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A highway problem is a cost sharing problem that arises if the common resource is an ordered set of sec- 

tions with fixed costs such that each agent demands consecutive sections. We provide axiomatizations of 

the core, the prenucleolus, and the Shapley value on the class of TU games associated with highway prob- 

lems. However, the simple and intuitive properties employed in the results are exclusively formulated by 

referring to highway problems rather than games. The main axioms for the core and the nucleolus are 

consistency properties, while the Shapley value is characterized by requiring that the fee of an agent is 

determined by the highway problem when truncated to the sections she demands. An alternative charac- 

terization is based on the new contraction property. Finally it is shown that the games that are associated 

with generalized highway problems in which agents may demand non-connected parts are the positive 

cost games, i.e., nonnegative linear combinations of dual unanimity games. 
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. Introduction 

In this paper we analyze a particular kind of cost allocation

roblem in which some agents jointly produce and finance a com-

on resource or facility. The peculiarity is that this resource can

e separated into a number of ordered sections. Moreover, each

gent requires some consecutive sections, and each section has a

xed cost. The issue of our present study is how to share the total

ost of all sections among the users in an efficient and fair way.

 simple example that illustrates this situation is a linear high-

ay, where the sections are delimited by the entry and exit points,

nd each car only needs the highway sections between its entry

nd exit point. 1 This example motivates why these problems were
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1 This example is a simplification of a highway problem because there are other 

ssues of primary importance, as congestion. In our context these issues will not 

ppear explicitly, but at least some of them might be taken into account implicitly 

y the cost of each section. 

a  

a  

i  

g  

g  

c  

r

 

l  

c  

f  

p  

t  

s  

ttp://dx.doi.org/10.1016/j.ejor.2016.11.051 

377-2217/© 2016 Elsevier B.V. All rights reserved. 
alled highway problems when they were introduced by Kuipers,

osquera, and Zarzuelo (2013) . The well-known airport problems

 Littlechild & Thompson, 1977 ) can be considered as special high-

ay problems, in which all agents’ entries coincide. Çiftçy, Borm,

nd Hamers (2010) extend the class of highway problems to situa-

ions in which the sections are partially ordered. Highway prob-

ems form also a special subclass of realization problems intro-

uced by Koster, Reijnierse, and Voorneveld (2003) . Dong, Guo, and

ang (2012) study a situation where the cost of each section may

epend on the number of cars using it. 

The theory of cooperative games has proved to be very use-

ul for solving cost allocation problems by first associating with

ach considered cost allocation problem the cooperative transfer-

ble utility (TU) game that assigns to every coalition the cost that

ccommodates all members of the coalition, and secondly apply-

ng some solution concept to the associated game. The cooperative

ame associated with a highway problem is, hence, called highway

ame. Here we will focus on three of the most important solution

oncepts, namely the core, the nucleolus, and the Shapley value,

estricted to the class of highway games. 

Our main goal is to provide characterizations of these three so-

utions by simple and intuitive properties that embody fairness

riteria. It should be pointed out that the employed axioms are

ormulated exclusively with the help of the underlying highway

roblems, without any reference to the associated games. Never-

heless, they are inspired by properties that have been used in

ome traditional characterizations of the mentioned solutions on

http://dx.doi.org/10.1016/j.ejor.2016.11.051
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several classes of games. Only the contraction property introduced

in Section 4 is, as far as we know, entirely new. 

More specifically, the axiomatizations of the core and the nu-

cleolus of highway problems are based on the consistency prin-

ciple. According to this principle, if a group of agents pays its

share and leaves the others in a renegotiation, then the shares

of the remaining agents may remain unchanged in the subse-

quent reduced situation. On several classes of games consistency

properties have proved to be very powerful in characterizing the

prenucleolus ( Sobolev, 1975 ), the core ( Hwang & Sudhölter, 2001;

Peleg, 1985; 1986; Tadenuma, 1992 ), the Shapley value of TU and

NTU games ( Hart & Mas-Colell, 1989 ), and the Harsanyi NTU value

( Hinojosa, Romero, & Zarzuelo, 2012 ). An implementation of the

Shapley value for airport problems ( Albizuri, Echarri, & Zarzuelo,

2015 ) is also based on a consistency property. In general, a cru-

cial issue is to identify the available alternatives for intermediate

coalitions in a reduced situation. As a consequence, different kinds

of reduced problems have been proposed in the literature. In the

case of a highway problem, we require the consistency property

only for an agent i , whose needs are minimal in the sense that

they do not cover those of any other agent (up to an exception the

explanation of which is postponed to Section 3 ). We assume that

i ’s intention is to pay only for the part she uses, so it seems natu-

ral that her payment before leaving should be subtracted from the

cost of her sections. So every agent sharing some of the segments

used by i might benefit from this reduction, but it cannot harm

her. 

On the other hand the axiomatization of the Shapley value of

a highway problem is based on principle stating that the share

payed by agent i may only depend on the highway problem when

restricted to the sections of the highway used by that agent. This

property is related to a monotonicity property employed in a ma-

jor characterization of the Shapley value by Young (1985) . 

The paper is organized as follows. In Section 2 , we intro-

duce two representations of highway problems and their corre-

sponding highway games. Section 3 first presents the axioms em-

ployed in the subsequent characterizations of the core and the

(pre)nucleolus. 

The reduced highway problem is defined in such a way that its

associated game coincides with the Davis–Maschler reduced game

of the original highway game. However, neither the definition of

the reduced highway problem nor of the corresponding reduced

highway problem property (RHP) and its converse (CRHP) refer to

the associated highway games. Secondly, resembling a result of

Peleg (1986) , we show that the core is the unique solution for

highway problems that satisfies individual rationality , unanimity for

2-person highway problems (UTPH), RHP, and CRHP. Moreover, if a

stronger version of CRHP is employed, then UTPH may be replaced

by non-emptiness . Finally, we prove that the (pre)nucleolus is char-

acterized by single-valuedness , the equal treatment property , covari-

ance under exclusive prolongations , and RHP. In Section 4 we offer

two characterizations of the Shapley value: (a) with the help of in-

dividual independence of outside changes and, alternatively, (b) with

the help of the contraction property which is some kind of consis-

tency property. As far as we know, this or a similar property has

not been used or discussed in the literature before. In Section 5 we

show that a generalized highway game in which the sections used

by an agent may not be connected is a positive cost game, i.e.,

a nonnegative linear combination of dual unanimity games, and

vice versa. Finally, Section 6 closes the main part of the paper by

showing the logical independence of the axioms employed in the

aforementioned characterizations and providing some remarks. The

proofs of the main results are found in two appendices at the end

of the paper. 
|

. Preliminaries 

Let U be a set called the universe of agents . 2 A finite nonempty

ubset of U is called a coalition . 

efinition 2.1. A highway problem is a pair ( N , I ) such that: 

(1) N is a coalition. 

(2) I is a mapping that assigns to each i ∈ N a compact

nonempty interval I i ⊆ R + . 
(3) I N = [0 , b] for some b ∈ R + , where I S = 

⋃ 

i ∈ S I i for every S ⊆
N . 

Denote by H the set of highway problems. For the generic ele-

ent (N, I) ∈ H, we typically write I i = [ a i , b i ] . As I i � = ∅ , we have

 i ≤ b i . 

The interpretation is as follows. The elements in N represent the

gents involved in the problem. For each i ∈ N , the interval I i rep-

esents the (connected) parts of the common facility that is used

y agent i . This common facility is symbolized by I N . Condition (3)

ays that the first part starts at 0, the last one finishes at certain

eal number b , and there are no gaps between the parts used by

gents in N . The length of an interval represents its cost. Thus the

ost of serving agent i is b i − a i , and accordingly the total cost of

he common facility is b , that is the amount to be shared between

ll the agents. 

Given a highway problem (N, I) ∈ H, denote the set of feasi-

le cost allocations and the set of efficient feasible cost allocations

preimputations) by X 

∗( N , I ) and X ( N , I ) respectively, i.e., 

 

∗(N, I) = 

{
x ∈ R 

N | x (N) � b 
}

and 

X (N, I) = 

{
x ∈ R 

N | x (N) = b 
}
, 

here x (S) = 

∑ 

i ∈ S x i for all S ⊆ N and x ∈ R 

N . 

