈ R

T | (y, xQ) ∈ V (T ∪ Q)}, otherwise.
(3.8)

As in the classical case it may easily be deduced that the reduced object (S, V S,x
g )

satisfies all properties of an NTU game except (3.1). To be more precise, (3.1) may
only be violated for a non-connected subset T of S that is connected w.r.t. (S, gS). We
replace theword “object” by “game” if (S, V S,x

g ) is anNTUgame, i.e., if V S,x
g (T ) �= ∅

for all T ∈ F S . Let�U denote the set of allNTUgameswith communication structures
and define

�C
U = {(N , V, g) ∈ �U | C(N , V, g) �= ∅}.

In this context a solutionσ assigns to each (N , V, g) ∈ �U a subset of X∗(N , V, N/g).
In order to generalize RGP and WRGP to NTU games with communication struc-

tures let σ be a solution on some � ⊆ �U . We say that σ satisfies the reduced game
property (RGP) if for any (N , V, g) ∈ � and any x ∈ σ(N , V, g) the following
condition holds: If S ∈ FN and if (S, V S,x

g ) is an NTU game (i.e., V S,x
g (T ) �= ∅ for

all T ∈ F S), then (S, V S,x
g , gS) ∈ � and xS ∈ σ(S, V S,x

g , gS). As in the TU context,
the definition of the weak reduced game property (WRGP) differs from that of RGP
only inasmuch as |S| � 2 is additionally required. However, as x ∈ X∗(N , V, N/g),
(S, V S,x

g ) is automatically an NTU game because singletons are connected so that the

condition “if (S, V S,x
g ) is an NTU game” may be deleted in the case |S| � 2.

The generalizations of CRGP, IR (x ∈ R
N is individually rational for (N , V, g) ∈

�U if xi � max{V ({i})} for all i ∈ N ), PO, NE, AN, and BOUND to a set of NTU
games with communication structures are straightforward and left to the reader.
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Remark 3.1 As for TU games it is straightforward to show the following statements:

1. The core satisfies CRGP and IR on any subset of �U and that it satisfies RGP or
WRGP on subsets that contain all existing reduced games or all reduced games
with at most two players, respectively, w.r.t. core elements.

2. If a solution on a subset of �U satisfies WRGP and IR, then it also satisfies PO.

3.2 Characterizations of the core on the NTU games with nonempty cores

This subsection is devoted to the generalizations of Peleg’s (1985, Theorem 5.5 and
Corollary 6.3). Though the subsequent proofs are modifications of his proofs for the
case of classical NTUgames, all of them are presented in order to keep the presentation
self-contained and to allow the interested reader to check inasmuch they differ from
the well-known ones.

Lemma 3.1 If a solution σ on some � ⊆ �U satisfies WRGP and IR, then
σ(N , V, g) ⊆ C(N , V, g) for all (N , V, g) ∈ �.

Proof By Remark 3.1, σ satisfies PO. Hence, by IR, σ(N , V, g) ⊆ C(N , V, g)when-
ever |N | � 2. If |N | � 3 and x ∈ σ(N , V, g), then xS ∈ σ(S, V S,x

g ) ⊆ C(S, V S,x
g )

for all S ∈ P , where P = {{k, �} ⊆ N | k �= � and k, � ∈ R for some R ∈ N/g} so
that x ∈ C(N , V, g) by CRGP of C . �
Lemma 3.2 Let (N , V, g) ∈ �C

U , x̄ ∈ C(N , V, g), and Q ⊆ U\N such that |Q| =
|{R ∈ N/g | 2 � |R|}|, and denote M = N ∪ Q. Then there exists (M,W, h) ∈ �C

U

such that C(M,W, h) = {z} = {(x̄, 0M\N )} and (N ,WN ,z
h , hN ) = (N , V, g).

Proof Let T = {R ∈ N/g | 2 � |R|} and select, for any R ∈ T , i(R) ∈ R and
j (R) ∈ M\N such that M = N ∪ { j (R) | R ∈ T }. Define h = g ∪ {{i(R), j (R)} |
R ∈ T }. Let S ∈ FM . In order to define W (S) we distinguish cases.