A solution σ assigns to each highway problem ( N , I ) a subset

f X 

∗( N , I ). Its restriction to a set H 

′ ⊆ H is again denoted by σ . A

olution on H 

′ is the restriction to H 

′ of a solution. 

Thus solution concepts associate payoff vectors with highway

roblems, i.e. vectors x with components indexed by the members

f N . Sometimes a solution concept selects several payoff vectors

r none at all. Each solution concept usually represents a specific

otion of stability, expected outcome, or the like. 

It will be recalled that a cost TU game is a pair ( N , c ), such that

 is a coalition and c is a function that associates a real number

 ( S ) with each subset S of N (by convention c(∅ ) = 0 .) The (cost)

U game associated with the highway problem ( N , I ) is the game

 N , c I ) defined by 

 

I (S) = λ∗(I S ) for all S ⊆ N, (2.1)

here λ∗ denotes the Lebesgue measure on R . That is, the real

umber c I ( S ) is the cost of serving the agents in S . 

A TU game is a highway game if it is the TU game associated

ith a highway problem. Note that highway games are concave;

hat is c I (S) + c I (T ) � c I (S ∩ T ) + c I (S ∪ T ) for all S , T ⊆ N . 

Taking the TU games ( N , I ) permit us the access to game theory

oncepts to address the problem of finding solutions for highway

roblems. We focus here on the core, the (pre)nucleolus, and the

hapley value. Thus we shall refer to the core, the (pre)nucleolus

nd the Shapley value of a highway problem as the respective so-

ution concept of the associated cost TU game ( N , c I ). 

emark 2.2. Kuipers et al. (2013) define a “highway problem” to

e a quadruple ( N , M , C , T ) that satisfies the following properties:

 is a coalition, M is a finite nonempty set with a strict total order

(the set of sections), C : M → R + is a mapping that represents
2 | U | ≥ 5 is needed in Example 6.1 , and we always assume that { 1 , . . . , � } ⊆ U if 

 U | ≥ � . 
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he cost of each section, and T : N → 2 M �{ ∅ } is a mapping, where

 ( i ) represents the set of sections used by agent i , satisfying for all

 ∈ N 

, s ′ ∈ T (i ) , s ′′ ∈ M, and s ≺ s ′′ ≺ s ′ , then s ′′ ∈ T (i ) . (2.2)

The cost TU game c M , C , T of the ‘highway problem’ ( N , M , C , T )

s defined by 

 

M,C,T (S) = 

∑ 

t∈ T (S) 

C(t) for all S ⊆ N, (2.3)

here T (S) = 

⋃ 

i ∈ S T (i ) . 

Although “highway problems” in the sense of Kuipers et al.

2013) are formally different from those in Definition 2.1 , they are

onceptually equivalent. Indeed, given a highway problem (N, I) ∈
, it can be associated a ‘highway problem’ ( N , M , C , T ) as follows.

et (β0 , . . . , βm 

) be a real sequence of minimal length that satisfies

he following properties: 

(i) 0 = β0 � · · · � βm 

. 

(ii) For each i ∈ N there exist r , r ′ , 0 ≤ r < r ′ ≤ m , such that

I i = [ βr , βr ′ ] . 

Note that m and (β0 , . . . , βm 

) are uniquely determined by the

oregoing properties and minimality. Define 

 

I = { [ βr , βr+1 ] | r = 0 , . . . , m } (2.4)

s the set of sections of ( N , I ). Note also that, if βr = βr+1 (i.e., if

he r + 1 th section is a singleton), then there exists i ∈ N with I i =
 βr , βr+1 ] , and if r + 1 < m in addition, then βr+2 > βr+1 . Finally

ote that M 

I is totally ordered by [0 , β1 ] ≺ · · · ≺ [ βm −1 , βm 

] , where

= ≺I is the strict total order relation. Also define 

 

I 
(
[ βr , βr+1 ] 

)
= βr+1 − βr , (2.5) 

 

I (i ) = { I ∈ M 

I | I ⊂ I i } . (2.6) 

hen it is straightforward to show that ( N , M 

I , C I , T I ) is a “highway

roblem” as defined above. Moreover c I = c M 

I ,C I ,T I , and hence, we

ay say that a highway problem may be represented by ( N , I ) as

ell as by ( N , M 

I , C I , T I ). 

In what follows we shall use the representation ( N , I ) except in

ection 5 where the representation ( N , M , C , T ) is more convenient.

. Characterizations of the core and the nucleolus of highway 

roblems 

Next we introduce the axioms employed in the subsequent

haracterizations of the core and the nucleolus of highway prob-

ems defined in Sections 3.1 and 3.2 , respectively. 

A solution σ on H 

′ ⊆ H satisfies 

(1) non-emptiness (NEM) if for all (N, I) ∈ H 

′ : σ ( N , I ) � = ∅ ; 
(2) Pareto optimality (PO) if for all (N, I) ∈ H 

′ : σ ( N , I ) ⊆ X ( N , I ). 

(3) single-valuedness (SIVA) if for all (N, I) ∈ H 

′ : | σ (N, I) | = 1 ; 

(4) the equal treatment property (ETP) if for all (N, I) ∈ H 

′ , all i , j

∈ N , and all x ∈ σ ( N , I ): I i = I j implies x i = x j ; 

(5) individual rationality (IR) if for all (N, I) ∈ H 

′ , all i ∈ N , and

all x ∈ σ ( N , I ): x i ≤ λ∗( I i ); 

(6) reasonableness from below (REASB) if for all (N, I) ∈ H 

′ , all x

∈ σ ( N , I ), and all i ∈ N : x i ≥ λ∗( I i �I N �{ i } ); 

(7) covariance under exclusive prolongations (PCOV) if for all

(N, I) , (N, I ′ ) ∈ H 

′ : If i ∈ N and t ≥ 0 such that I i = [ a i , b i ] , I 
′ 
i 
=

[ a i , b i + t] , and 

(a) b i = max I N and I ′ 
j 
= I j for all j ∈ N �{ i }, or 

(b) a i = 0 and I ′ 
j 
= I j + t for all j ∈ N �{ i }, 

then σ (N, I ′ ) = σ (N, I) + x, where x j = 

{
t, if j = i, 

0 , if j ∈ N \ { i } . 
i  
(8) unanimity of two-person highway problems (UTPH) if, for

any (N, I) ∈ H 

′ with | N| = 2 : σ (N, I) = 

{
x ∈ X(N, I) | x i �

c I ({ i } ) for all i ∈ N 

}
. 

EM, PO, SIVA, ETP, IR, and REASB are standard in the literature

nd do not need further explanation. The interpretation of PCOV

s simple: If an agent who is already using the last section and

sks for prolonging the highway “to the right” just for herself or

f she is already using the first section and asks for prolonging the

ighway “to the left” just for herself, then the cost of this modi-

cation is added to her payment, whereas the charges of the re-

aining agents are not changed. Finally, UTPH is a restatement of

eleg ’ (1989) notion (see also Sudhölter & Peleg, 2002 ) of ‘unanim-

ty for two-person games’, requiring that in the particular case of

wo-person problems the solution coincides with the set of effi-

ient and individually rational payoff vectors. 

Now we address the consistency principle mentioned in the in-

roduction. Assume that the agents in a highway problem have

eached a final agreement. The consistency principle requires that

f the agents of a subgroup renegotiate their shares under the as-

umption that the other agents have already paid their shares, then

he agreement in the new reduced situation will not differ from

he original one. To state this principle formally we shall define

he concept of reduced highway problem. Prior we need some def-

nitions. 

Let (N, I) ∈ H, I j = [ a j , b j ] for all j ∈ N , and i , k ∈ N . Say that

 k starts (respectively ends ) in the interval I i if a i < a k < b i (re-

pectively a i < b k < b i ). Now, agent k is an interior agent of i if I k 
tarts and ends in I i . Say that i is of type p if i has p interior agents,

.e., 
∣∣{ j ∈ N | a i < a j , b j < b i } 

∣∣ = p. Moreover, we say that i is a left

resp. right ) agent if, for all j ∈ N such that I j starts (resp. ends) in

 i , j is an interior agent of i . Finally, agent i is oriented if i is a left

r a right agent. 

We use the term left agent because an agent i is a left agent if

here is no other agent j who uses an interval that simultaneously

tarts in I i and ends on the right hand side of I i or exactly at b i 
i.e., b j ≥ b i ). The term right agent may be motivated similarly. 

efinition 3.1. Let (N, I) ∈ H with I j = [ a j , b j ] for all j ∈ N such

hat | N | ≥ 2. An agent i ∈ N is called reducible if i is of type 0 or if

 is an oriented agent of type 1. 

Let i ∈ N be reducible, | N | > 1, and x ∈ R 

N . The reduced prob-

em (N \ { i } , I −i,x ) with respect to (w.r.t.) x and when removing i is

efined as follows, where I −i,x 
j 

= [ a ′ 
j 
, b ′ 

j 
] for all j ∈ N �{ i }: 

If j ∈ N �{ i } is not an interior agent of i , then 

 

′ 
j = 

{
a j , if a j � a i , 
max { a i , a j − x i } , if a i < a j , 

(3.1) 

 

′ 
j = 

{
min { b j , b i − x i } , if b j < b i , 
b j − x i , if b j � b i . 

(3.2) 

If j = k is an interior agent of i , i.e., i is of type 1 and

 is the unique interior agent of i , then the definition differs

rom (3.1) and (3.2) only inasmuch as 

 

′ 
k = max 

{
a i , min { a k , b i −x i −b k + a k } 

}
, if i is a left agent, and 

(3.3) 

 

′ 
k = min 

{
b i − x i , max { b k − x i , b k − a k + a i } 

}
, if i is a right but 

not left agent. (3.4) 

According to Definition 3.1 , in the reduced situation every agent

 � = i considers that the charge x i of the leaving agent i has been

sed to pay some suitable parts of I i , but in such a way that agent i

nances firstly the parts that are disjoint from I j . This is illustrated

n the following examples that are rendered in Fig. 1 (we have not
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Fig. 1. Examples of reduction when removing agent 2 when she is an agent of type 0 (left panel) and a left-oriented agent of type 1 (3 is interior of 2) (right panel). 
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set down the case of right but not left agents, because it mirrors

the one for left agents). 

Example 3.2. (1) Let ( N , I ) be the highway problem with N =
{ 1 , . . . , 4 } ⊆ U, such that I 1 = [0 , 2] , I 2 = [1 , 3] , I 3 = [2 , 4] , and I 4 =
[0 , 4] . Observe that 2 is an agent of type 0. 

Now let x = (1 , 1 , 1 , 1) and consider the reduced prob-

lem 

({ 1 , 3 , 4 } , I −2 ,x 
)
. Applying the definition we get I −2 ,x 

1 
=

[0 , 2] , I −2 ,x 
3 

= [1 , 3] , and I −2 ,x 
4 

= [0 , 3] . Hence, the reduced highway

problem assigns to each remaining player j an interval I −2 ,x 
j 

whose

cost, i.e., length, arises from the cost of the original interval I j when

the share x 2 of the leaving agent 2 is used to first pay for the part

of 2’s highway that is disjoint from I j . Only if something of x 2 is

left, i.e., if the difference of x 2 and the length of I 2 ∩ I j is positive,

then the length of I j is reduced by this positive number which is

exclusively the case for j = 4 in the current example. For a sketch

of ( N , I ) and (N \ { 2 } , I −2 ,x ) see the left part of Fig. 1 . 

(2) Consider the slightly modified highway problem ( N , J ) given

by J 1 = [0 , 2] , J 2 = [1 , 4] , J 3 = [2 , 3] , and J 4 = [0 , 4] . In this case

agent 2 is a left-oriented agent of type 1, and player 3 is interior

of agent 2. 

Using the definition again we get J −2 ,x 
1 

= [0 , 2] , J −2 ,x 
3 

=
[2 , 3] , and J −2 ,x 

4 
= [0 , 3] . 

This situation is graphed in the left part of Fig. 1 . As in (1),

in the reduced situation the charge of agent 2 fully subsidizes the

part of the highway used by agent 4 because I 2 ⊆ I 4 , and does not

subsidize the parts of the highway used by agents 1 and 3 because

the length of I 2 �I 1 and of I 2 �I 3 is not smaller than the charge x 2 . 

Note that reduced highway problems are not necessarily high-

way problems. Indeed, if x i in Definition 3.1 is small enough, then

the “highway” may receive a gap, i.e., I −i,x 
N\{ i } may be not an in-

terval; and if x i is large enough, then some “intervals” may have

a negative length, i.e., are empty because a ′ 
j 
> b ′ 

j 
may occur (see

Example 3.11 .) However, according to Proposition 3.3 below, if re-

ducible agents are removed w.r.t. to individually rational payoffs

that in addition are reasonable from below, then reducing yields

highway problems indeed. This is the rationale behind the defini-

tion of the following consistency properties. 

A solution σ on H 

′ ⊆ H satisfies 
(9) the reduced highway problem property (RHP) if for any

(N, I) ∈ H 

′ with | N | > 1, any reducible agent i ∈ N , and any x

∈ σ ( N , I ): (N \ { i } , I −i,x ) ∈ H 

′ and x N\{ i } ∈ σ (N \ { i } , I −i,x ) ; 

(10) the converse reduced highway problem property (CRHP) if for

any (N, I) ∈ H 

′ with | N | ≥ 3 and any x ∈ X ( N , I ) the fol-

lowing condition holds: If, for each reducible agent i ∈ N ,

(N \ { i } , I −i,x ) ∈ H 

′ and x N\{ i } ∈ σ (N \ { i } , I −i,x ) , then x ∈ σ ( N ,

I ); 

(11) the strong converse reduced highway problem property

(SCRHP) if for any (N, I) ∈ H 

′ with | N | ≥ 2, and any x ∈ X ( N ,

I ) the following condition holds: If, for each reducible agent

i ∈ N , (N \ { i } , I −i,x ) ∈ H 

′ and x N\{ i } ∈ σ (N \ { i } , I −i,x ) , then x

∈ σ ( N , I ). 

Next we recall the definition of the Davis–Maschler reduced

ame. Let ( N , c ) be a cost TU game, x ∈ X ( N , c ), and ∅ � = S � N .

he reduced game w.r.t. S and x is the TU game ( S , c S , x ) defined

y 

 S,x (T ) = 

{
c(N) − x (N \ S) , if T = S, 

min P⊆N\ S 
(
c(T ∪ P ) − x (P ) 

)
, if ∅ � = T � S. 

roposition 3.3. Let (N, I) ∈ H with | N | ≥ 2, i ∈ N be a reducible

gent, and x ∈ X ( N , I ). If λ∗( I i �I N �{ i } ) ≤ x i ≤ λ∗( I i ) (i.e., x i is reasonable

rom below and individually rational for i), then (N \ { i } , I −i,x ) ∈ H,

 N\{ i } ∈ X(N \ { i } , I −i,x ) , and c I 
−i,x = (c I ) N\{ i } ,x . 

With the help of Proposition 3.3 , proved in Appendix A , we

how now that the definitions by Peleg (1986) of the reduced game

roperty and its converse are parallel to the definitions of our RHP

nd CRHP axioms. Recall that a solution σ on a set � of (cost) TU

ames satisfies 

(8 ′ ) the reduced game property (RGP) if for all ( N , c ) ∈ �, ∅ � = S �
N , and x ∈ σ ( N , c ): ( S , c S , x ) ∈ � and x S ∈ σ ( S , c S , x ); 

(9 ′ ) the converse reduced game property (CRGP) if the follow-

ing condition is satisfied for ( N , c ) ∈ � with | N | ≥ 3, x ∈
X(N, c) = { x ∈ R 

N | x (N) = c(N) } : If, for any S ⊆ N with | S| =
2 , ( S , c S , x ) ∈ � and x S ∈ σ ( S , c S , x ), then x ∈ σ ( N , c ). 

If we add the prerequisite “S = N \ { i } for some i ∈ N ” in RGP,

hen we receive an equivalent property because reducing is tran-

itive in the sense that c S,x = (c T,x ) S,x T for all ∅ � = S ⊆ N and
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 ∈ X ( N , c ). Hence, in view of Proposition 3.3 , RHP may be trans-

ated to the weaker version of RGP where “for some i ∈ N ” is re-

laced by “for some reducible i ∈ N ”. 