1. If S ⊆ N and S /∈ T , then W (S) = V (S).
2. If S ∈ T , then W (S) = f (V (S)) where f = ( fi )i∈S : R

S → R
S is defined by

fi (x) = xi + (xi − x̄i )+
1 + (xi − x̄i )+

for all x ∈ R
S, i ∈ S.

As an image of a nonempty set, W (S) �= ∅. Moreover,

xi � fi (x) < xi + 1 for all x ∈ R
S and i ∈ S (3.9)

implies, together with continuity, (3.2)–(3.4). As fi is strictly monotonic in the
sense that fi (x) < fi (y) for all i ∈ S, whenever xi < yi , (3.5) is satisfied. As
x̄S ∈ ∂V (S), this strict monotonicity also implies that

x̄S ∈ ∂W (S). (3.10)
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Moreover, we’ll use that

x ∈ ∂V (S)\{x̄S} �⇒ x /∈ ∂W (S). (3.11)

Indeed, if x ∈ ∂V (S)\{x̄S}, then there exists j ∈ S such that x̄ j < x j . By the
definition of f j , f j (x) > x j , hence x < f (x) ∈ W (S) so that x /∈ ∂W (S) by
non-levelness.

3. If S ⊆ M\N , then W (S) = {x ∈ R
S | x(S) � 0} so that (3.1)–(3.5) are satisfied.

4. Otherwise, S = P ∪ Q for some P ∈ FN and some Q ∈ FM\N . In this case
define

W (S) =
{
(x, y) − y(Q)χ P,S | x ∈ V (P), y ∈ R

Q
}

.

Then it is straightforward to verify thatW (S) is nonempty, closed, comprehensive,
and non-leveled. If z ∈ R

S and y ∈ W (S) ∩ (z + R
S+), then yQ � zQ , hence

y(Q) � z(Q). As yP + y(Q)χ P,P = x ∈ V (P), x � zP + z(Q)χ P,P so that
(3.4) follows. We’ll use the obvious fact that

{x ∈ R
P | (x, 0Q) ∈ W (S)} = V (P). (3.12)

In order to complete the proof, let y ∈ C(M,W, h). By construction, M/h = {R ∪
{ j (R)} | R ∈ T }. Let R ∈ T and j = j (R). By case (4), there exists x ∈ V (R) such
that yi = xi − y j for all i ∈ R. By (3), y j � 0. As x ∈ W (R) by (2), y j = 0. By
(3.11), xR = x̄R hence, y = (x̄, 0M\N ). We conclude that C(M,W, h) = {y} and
WN ,y

h = V . As hN = g, the proof is complete. �
Now we are able to prove the following theorems.

Theorem 3.1 If |U | � 3, then on�C
U the core is the unique solution that satisfiesNE,

IR, WRGP, and CRGP.

WeproveTheorem3.1 togetherwith the following result that states that, if |U | = ∞,
WRGP and CRGP may be replaced by RGP.

Theorem 3.2 If |U | = ∞, then on �C
U the core is the unique solution that satisfies

NE, IR, and RGP.

Proof of Theorems 3.1 and 3.2 By definition of �C
U , the core satisfies NE, and by

Remark 3.1 it satisfies the remaining properties. In order to show uniqueness, let σ

be a solution that satisfies the desired properties and let (N , V, g) ∈ �C
U . By Lemma

3.1, σ(N , V, g) ⊆ C(N , V, g) so that only the other inclusion remains to be verified.
If |N | � 2, then |{R ∈ N/g | 2 � |R|}| ∈ {0, 1}. By Lemmas 3.1, 3.2, WRGP,
and NE the proof is finished in this case because |U | � 3. Now, let |N | � 3 and
x ∈ C(N , V, g). By WRGP of C , xS ∈ C(S, V S,x

g ) = σ(S, V S,x
g ) for all S ⊆ N with

|S| = 2 and |S/gS| = 1. If σ satisfies CRGP, then x ∈ σ(N , V, g). If |U | = ∞, then
the proof is complete by NE, RGP, and Lemmas 3.1 and 3.2. �
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Similarly as at the end of Sect. 2.2 we now expand well-known examples in order
to show that each of the axioms in Theorems 3.1 and 3.2 is logically independent
of the remaining axioms. The empty solution satisfies IR, RGP, CRGP, but violates
NE. The solution σ defined by σ(N , V, g) = C(N , V, g) for all NTU games with
communication structures (N , V, g) with |N | � 2 and σ({i}, V ) = X∗({i}, V, {{i}})
for all one-person NTU games ({i}, V ) satisfies NE, CRGP, and RGP, but violates IR
(on one-person games). The solution that assigns to each game with communication
structure its set of imputations (individually rational preimputations) satisfies NE, IR,
and CRGP, but violatesWRGP. Finally, any solution that coincides with the core on all
two-person NTU games in�C