If σ is a solution on � that satisfies RGP, then we may also

ompare CRHP with CRGP. Indeed, in this case CRGP is equivalent

o the following property, called CRGP’: If ( N , c ) ∈ �, | N | ≥ 3, x ∈
 ( N , c ), ( N �{ i }, c N �{ i }, x ) ∈ �, and x N �{ i } ∈ σ ( N �{ i }, c N �{ i }, x ), then x

 σ ( N , c ). Hence, CRHP may be translated to the stronger version

f CRGP’ that only requires to consider removing reducible agents

 ∈ N . 

Therefore, the interpretations of RHP and CRHP are similar to

he well-known interpretations of RGP and CRGP for TU games. Fi-

ally note that the modification of CRHP that leads to SCRHP is

rucial. Indeed the strong version of CRHP is similar to a mod-

fication of CRGP that has been employed by Serrano and Volij

1998) in an axiomatization of the core and by Sudhölter and Pot-

ers (2001) in the axiomatization of the semi-reactive prebargain-

ng set. 

.1. Characterization of the core 

The core of (N, I) ∈ H is the set 

(N, I) = 

{
x ∈ X (N, I) | x (S) � λ∗(I S ) for all S ⊆ N 

}
, 

.e., C(N, I) is the core of the highway game ( N , C I ). 

In Appendix A we prove the following results for the core of a

ighway problem. Theorem 3.6 resembles an alternative character-

zation of Peleg (1986) of the core for TU games. 

roposition 3.4. The core on H satisfies NEM, PO, IR, REASB, PCOV,

HP, CRHP, SCRHP, and UTPH. 

heorem 3.5. The core is the unique solution that satisfies NEM, IR,

HP, and SCRHP. 

heorem 3.6. The core is the unique solution that satisfies IR, UTPH,

HP, and CRHP. 

.2. Characterization of the nucleolus 

We now recall the definition of the (pre)nucleolus ( Schmeidler,

969 ). 

Let ( N , c ) be a cost TU game, x ∈ R 

N , S ⊆ N , and i , j ∈ N , i � =
 . The excess of S at x is e (S, x, c) = x (S) − c(S) , and the maximum

urplus of i over j at x is s i j (x, c) = max { e (S, x, c) | i ∈ S ⊆ N \ { j}} . 
Write X(N, c) = { x ∈ R 

N | x (N) = c(N) } . The prekernel of ( N , c ) is

he set 

K (N, c) = 

{
x ∈ X (N, c) | s i j (x, c) = s ji (x, c) for all i ∈ N, 

j ∈ N \ { i } }. 

he prenucleolus of ( N , c ) is the subset of elements of X ( N , c )

hat lexicographically minimize the non-increasingly ordered vec-

or ( e ( S , x , c )) S ⊆ N of excesses. The nucleolus is obtained similarly

y restricting the attention to individually rational elements of X ( N ,

 ) called imputations. According to Schmeidler (1969) , the prenu-

leolus of ( N , c ) is a singleton whose unique element is denoted by

( N , c ). 

emark 3.7. Maschler, Peleg, and Shapley (1972) show that for

oncave cost games the prekernel is individually rational and con-

ists of a single point, namely the prenucleolus. Hence, the prenu-

leolus is individually rational on concave games, and therefore it

s the nucleolus of the game. 

We define the nucleolus of the highway problem ( N , I ) to be

he nucleolus of the associated cost game ( N , c I ), that is denoted

(N, I) = ν(N, c I ) . 

Now we turn to establish the following results for the nucleolus

roved in Appendix A . 
roposition 3.8. The nucleolus on H satisfies NEM, PO, SIVA, ETP, IR,

EASB, PCOV, RHP and CRHP. 

heorem 3.9. The nucleolus on H is the unique solution that satisfies

IVA, ETP, PCOV, and RHP provided | U | ≥ 2 . 

emark 3.10. 

(1) A careful inspection of the proof of Theorem 3.9 in

Appendix A shows that the axiom SIVA may be replaced by

NEM and PO. 

(2) The nucleolus does neither satisfy UTPH nor SCRHP. 

By means of the following example we show that a reduced

ame w.r.t. the nucleolus of a highway game may not be a highway

ame if (1) a non-oriented agent of type 1 is removed or if (2) an

riented agent of type 2 is removed (provided | U | ≥ 4). 

xample 3.11. (1) Let ( N , I ) be the highway problem defined in

xample 3.2 (1). With the help of Kohlberg ’s (1971) balancedness

ondition that characterizes the nucleolus it can be checked that

(N, I) = ν(N, c I ) = x = (1 , 1 , 1 , 1) . Let N 

′ = { 1 , 2 , 3 } and c = c I 
N ′ ,x .

hen, for any ∅ � = S ⊆ N 

′ , 

(S) = 

{
2 , if | S| = 1 , 

3 , if | S| � 2 . 

e now show that ( N 

′ , c ) is not strategically equivalent to a high-

ay game. Assume the contrary. As each positive multiple of a

ighway game is a highway game, there exist (N 

′ , I ′ ) ∈ H and y ∈
 

N ′ such that c + y = c I 
′ 
. Let I ′ 

i 
= [ a ′ 

i 
, b ′ 

i 
] for i ∈ N 

′ , choose j , k , � ∈
 

′ such that a ′ 
j 
= min i ∈ N ′ a ′ i , and choose k ∈ N 

′ �{ j } such that b ′ 
k 

=
ax i ∈ N ′ \{ j} b ′ i , and N 

′ = { j, k, � } . As c({ j} ) = 2 , b ′ 
j 
= a ′ 

j 
+ 2 + y j . As

 

′ 
i 
� a ′ 

j 
and c({ j, i } ) = 3 for i ∈ N 

′ �{ k }, b ′ 
i 
= a ′ 

j 
+ 3 + y j + y i . More-

ver, as c({ i } ) = 2 , a ′ 
i 
= a ′ 

j 
+ 1 + y j . Finally, as c({ k, � } ) = 3 , a ′ 

k 
= a ′ � ,

nd b ′ 
k 
� b ′ � , 

 

′ 
k = a ′ k + 3 + y k + y � = a ′ j + 4 + y (N 

′ ) = a ′ j + 3 + y j + y k 

o that y � = −1 , i.e., c I 
′ 
(N) = c I 

′ 
(N 

′ \ { � } ) − 1 , and the desired con-

radiction has been obtained. Note that I 3 starts in I 4 and that 3 is

ot an interior agent of 4. Similarly, I 1 ends in I 4 , and 1 is also not

n interior agent of 4. Hence, agent 4 is neither a left nor a right

gent. Finally, agent 2 is an interior agent of 4. Hence, agent 4 is

f type 1, but not oriented. 

(2) Now we consider (N, I ′′ ) ∈ H defined by N = { 1 , . . . , 4 } ⊆ U,

 

′′ 
1 

= [0 , 2] , I ′′ 
2 

= [1 , 3] , I ′′ 
3 

= [2 , 4] , and I ′′ 
4 

= [0 , 5] . Then ν(N, I ′′ ) =
(1 , 1 , 1 , 2) and the reduced game of (N, c I 

′′ 
) w.r.t. N 

′ and ν( N , I ′ ′ ) is
gain ( N 

′ , c ) that does not correspond to any highway problem, as

e have just seen in (1). Moreover, agent 4 is a left agent of type

. 

. The Shapley value of highway problems 

Dual unanimity games are useful to provide a formula for the

hapley value of a highway problem. Recall that for any coalition S

N , the dual unanimity game (N, u ∗S ) is defined by 

 

∗
S (T ) = 

{
0 , if T ⊆ N \ S, 
1 , if T ⊆ N and T ∩ S � = ∅ . 

ote that { (N, u ∗S ) | ∅ � = S ⊆ N} is a vector space basis of the Eu-

lidean space of all TU games with player set N , i.e., of R 

2 N \{∅} .
ence, if ( N , c ) is a TU game there are unique real coefficients λS ,

 � = S ⊆ N , such that c = 

∑ 

∅� = S⊆N λS u 
∗
S . Since the Shapley value is

dditive, we have 

i (N, c) = 

∑ 

S⊆N 
i ∈ S 

λS 

| S| for all i ∈ N. (4.5)
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Let (N, I) ∈ H and consider its representation ( N , M 

I , T I , C I ) as

defined in expressions (2.4) –(2.6) . Denote (T I ) −1 ( j) = { i ∈ N | j ∈
T I (i ) } for all j ∈ M . Then we obtain c I = 

∑ 

j∈ M 

I λ∗( j) u ∗
(T I ) −i ( j) 

so

that, by (4.5) , 

φi (N, I) = 

∑ 

j∈ T I (i ) 

λ∗( j) 

| (T I ) −1 ( j) | for all i ∈ N. (4.6)

That is, according to the Shapley value the cost of each section has

to be shared equally by its users. 

For (N, I) ∈ H with I j = [ a j , b j ] for all j ∈ N and α, β ∈ [0, b ], α

≤ β , the [ α, β] -truncated highway problem ( N , I [ α, β] ) is defined by

I 
[ α,β] 

i 
= [ min { (a i − α) + , β − α} , min { (b i − α) + , β − α} ] for all i ∈ N ,

where a + = max { a, 0 } for a ∈ R . Hence, ( N , I [ α, β] ) is the highway

problem that arises from ( N , I ) if the highway is restricted to the

interval [ α, β]. 

In what follows, by slightly abusing notation, for a single-valued

solution σ on H the unique element of the singleton σ ( N , I ) is also

denoted by σ ( N , I ) and, conversely, we use φ( N , I ) for { φ(N, v ) } so

that φ becomes a solution. 

We say that a single-valued solution σ (on H 

′ ⊆ H) satisfies 

(12) individual independence of outside changes (IIOC) if for all

(N, I) , (N, I ′ ) ∈ H 

′ and all i ∈ N : If I I i = I ′ I ′ i , then σi (N, I) =
σi (N, I ′ ) . 

IIOC means that the charge of an agent i may only depend on

the highway problem truncated to her used interval. 

Remark 4.1. The property of strong monotonicity ( Young, 1985 ) of

a single-valued solution σ on the set of games requires that if ( N ,

c ), ( N , c ′ ) ∈ �, i ∈ N , and c(S ∪ { i } ) − c(S) � c ′ (S ∪ { i } ) − c ′ (S) for all

S ⊆ N , then σ i ( N , c ) ≥ σ i ( N , c ′ ). From (4.6) , it is straightforward

that strong monotonicity of σ implies IIOC of the corresponding

solution on H. 

We have the following characterization result the proof

of which can be found in Appendix B , as the proofs of

Theorems 4.3 and 4.4 . 

Theorem 4.2. The Shapley value on H is the only solution that satis-

fies SIVA, PO, ETP, and IIOC. 

4.1. The Shapley value of airport problems 

A highway problem (N, I) ∈ H with I j = [ a j , b j ] for all j ∈ N is

an airport problem if a i = 0 for all i ∈ N , i.e., every agent has the

same starting point. Let A denote the set of airport problems. Let

(N, I) ∈ A and let N = { i 1 , . . . , i n } so that b i 1 � · · · � b i n . By (4.6) , the

Shapley value can be recursively computed as 

φi 1 (N, I) = 

b i 1 
n 

and φi j+1 
(N, I) = φi j + 

b i j+1 
− b i j 

n − j 
for all 

j = 1 , . . . , n − 1 . (4.7)

Let | N | ≥ 2, i ∈ N and x ∈ R 

N . The contracted problem w.r.t. i

and x , denoted (N \ { i } , I −i,x, ctr ) , is defined as follows. For j ∈ N �{ i },

I −i,x, ctr 
j 

= [0 , b j − min { x j , x i } ] . 
The contracted problem can be interpreted as a kind of reduced

problem in the following way. Assume that a payoff vector is at

stake, say x , and everybody accepts the payoff assigned to a cer-

tain agent, say i . In the contracted problem the remaining agents

are assuming that the cost of the runway used by agent j � = i is

decreased by x i , unless this discount were higher than x j , in which

case the discount would be x j . 

Note that (N, I −i,x, ctr ) ∈ A if and only if b j − min { x j , x i } � 0 for

all j ∈ N �{ i }. 

We say that a solution σ on A satisfies the 
(13 ′ ) contraction property (CONTR) if it is consistent w.r.t. con-

tracted problems, i.e., if, for all (N, I) ∈ A with | N | > 1, all

x ∈ σ ( N , I ), and all i ∈ N : (N \ { i } , I −i,x, ctr ) ∈ A and x N\{ i } ∈
σ (N \ { i } , I −i,x, ctr ) . 

heorem 4.3. On A the Shapley value is the unique solution that sat-

sfies NEM, PO, and CONTR. 

.2. The contraction property on highway games 

Let (N, I) ∈ H, I j = [ a j , b j ] for all j ∈ N , and assume | N | ≥ 2. 

For any left agent i ∈ N of type 0 (i.e., a j > a i implies a j ≥
 i ) and any y ∈ R 

N we define the contracted problem w.r.t. i and y ,

(N \ { i } , I −i,y, ctr ) , for any j ∈ N �{ i }, by I 
−i,y, ctr 
j 

= [ a ′ 
j 
, b ′ 

j 
] , where 

a ′ j = 

{
a j , if a j � a i , 
a j − y i , if a j > a i , 

and 

 

′ 
j = 

{ 

b j , if b j < a i , 
b j − min { y j , y i } , if b j � a i � a j , 
b j − y i , if a j > a i . 

ote that a contracted problem may not be a highway problem. 

We say that a solution σ on H satisfies the 

3) contraction property (CONTR) if, for all (N, I) ∈ H with | N |

≥ 2, all left agents i ∈ N of type 0, with I i = [ a i , b i ] , b =
max j∈ N b j , and x ∈ σ ( N , I ): (N \ { i } , I −i,y, ctr ) ∈ H and x N\{ i } ∈
σ (N \ { i } , I −i,y, ctr ) for all y ∈ σ (N, I [ a i ,b] ) . 

Hence, CONTR requires that σ is consistent w.r.t. any contrac-

ion of a highway problem according to the solution applied to the

runcated highway problem the highway of which starts at the in-

erval used by a left agent of type 0. 

In an airport problem each agent i is a left agent of type 0 and

 i = 0 so that the current CONTR coincides with the former CONTR

n airport problems – the only further requirement that must be

atisfied on H is that consistency must be satisfied w.r.t. contracted

ighway problems defined with the help of any element of the so-

ution applied to the truncated highway problem. 

It should be noted that this kind of “reduction” that depends

n the solution applied to certain derived problems (here certain

runcated highways) is not new for axiomatizations of the Shap-

ey value—Hart and Mas-Colell (1989) also define their consistency

roperty only for solutions that satisfy SIVA so that their “reduced

ame” is defined with the help of the solution applied to sub-

ames. Note, however, that the TU game corresponding to a con-

racted highway problem w.r.t. the Shapley value does typically not

oincide with the corresponding Hart–Mas-Colell “reduced game”

f the initial highway game (which may be illustrated by any 4-

erson airport problem with equal positive demands). 

heorem 4.4. On H the Shapley value is the unique solution that

atisfies NEM, PO, and CONTR. 

. Generalized highway problems 

The definition of a generalized highway problem ( N , I ) differs

rom Definition 2.1 only inasmuch as (2) is weakened to “I is a

apping that assigns to each i ∈ N a finite union of compact

onempty intervals in R + ”. Hence, in a generalized highway prob-

em the customers may use disconnected sections of the highway.

he associated TU cost game ( N , c I ) is still defined by (2.1) . For

 generalized highway problem it is convenient to use the rep-

esentation of Kuipers et al. (2013) : a tuple ( N , M , C , T ) as in

emark 2.2 that not necessarily satisfies condition 2.2 is a general-

zed highway problem. Thus the cost function c M , C , T is defined by

2.3) . In particular we do not need a strict ordering ≺ of M . Hence,
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3 The least core of a TU game ( N , c ), LC (N, c) is the intersection of all ε-cores { x 

∈ X ( N , c ) | e ( S , x , c ) ≤ ε for all S ⊆ N } that are nonempty. 
e denote by GH the set of generalized highway games ( N , M , C ,

 ). 