U and selects a nonempty subset of the core for any other
game in �C

U satisfies NE, WRGP, and IR, and violates CRGP if it does not coincide
with the core. However, this solution may only violate CRGP if |U | � 3 which shows
that the statement of Theorem 3.1 does not remain true for the case |U | = 2.

3.3 Theorems 2.3 and 2.4 for the NTU case

This subsection is devoted to generalize Theorem 7.4 and 7.5 of Hwang and Sud-
hölter (2001) in order to suitably modify Theorems 2.3 and 2.4 for NTU games
with communication structures. We first generalize some possible properties of a
solution. Let (N , V, g) ∈ �U , Ŝ ∈ FN , X ⊆ R

Ŝ, and a ∈ R
N . Then we denote

a ∗ X = {(ai xi )i∈Ŝ ∈ R
Ŝ | x ∈ X} and call (N , V, g) a-inessential if aS ∈ ∂V (S) for

all S ∈ FN . A solution σ on � satisfies

• COV if for all (N , V, g), (N ,W, g) ∈ �, andα, β ∈ R
N withα � 0 the following

condition holds: If W (S) = α ∗ V (S) + βS for all ∅ �= S ⊆ N (the NTU
games (N , V ) and (N ,W ) are strategically equivalent), then σ(N ,W, g) = α ∗
σ(N , V, g) + β;

• ZIG if for every 0-inessential 2-person game (N , V, g) ∈ �, σ(N , V, g) �= ∅;
• RCP if the following condition is satisfied for every (N , V, g) ∈ �, x ∈

σ(N , V, g), and S ∈ FN : If (S, V S,x
g , gS) ∈ � and y ∈ σ(S, V S,x

g , gS) sat-
isfies, for all R ∈ S/gS ,

⋃
Q⊆N\R,R∪Q∈F N

g
{z ∈ R

R | z � 0, (yR + z, xQ) ∈ V (R ∪ Q)}
⊆ ⋃

Q⊆N\R,R∪Q∈F N
g

{z ∈ R
R | z � 0, (xR + z, xQ) ∈ V (R ∪ Q)},

(3.13)

then (y, xN\S) ∈ σ(N , V, g);
• REAS if for every (N , V, g) ∈ �, x ∈ σ(N , V, g), and all i ∈ N ,

xi � di (N , V, g) = min{max{t ∈ R
{i} | (t, y) ∈ V (S ∪ {i})∀y

∈ V (S)} | S, S ∪ {i} ∈ FN
g ∪ {∅}, S �� i},

where V (∅) = R
∅ and max ∅ = −∞ (in this case x is called reasonable).
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Remark 3.2 1. It should be noted that, if (N , V ) corresponds to a TU game, then
(3.13) is equivalent to the condition y(R) � x(R) (see the definition of RCP
in Sect. 2.1). Originally Hwang and Sudhölter (2001) these conditions were not
included in the definitions of RCP so that the current versions were called weak
RCP (for interpretations see the aforementioned paper). For TU games, the core
satisfies even the stronger property [where y(R) � x(R) is not assumed] because
y(R) = x(R)whenever xS and yS belong to the core of the reduced TU game with
communication structure. In view of Lemma 3.2, for NTU games the core does
not satisfy the stronger property because connected coalitions of the form R ∪ Q
might be able to improve upon (y, xN\S) which is ruled out for a core element
x if y satisfies (3.13) because xS is in the core of (S, V S,x

g , gS). Hence, the core
satisfies the current version of RCP.

2. Let (N , V, g) ∈ �U . Then X = {x ∈ X (N , V, N/g) | x is reasonable} �= ∅.
Indeed, denote S = {i ∈ N | di (N , v, g) = −∞} and choose any y ∈ R

N

that satisfies y j = d j (N , V, g) for all j ∈ N\S and yP ∈ V (P) for all P ∈
F S . Let T ∈ FN

g . By induction on |T | we show that yT ∈ V (T ). If |T | = 1,
then yT ∈ V (T ) by construction. If |T | � 2, then there exists i ∈ T such that
T \{i} ∈ FN

g . By the inductive hypothesis, yT \{i} ∈ V (T \{i}) so that yT ∈ V (T )

by construction. By (3.3), there exists x ∈ X (N , v, N/g) such that x � y so that
x is reasonable. Note that the core satisfies REAS.

3. Note that the set of reasonable Pareto optimal payoff vectors [i.e., the set X defined
in (2)] may be indeed unbounded. E.g., if |N | = 2, N ∈ g, max V ({i}) = 0 for
i ∈ N , and V (N ) is contained in {x ∈ R

N | x � 0}, then di (N , V, g) = −∞.

For (N , V, g) ∈ �U and S ∈ FN the subgame with communication structure on
S is denoted by (S, V, g). As in the TU context, the Myerson restricted game with
communication structure of (S, V, g) coincideswith the subgamewith communication
structure of (N , V/g) on S so that it is denoted by (S, V/g). We say that (N , V, g)
is (totally) cardinal balanced if (N , V/g) is (totally) cardinal balanced in the sense
of Billera and Bixby (1973). A cardinal balanced NTU game has a nonempty core,
but there are NTU games with a nonempty core that do not even satisfy the weaker
balance property of Scarf (1967). However, for 2-person NTU games these conditions
are also necessary for the non-emptiness of the core. Let �tb

U denote the set of totally
cardinal balanced NTU games with communication structures.

Now we prove the counterparts of Theorems 2.3 and 2.4 in the NTU case. The lists
of axioms are the same except that REAS replaces BOUND.

Theorem 3.3 If |U | � 5, then on �U the core is the unique solution that satisfies
ZIG, AN, COV, WRGP, RCP, CRGP, and REAS.

We prove Theorem 3.3 together with the following theorem.

Theorem 3.4 If |U | � 5 and if �tb
U ⊆ � ⊆ �U such that any (N , V, g) ∈ � with

|N | = 2 has an imputation, then on � the core is the unique solution that satisfies
ZIG, COV, WRGP, RCP, CRGP, and REAS.

Proof of Theorems 3.3 and 3.4 The core satisfies the desired properties so that it
remains to show the uniqueness part. Let σ be a solution on �U or �, respectively,
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that satisfies the respective desired properties and let (N , V, g) be an element of �U

or �, respectively. By Theorem 7.4 or Theorem 7.5 of Hwang and Sudhölter (2001),
σ(N , V, g) = C(N , V, g) if (N , g) is complete. Hence, we may assume that (N , g)
is not complete.
If |N | = 2, then σ(N , V, g) is contained in the singleton core by REAS. Hence,
it suffices to show that σ(N , V, g) �= ∅. Choose � ∈ U\N and k ∈ N and
define M = N ∪ {�} and (M,W, h) by h = {{k, �}}, W (S) = V (S) and
W (S ∪ {�}) = {(x + tχ S,N ,−t) ∈ R

S∪{�} | x ∈ V (S), t ∈ R
{�}} for S ∈ FN ,

and W ({�}) = −R
{�}
+ . Then (M,W/h) corresponds to a TU game and, with x ∈ R

M

given by xi = maxW ({i}) for i ∈ M , x ∈ C(M,W, h) so that (M,W, h) is car-
dinal balanced. Moreover, for S ⊆ M with 1 � |S| = 2, xS ∈ C(S,W, h). Hence,
(M,W, h) is totally balanced. By CRGP, x ∈ σ(M,W, h) because the unique relevant
reduced game is the reduced game on {k, �}. Hence, by WRGP, xN ∈ σ(N , V, g).
If |N | � 3 and x ∈ σ(N , V, g), then by WRGP, x is Pareto optimal, hence σ sat-
isfies PO. Thus, the appropriate generalization of Remark 2.3 to NTU games with
communication structures finishes the proof. �
Remark 3.3 Note that in Theorems 3.3 and 3.4 REAS plays the role of BOUND in
Theorems 2.3 and 2.4. On any set of TU games, REAS implies BOUND, but in general
this is not longer true for sets of NTU games. It is still an open problem Hwang and
Sudhölter (2001, Remark 8.1(4)) whether REAS may be replaced by BOUND in
Theorem 3.3 or Theorem 3.4.