Let (N, M, C, T ) ∈ GH . We now show that ( N , c M , C , T ) is a positive

ame. A game ( N , c ) is called positive if c = 

∑ 

∅� = S⊆N λS u 
∗
S 
, where

he unique coefficients λS , ∅ � = S ⊆ N , are nonnegative. For each

ection j ∈ M let T −1 ( j) = { i ∈ N | j ∈ T (i ) } , i.e., the set of users of

 . Therefore, we have 

 

M,C,T = 

∑ 

j∈ M 

C( j) u 

∗
T −1 ( j) . (5.8)

s C ( j ) ≥ 0 for all j ∈ M , ( N , c M , C , T ) is a positive game. The follow-

ng theorem shows that the converse is also true. 

heorem 5.1. A TU cost game is a positive game if and only if it is a

ighway game. 

roof. By (5.8) we only have to show the only-if part. Let N be a

oalition, λS ≥ 0 for all ∅ � = S ⊆ N , and let c = 

∑ 

∅� = S⊆N λS u 
∗
S 
. We

efine the direct generalized highway problem ( N , M , C , T ) (corre-

ponding to ( N , c )) by 

 = 2 

N \ {∅} , T (i ) = { S ∈ M | i ∈ S} for all i ∈ N, and C(S) = λS 

for all S ∈ M. 

hen T −1 (S) = S and, by (5.8) , C M,C,T = c. �

It should be remarked that the game ( N 

′ , c ) defined in

xample 3.11 is a generalized highway game. Indeed, with I 1 =
0 , 2] , I 2 = [1 , 3] , and I 3 = [0 , 1] ∪ [2 , 3] , c I = c. Note also, that this

xample is not pathological. Thus, the set of generalized highway

ame strictly contains the set of highway games. 

. Discussion and remarks 

By means of examples we show that each of the axioms

s logically independent of the remaining axioms in the forego-

ng characterizations of the core, the nucleolus, and the Shap-

ey value of highway problems. Note that the empty solution vi-

lates NEM, UTPH, and SIVA, but satisfies all other axioms in

heorems 3.5, 3.6, 3.9, 4.2, 4.3 / 4.4 , and in Remark 3.10 (1). De-

ne, for a highway problem ( N , I ), σ1 (N, I) = C(N, I) if | N | ≥ 2, and

1 (N, I) = X ∗(N, I) if | N| = 1 . Then σ 1 exclusively violates IR and

O in Theorems 3.5 and 3.6 . The solution that assigns { x ∈ X ( N ,

 ) | x is individually rational} to each highway problem ( N , I ) exclu-

ively violates RHP, and the solution that assigns the core when-

ver | N | ≤ 2 and the nucleolus whenever | N | > 2 to each (N, I) ∈ H
xclusively violates CRHP in the aforementioned theorems. 

The solution that assigns the nucleolus to any highway prob-

em with at least two agents and the set of feasible allocations

o any one-person problem shows the logical independence of PO

n Remark 3.10 (1). The Shapley value exclusively violates RHP in

heorem 3.9 and the foregoing remark. The solution σ defined in

ection 6.3.2 of Peleg and Sudhölter (2007) that selects a lexico-

raphical extreme point of the positive core of ( N , c I ) may be cho-

en to show that ETP is logically independent of the remaining ax-

oms in the characterizations of the nucleolus. Moreover, the egal-

tarian solution ( Dutta, 1990 ) may be chosen to show the indepen-

ence of PCOV. 

The nucleolus satisfies SIVA, NEM, ETP, and PO, but violates

ONTR and IIOC provided that | U | ≥ 3. The solution σ 2 that

iffers from the Shapley value only in as much as σ2 

({ i } , I ) =
φ({ i } , I) , φ({ i } , I) + 1 

}
for one-person highway problems ({ i }, I )

atisfies NEM and CONTR, but violates PO. Hence, each of the ax-

oms employed in Theorem 4.3 as well as in Theorem 4.4 is logi-

ally independent of the remaining axioms. The solution that dif-

ers from σ 2 only inasmuch as it assigns 
{
φ({ i } , I) + 1 

}
to each

ne-person highway problem ({ i }, I ) exclusively violates PO in
heorem 4.2 , and a non-trivially weighted Shapley value ( Kalai &

amet, 1988 ) exclusively violates ETP. 

The first part of Theorem 5.5 of Potters and Sudhölter

1999) provides a characterization of the nucleolus on airport prob-

ems that employs properties similar to those that occur in our

heorem 3.9 . However, our properties are defined without men-

ioning the games associated with the corresponding cost sharing

roblems (here highway problems) whereas in the mentioned pa-

er, e.g., the covariance property refers to the associated games

ather than directly to airport problems. 

The first part of the aforementioned Theorem 5.5 characterizes

he modiclus ( Sudhölter, 1996 ) on airport problems. However, for

n airport game ( N , c ) the modiclus coincides with the prenucleo-

us of the dual game ( N , c ∗) (defined by c ∗(S) = c(S) − c(N \ S) for

ll S ⊆ N ) and it is a member of C(N, c) . By means of the follow-

ng 5-person example we show that the prenucleolus of the dual

f a highway game ( N , c ) may not be a member of the core of this

ame. In fact, we show that the least core 3 of the dual of the high-

ay game does not intersect the core. (Another 5-person example

f a general convex game the modiclus of which does not belong

o the least core of the dual game was already found by Sudhölter

1997) , Example 3.2(iii).) 

xample 6.1. Let (N, I) ∈ H be defined by N = { 1 , . . . , 5 } , I 1 =
0 , 6] , I 2 = [0 , 4] , I 3 = [3 , 9] , I 4 = [5 , 10] , and I 5 = [6 , 10] , and let c =
 

I . With x = (4 , 3 , 1 , 1 , 1) , μ = max S⊆N (c(S) − x (S)) = 5 . Hence, for

ny y ∈ LC (N, c ∗) , c(S) − y (S) � 5 for all S ⊆ N . 

Claim 1: y 1 ≥ 3. Assume, on the contrary, that y 1 = 3 − ε
or some ε > 0. As c({ 1 , 4 } ) = c({ 1 , 5 } ) = 10 , y 4 , y 5 � 2 + ε. As

({ 1 , 3 } ) = 9 , y 3 � 1 + ε. By Pareto optimality of y , y 2 � 2 − 2 ε. We

onclude that y 3 � 2 + 2 ε, and a contradiction to Pareto optimality

as been obtained. 

Claim 2: y 2 ≥ 3. Assume, on the contrary, y 2 = 3 − ε for some ε
 0. Then y 3 , y 4 � 1 + ε , y 4 � ε , and, hence, y 1 � 5 − 2 ε. Thus, y 5
2 ε, and the desired contradiction has been obtained. 

Claim 3: y 1 + y 2 > 6 = c({ 1 , 2 } ) . Assume the contrary. By Claims

 and 2, y 1 = y 2 = 3 . Then y 3 ≥ 1, y 4 , y 5 ≥ 2, which is in contra-

iction to Pareto optimality. Thus, LC (N, c ∗) ∩ C(I, c) = ∅ . 

We may define the Shapley value for generalized highway prob-

ems and characterize it similarly to Theorem 4.2 by conveniently

dapting the proof. The other characterizations on highway games

roposed in this paper do not possess straightforward general-

zations on generalized highway games. In particular, it may be

hecked that the symmetric 5-person game ( N , c ) defined by 

(S) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

4 , if | S| = 1 , 

7 , if | S| = 2 , 

9 , if | S| = 3 , 

10 , if | S| � 4 , 

or all ∅ � = S ⊆ N is a positive game, hence a generalized highway

ame, but that none of its 4-person reduced games w.r.t. the nu-

leolus (2, 2, 2, 2, 2) is a positive game. 

ppendix A 

Here we prove the results of Section 3 concerning the charac-

erizations of the core and the nucleolus on the set of highway

roblems. 

The following lemmas will be useful in the sequel. 

emma A.1. For any highway problem ( N , I ) with | N | > 1 there exist

t least two distinct reducible agents. 
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Proof. Call i ∈ N minimal if for all j ∈ N �{ i } such that I j � = I i it holds

I j �I i � = ∅ . There exists at least one minimal agent i ∈ N , and more-

over a minimal agent is of type 0, hence reducible. Therefore, the

proof is finished in the case that there are two distinct minimal

agents. Hence we may now assume that there is a unique mini-

mal agent, say i . Then I i � I j for all j ∈ N �{ i }. Choose j ∈ N �{ i } such

that a j = max k ∈ N\{ i } a k , where I i = [ a i , b i ] for all i ∈ N . Then j is a

left agent of type 1 or 0, i.e., the second reducible agent has been

found. �

Proof of Proposition 3.3. Let I j = [ a j , b j ] for all j ∈ N , denote

I ′ = I −i,x , and let I ′ 
j 
= [ a ′ 

j 
, b ′ 

j 
] for all j ∈ N �{ i }. From λ∗( I i �I N �{ i } )

≤ x i ≤ λ∗( I i ) it follows that (N \ { i } , I ′ ) ∈ H and, moreover, that

max � ∈ N b � − x i = max j∈ N\{ i } b ′ j , hence x N �{ i } ∈ X ( N �{ i }, I ′ ) and c I 
′ 
(N \

{ i } ) = c N\{ i } ,x (N \ { i } ) . Now, let ∅ � = T � N �{ i }. Denote T 1 = { j ∈ T |
a j � a i < b j } and T 2 = { j ∈ T | a j < b i � b j } . If i is an agent of type

0, then 

c I (T ∪ { i } ) − c I (T ) = max 

{ 

0 , min 

({ a j | j ∈ T 2 } ∪ { b i } 
)

− max 
({ b j | j ∈ T 1 } ∪ { a i } 

)} 

. 

A careful inspection of (3.1) and (3.2) finishes the proof in this

case. If i is a left agent of type 1 and k is the unique interior

agent of i , i.e., a i < a k ≤ b k < b i , then the case k �∈ T can be

treated as before. If k ∈ T , then the cases T 2 � = ∅ or ( T 1 � = ∅ and

max { b j | j ∈ T 1 } ≤ b i ) are straightforward as well as the case that

x i � (b i − a i ) − (b k − a k ) . In the remaining case, I ′ 
k 

= I k − ε, where

ε = b k + x i − b i , again a careful inspection (3.1) and (3.2) completes

the proof. Finally, if i is a right agent of type 1, but not a left agent,

then we may argue similarly. �

Proof of Proposition 3.4. NEM follows from the concavity of high-

way games, PO, IR, REASB, and UTPH are immediate consequences

of the definition of the core, and PCOV follows from the well-

known scale covariance and translation covariance of the core on

any set of games. As the core is reasonable and satisfies RGP on

the set of games with nonempty cores ( Peleg, 1986 ), Lemma 3.4

shows RHP. 

In order to show CRHP and SCRHP, let (N, I) ∈ H such that | N |

≥ 2. Let x ∈ X ( N , I ) such that (N \ { i } , I −i,x ) ∈ H and x N\{ i } ∈ C(N \
{ i } , I −i,x ) for each reducible agent i ∈ N . Assume that x / ∈ C(N, I) and

let ∅ � = S � N such that x ( S ) > c I ( S ). Two cases may occur: 

(a) If | N | > 2, by Lemma A.1 one of the following subcases must

occur: (a1) There exists a reducible i ∈ S and | S | ≥ 2. In this case

x (S \ { i } ) > c I (S) − x i � c I 
−i,x 

(S \ { i } ) . (a2) There exists a reducible i

∈ N �S and | S| � | N| − 2 . In this case x (S) > c I (S) � c I 
−i,x 

(S) . Hence,

in both subcases x N\{ i } / ∈ C(N \ { i } , I −i,x ) and the desired contradic-

tion has been obtained. Thus, CRHP has been verified. 

(b) If | N| = 2 , I j = [ a j , b j ] for j ∈ N, N = { k, � } , then both agents

are reducible by Lemma A.1 . If I k �I � � = ∅ � = I � �I k , then we may as-

sume that a k = 0 . We conclude that x � � b � − b k (otherwise x k /∈
X({ k } , I −�,x ) ). Moreover, x k � a � − a k (otherwise ({ � } , I −k,x ) / ∈ H be-

cause a ′ � > 0 , where I −k,x 
� 

= [ a ′ � , b ′ � ] ) so that x ∈ C(N, I) . In the re-

maining case, we may assume that I � ⊆I k , i.e., a k = 0 � a � � b � � b k .

Then x k ≤ b k (otherwise b ′ � < 0 ). If x k < b k + a � − b � , then a � = 0

(otherwise a ′ � > 0 ) and b � = b k (otherwise x � < λ∗(I −k,x 
� 

) ). If, how-

ever, I k = I � , then x k < b k + a � − b � = 0 would imply x � > b � , hence

b ′′ 
k 

< 0 , where I −�,x 
k 

= [ a ′′ 
k 
, b ′′ 

k 
] which is impossible. Thus, x ∈ C(N, I)

and SCRHP has been verified. �

Proof of Theorem 3.5. By Proposition 3.4 the core satisfies NEM,

IR, RHP, and CRHP. In order to show the opposite implication, let

σ be a solution that satisfies the desired properties. Let (N, I) ∈
H. If | N| = 1 , then σ (N, I) = C(N, I) by NEM and IR. Assume that

σ (N, I) = C(N, I) whenever | N | < k for some k > 1. If | N| = k
nd x ∈ C(N, I) , then, by RHP of the core, x N\{ i } ∈ C(N \ { i } , I −i,x ) =
(N \ { i } , I −i,x ) for each reducible i ∈ N so that by CRHP of σ , x ∈
( N , I ). The other inclusion follows by exchanging the roles of σ

nd C. �

roof of Theorem 3.6. By Proposition 3.4 the core satisfies the re-

uired axioms. In order to show uniqueness, let σ be a solution

hat satisfies IR, UTPH, RHP, and CRHP. Let (N, I) ∈ H. If | N | ≤ 2,

hen by IR, UTPH, and RHP, σ (N, I) = C(N, I) . We proceed by in-

uction on | N | and assume that σ (N, I) = C(N, I) whenever | N | <

 for some t > 2. Now, if | N| = t, let x ∈ σ (N, I) and y ∈ C(N, I) . By

HP of σ and CRHP of C, x ∈ C (N, I) . By RHP of C and CRHP of σ ,

 ∈ σ (N, I) . �

The following lemma will be used in the proof of

roposition 3.8 . 

emma A.2. For any (N, I) ∈ H that has exactly two distinct re-

ucible agents k and � , ( I k ∪ I � ) is contained in the interior of I i for

ll i ∈ N �{ k , � }. 

roof. Let I j = [ a j , b j ] for j ∈ N , a = min { a k , a � } , say a k = a,

nd b = max { b k , b � } . Let i 1 , i 2 ∈ N �{ k , � } such that a i 1 =
ax { a i | i ∈ N \ { k, � } } and b i 2 = min { b i | i ∈ N \ { k, � } } . Note that