For a single NTU game Keiding and Thorlund-Petersen (1987) and more recently
Predtetchinski and Herings (2004) present necessary and sufficient conditions for
non-emptiness of the core that, by (3.7), can also be applied to NTU games with
communication structures. It should be remarked that Theorem 3.3, though it does not
provide a statement about the non-emptiness of the core of a single game, yields an
implicit characterization of the set of NTU games with communication structures that
have a nonempty core.

4 The logical independence of the axioms in Theorems 2.3, 2.4, 3.3, and
3.4

By means of examples we show that each axiom in Theorems 2.3, 2.4, 3.1, and 3.2 is
logically independent of the remaining axioms. Throughout we assume that |U | � 2.

We expand the solutions σ 2, . . . , σ 7 of Hwang and Sudhölter (2001, Sect. 8) to
NTU games with communication structures by defining, for any (N , V, g) ∈ �U ,

σ 2(N , V, g) =
{
C(N , V, g), if |N | � 2,
V (N ), if |N | = 1;

σ 3(N , V, g) =
{
C(N , V, g), if (N , V ) is inessential,
∅, otherwise;

σ 4(N , V, g) = {y ∈ C(N , V, g) | yS ∈ σ 3(S, V S,y
g , gS)∀S ⊆ N , |S| = 2};

σ 5(N , V, g) = {y ∈ X (N , V, N/g) | yi � max V ({i}) for all i ∈ N };
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σ 6(N , V, g) =
{ {0}, if 0 ∈ C(N , V, g),

∅, otherwise.

In order to define σ 7, choose Ñ ⊆ U with |Ñ | = 2, let (Ñ ,U ) be the NTU game
corresponding to the negative of the unanimity TU game (Ñ , u) given by u(Ñ ) = −1
and u(S) = 0 for all S � Ñ , and let z ∈ R

Ñ be given by zi = − 1
2 for i ∈ Ñ (i.e., z

is the standard solution of (N ,U )). Now, if Ñ ∈ N/g and there exist α, β ∈ R
N with

α � 0 such that V (S) = α ∗U (S) + β(S) for all S ⊆ Ñ , then define

σ 7(N , V, g) = {x ∈ X (N , V, N/g) | xÑ
= a ∗ z + β and no S ∈ 2N\Ñ ∩ FN

g can improve upon x}.

Otherwise, i.e., if Ñ ∈ N/g, but the subgame (Ñ , V ) is not strategically equivalent to
(Ñ ,U ), or if Ñ /∈ N/g, then define σ 7(N , V, g) = C(N , V, g).

The solutions σ 2, . . . , σ 7 are defined on �U so that they can be restricted to an
arbitrary set � ⊆ �U of NTU games and, in particular, to an arbitrary set � ⊆ �U of
TU games.

The empty solution exclusively violates ZIG.Moreover, in Theorems 2.3 and 2.4 the
solution σ 2 exclusively violates BOUND, and in Theorems 3.1 and 3.2 it exclusively
violates REAS.Moreover, in the aforementioned characterizations σ 3 exclusively vio-
lates CRGP, σ 4 exclusively violates RCP, σ 5 exclusively violatesWRGP, respectively,
and σ 6 exclusively violates COV. Finally, σ 7 exclusively violates AN in Theorems
3.3 and 2.3.

Hwang and Sudhölter (2001, Sect. 9) show that the restriction of σ 7 to the cor-
responding sets of classical games indeed satisfies CRGP, and the proof for games
with communication structures is similar. All other claimed properties of solutions
σ 2, . . . , σ 7 are straightforward.

It should also be noted that none of the four theorems remains true in the case
|U | = 4. Indeed, if |N | � 3, then |σ 4(N , V, g)| � 1 Hwang and Sudhölter (2001,
Lemma 9.1) so that σ 4 satisfies RCP whenever |U | � 4.

5 Games with conference structures

We remark that all results of the foregoing sections may be expanded to games with
conference structures à la Myerson (1980). A conference structure is a pair (N ,Q)

where N ∈ F and Q ⊆ 2N satisfies |Q| � 2 for all Q ∈ Q. An NTU game with
conference structure is a triple (N , V,Q) such that (N , V ) ∈ �U and (N ,Q) is a
conference structure. As Khmelnitskaya and Sudhölter (2013) we identify a graph
(N , g) with the conference structure (N ,Q(g)) of all coalitions that contain at least
two elements and are connected by g.

Let (N ,Q) be a conference structure and S ⊆ N . Recall that i and j are connected
in S by Q if i, j ∈ S and i = j or there exists a chain (Q1, . . . , Q�) in Q, i.e.,
Q1, . . . , Q� ∈ Q and Qt ∩ Qt+1 �= ∅ for all t = 1, . . . , � − 1, such that i ∈ Q1, j ∈
Q�, and Qt ⊆ S for t = 1, . . . , �. Moreover, S/Q denotes the set of components
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of S w.r.t. Q, and a coalition S that has only one component is called connected.
Furthermore, FN

Q denotes the set of all coalitions in N that are connected by Q. For

S ∈ FN the reduced conference structure (S,QS) w.r.t. S is defined by

QS =
{
S ∩

�⋃

t=1

Qt |� ∈ N, Qt , Q� ∈ Q,∅ �= Qt ∩ Qt+1 ⊆ N\S∀t ∈ N with t<�,

∣∣∣∣∣S ∩
�⋃

t=1

Qt

∣∣∣∣∣ � 2

}
, (5.1)

that is, Q′ ⊆ S is a conference inQS if |Q′| � 2 and Q′ is the intersectionwith S of the
union of all members of a chain of conferences inQ such that each i ∈ Q′ is an element
of a unique member of this chain. Note that the definition given in (5.1) differs from
the definitions of a reduced conference structure provided by Albizuri and Zarzuelo
(2009, equation (7)) or by Khmelnitskaya and Sudhölter (2013, equation (7.2)), but
the arising sets of connected coalitions in the reduced conference structures coincide
for the aforementioned three distinct definitions. We think, however, that (5.1) reflects
better that each player of Q′ can only call for a unique element (that contains him as
a member) of the chain of conferences, whereas outside of S each conference is able
to join. E.g., if N = {1, . . . , 4}, Q = {{1, 2}, {2, 3, 4}}, and S = {1, 2, 3}, then QS =
{{1, 2}, {2, 3}}, whereas according to the two mentioned definitions Q′ = {1, 2, 3}
would be a further element of the reduced conference structure. This “conference”
can only be created if one member of Q′, namely player 2, simultaneously calls for
the two distinct conferences {1, 2} and {2, 3, 4} of Q which seems unreasonable.

Note that QN = Q. In order to define a suitable reduced game similarly to (2.4)
or (3.8), respectively, we only need that F S

QS = {T ∩ S | T ∈ FN
Q}\{∅} for any

conference structure (N ,Q) and S ∈ FN . For the sake of completeness we include
the proof of this statement (see Proposition 5.1). Note also that (Q(g))S = Q(gS)
and FN

g = FN
Q(g) for each communication structure (N , g). Now, all the definitions

of the preceding sections may be generalized when communication structures are
replaced by conference structures. Basically, the character g denoting a graph has to
be replaced by the character Q denoting a conference structure. All previous results
hold for games with conference structures and most of the corresponding proofs can
be literally copied. The other proofs have to be slightly modified in a straightforward
way.

Proposition 5.1 If (N ,Q) is a conference structure and S ∈ FN , then F S
QS ={

T ∩ S | T ∈ FN
Q

}
\ {∅}.

Proof In order to show the inclusion ⊇, let T ∈ FN
Q and i, j ∈ T ∩ S, i �= j . Then

there exist t ∈ N and Q1, . . . , Qt ∈ Q such that i ∈ Q1, j ∈ Qt , Q� ∩ Q�+1 �= ∅,
and Q�, Qt ⊆ T for all � ∈ N with � < t . Let t be minimal under the foregoing
conditions. If t = 1, then i, j ∈ Q1 so that |Q1| � 2 and hence Q1 ∩ S ∈ QS so that
i and j are connected in T ∩ S byQS . We assume now that we have shown that i and
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j are connected in T ∩ S by QS whenever t ≤ r for some r ∈ N. If t = r + 1, then
two cases may occur.

1. If Q1 ∩ Q2 ∩ S �= ∅, then, by minimality of t , i /∈ Q1 ∩ Q2 so that Q1 ∩ S ∈ QS

and i is connected to any j ′ ∈ Q2 ∩ Q1 ∩ S. Moreover, there is a chain of t − 1
conferences in T that connects j ′ and j (namely the chain (Q2, . . . , Qt ) so that, by
the inductive hypothesis, j ′ is connected to j in T ∩ S byQS so that i is connected
to j via j ′.

2. If Q1∩Q2∩S = ∅, let r be minimal such that Qr ∩S �= ∅. Then Qr ∩Q1∩S = ∅
because otherwise (Q1, Qr , . . . , Qt ) were a chain connecting i and j so that, by
minimality of t , r = 2 which was excluded. Hence, (Q1 ∪ Qr ) ∩ S ∈ QS . Thus,
if r = t , then i and j are connected in T ∩ S by QS . If r < t , the i is connected
to any j ′ ∈ Qr ∩ S and, by the inductive hypothesis, j ′ is connected to j in T ∩ S
by QS . Thus, i is connected to j via j ′.
In order to show the remaining inclusion, let T ′ ∈ F S

QS and i, j ∈ T ′, i �= j . We
have to show that i and j are connected in T ′ ∪ (N\S) by Q. Let (Q′

1, . . . , Q
′
r ) be a

chain of conferences in T ′ that connect i and j . By definition, Q′
� is the intersection

with S of the union of elements of some chain of conferences of Q. As the union of
conferences in a chain is connected, Q′

� = T�∩S for some coalition T that is connected
byQ for all � = 1, . . . , r . As a union of a sequence of intersecting connected coalitions
is connected, the proof is finished. �

6 Concluding remarks

We first remark that Peleg’s (1989, Theorem 7.5) may be generalized to games with
communication structures as the following corollary shows. Let (N , v, g) ∈ �U and
k, � ∈ N , k �= �. We say that k and � are substitutes w.r.t. (N , v, g) if, for all
S ⊆ N\{k, �}, (a) v(S ∪ {k}) = v(S ∪ {�}) and (b) S ∪ {k} ∈ FN

g if and only if
S∪{�} ∈ FN

g . Note that (b) is equivalent to the requirement that, for any j ∈ N\{k, �},
{ j, k} ∈ g if andonly if { j, �} ∈ g.A solutionσ on some� ⊆ �U satisfies the restricted
equal treatment property (RETP) if, for any (N , v, g) ∈ � and any substitutes k, � ∈ N
w.r.t. (N , v, g), xk = x� for all x ∈ σ(N , v, g).

Corollary 6.1 The intersection of the prekernel and the core, σ 0, on �b
U is charac-

terized by NE, COV, RETP, IR, WRGP, and CRGP.

Secondly we remark that, wherever it occurs, CRGPmay be replaced by the weaker
version that differs from CRGP only inasmuch as “|N | − |N/g| � 1” is replaced by
“|N | � 2” and “and k, � ∈ R for some R ∈ N/g” is deleted in the corresponding
definition, i.e., in order to enforce a preimputation x to be a member of the solution, it
is required that its restriction xS to any two-person coalition Smust be amember of the
solution of the corresponding reduced game. In view of the fact that the members of
two-person coalitions that are not connected in the reduced graph cannot communicate
with each other, the original stronger property seems to be more reasonable. However,
whenusing the aforementionedweaker property, only the proof ofLemma2.2 becomes
slightly more sophisticated.
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Finally, we remark that the results of Pulido and Sánchez-Soriano (2006) may be
generalized to the case in which the grand coalition may not be feasible and the core is
defined as in our work. It can be checked that their characterization of the core remains
validwhen efficiency in connected components (PO) is considered instead of efficiency
for the grand coalition (changing their definition of “complete structure” accordingly).
Indeed, as we have shown before explicitly for a conference structure (see Proposition
5.1) and as is clear for a communication structure, the intersection of a given coalition
S and a connected coalition is connected with respect to the corresponding reduced
conferenceor communication structure so that connected coalitions satisfy the required
“consistency” condition defined by the mentioned authors.
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