.r.t. the highway subproblem ( N �{ k , � }, ( I j ) j ∈ N �{ k , � } ), agent i 1 is

 left agent of type 0 and i 2 is a right agent of type 0. Assume that

 i 1 
� a . As i 1 is not reducible, she is not an agent of type 0, i.e., I �

s contained in the interior of I i 1 . But then i 1 is a left agent of type

, i.e., still reducible, which was excluded. Similarly it is seen that

 i 2 
> b: Assuming that, on the contrary, b i 2 � b yields a contradic-

ion because on the one hand side i 2 cannot be of type 0 and on

he other hand she cannot be a right agent of type 1. �

roof of Proposition 3.8. The prenucleolus on cost games satis-

es the properties corresponding to SIVA (hence NEM), and ETP so

hat these properties are also satisfied by the nucleolus of high-

ay problems. Moreover, it satisfies translation covariance which

mplies PCOV, and, by definition, if satisfies PO. The prenucleo-

us always selects a core element if the core is nonempty. By

emma 3.3 the reduced problems w.r.t. reducible agents are high-

ay problems, the associated games of which are Davis–Maschler

educed games. According to Sobolev (1975) the prenucleolus sat-

sfies RGP which implies that our nucleolus satisfies RHP. In or-

er to show CRHP, let (N, I) ∈ H with | N | ≥ 3 and let x ∈ X ( N ,

 ) such that x N\{ i } = ν(N \ { i } , I −i,x ) for all reducible agents i ∈
 . Let k , � ∈ N , k � = � . By Remark 3.7 it suffices to show that

 k� (x, c I ) = s �k (x, c I ) . If there is a reducible agent i ∈ N �{ k , � }, then

he game ( N �{ i }, c ) associated with the reduced highway problem

(N \ { i } , I −i,x ) is the Davis–Maschler reduced game of ( N , c I ) so that

 k� (x, c I ) = s k� (x N\{ i } , c) = s �k (x N\{ i } , c) = s �k (x, c I ) . Otherwise, k and

 are the unique reducible agents and we know that s i j (x, c I ) =
 ji (x, c I ) for all { i , j } ⊆ N with i � = j except { k , � }. As the nu-

leolus selects a member of the core, x ∈ C(N, I) by CRHP of the

ore. Let μ = max { e (S, x, c I ) | ∅ � = S � N} and define D = { S � N |
 � = ∅ , e (S, x, c I ) = μ} . It suffices to show that s k� (x, c I ) = μ. Assume

he contrary. We claim that D = { N \ { k }} . Let S ∈ D. If S ∩ ( N �{ k ,

 }) � = ∅ , choose i ∈ S ∩ ( N �{ k , � }). As x k ≥ 0 and as I k ⊆ I i by

emma A.2 , e ( S ∪ { k }, x , c I ) ≥ μ so that � ∈ S by our assumption. If

here exists j ∈ N �( S ∪ { k , � }), then μ = s � j (x, c I ) = s j� (x, c I ) so that

here exists S ′ ∈ D with � �∈ S ′ � j which cannot be true by the for-

er argument. Hence, S = N \ { k } in this case. If S ∩ N \ { k, � } = ∅ ,
hen � ∈ S because e ({ k }, x , c I ) < μ. Therefore, for i ∈ N �{ k , � },

 �i (x, c I ) = μ = s i� (x, c I ) , and hence there exists S ′ ∈ D with � �∈ S ′ � i

hich is impossible by the former argument. Now the proof can

e finished. By our claim, s ik (x, c I ) = μ = s ki (x, c I ) for i ∈ N �{ k , � }

o that we have derived a contradiction to our claim that N �{ k } is

he unique coalition in D. �
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roof of Theorem 3.9. By Proposition 3.8 the nucleolus satisfies

hese properties. In order to show the opposite implication, let σ
e a solution that satisfies the desired axioms. Let (N, I) ∈ H and

et x be the unique element of σ ( N , I ). We have to show that x =
(N, c I ) . If | N| = 1 , say N = { i } , then by PCOV we may assume that

 i = [0 , 0] . Choose j ∈ U �{ i }, define I j = I i , and let y = σ ({ i, j} , I) . By

TP, y i = y j . By RHP, y j = 0 because otherwise I 
− j,y 
i 

= ∅ . Hence, x =
 i = 0 . If | N| = 2 , then by PCOV we may assume that I i = I j for i ,

 ∈ N , and, hence, x i = x j by ETP. By RHP, x ∈ X ( N , I ), hence x =
(N, I) . Now we proceed by induction on | N | and assume that the

nique element of σ ( N , I ) coincides with ν( N , I ) whenever | N | < r

or some r > 2. If | N| = r, then by RHP, x N\{ i } = ν(N \ { i } , c I i,x ) for

ach reducible agent so that, by CRHP of ν , x = ν(N, I) . �

ppendix B 

roof of Theorem 4.2. The Shapley value satisfies the four axioms

y (4.6) . In order to prove the other implication, let σ be a solution

hat satisfies SIVA, PO, ETP, and IIOC. Let (N, I) ∈ H and b = max I N .

y induction on | M 

I | we prove that σ (N, I) = φ(N, I) . If 
∣∣M 

I 
∣∣ = 1 ,

hen I i = I j for every i , j ∈ N , and the result follows from SIVA, PO,

nd ETP. Assume that σ (N, I) = φ(N, I) whenever | M 

I | < k for some

 ≥ 2. If 
∣∣M 

I 
∣∣ = k, let α, β be determined by α � = b , β � = 0, and [0,

], [ α, b ] ∈ M 

I . Define 

 = { i ∈ N | [0 , β[ ∩ I i = ∅} and Q = { i ∈ N | ] α, b] ∩ I i = ∅} . 
ote that, for any i ∈ N �( P ∪ Q ), I i = I N . Hence, by SIVA, PO, and ETP

t suffices to show that σP∪ Q (N, I) = φP∪ Q (N, I) . With I ′ = I [ β,b] we

ave 
∣∣M 

I ′ ∣∣ < k and I ′ 
i 
= I i for all i ∈ P , and with I ′ = I [0 ,α] we have

M 

I ′ ∣∣ < k and I ′ 
j 
= I j for all j ∈ Q so that the inductive hypothesis

nishes the proof. �

roof of Theorem 4.3. By definition the Shapley value is a single-

on, hence satisfies NEM. By (4.7) it satisfies PO and CONTR as well.

n order to show the uniqueness part, let σ be a solution on A that

atisfies NEM, PO, and CONTR. Let (N, I) ∈ A , I j = [ a j , b j ] for j ∈ N ,

nd x ∈ σ ( N , I ). By NEM it suffices to show that x = φ(N, I) . We

roceed by induction on | N |. If | N| = 1 , then x = φ(N, I) by NEM

nd PO. Now assume that x = φ(N, I) whenever | N | < k for some k

2. If | N| = k, then choose N = { i 1 , . . . , i n } so that b i 1 � · · · � b i n . 

Claim: x j � x i n for all j ∈ N . Indeed, assume on the contrary

hat there exists j ∈ N such that x j > x i n . Then c I 
− j,x, ctr (

N \ { i } ) �
 i n − x i n = x (N) − x i n > x (N \ { j} ) so that x N �{ j } is not feasible for

he reduced airport problem (N \ { j} , I − j,x, ctr ) . 

Now let I ′ = I −i n ,x, ctr , I ′ � = [ a ′ � , b ′ � ] for � ∈ N �{ i }. By our claim,

 

′ 
j 
= b j − x j . By the inductive hypothesis, x N\{ i n } = φ(N \ { i n } , I ′ ) so

hat we conclude from (4.7) that x i ≤ x j if and only if b ′ 
i 
� b ′ 

j 
for

ll i , j ∈ N �{ i n }. Hence, b ′ 
i 1 
� · · · � b ′ 

i n −1 
. By (4.7) , x i 1 = 

b ′ 
i 1 

n −1 = 

b i 1 
−x i 1 

n −1 

o that x i 1 = 

b i 1 
n = φi 1 

(N,I) . We proceed recursively and assume that

 i j 
= φi j 

(N, I) for j = 1 , . . . , t . If t < n − 1 , then, by (4.7) , 

 i t+1 
= x i t + 

b ′ 
i t+1 

− b ′ 
i t 

n − i t 
= x i t + 

b i t+1 
− x i t+1 

− (b i t − x i t ) 

n − i t 
, 

ence x i t+1 
= x i t + 

b i t+1 
−b i t 

n +1 −i t 
= φi t+1 

(N,I) . Finally, by PO, x i n =
i n (N, I) . �

roof of Theorem 4.4. The Shapley value satisfies NEM and PO.

n order to show CONTR let (N, I) ∈ H, I j = [ a j , b j ] for j ∈ N , | N |

2, and i a left agent of type 0. Let I ′ = I [0 ,a i ] , I ′′ = I I i , and I ′′′ =
 

[ b i , max I N ] , i.e., I ′ represents the first part of the highway from 0

o a , I ′ ′ is the middle part from a to b , and I ′ ′ ′ represents the
i i i S  
est, namely the part from b i to max I N . Moreover, let y ′ , y ′ ′ , y ′ ′ 
e the Shapley values of ( N , I ′ ), ( N , I ′ ′ ), ( N , I ′ ′ ′ ) respectively. As

 

I = c I 
′ + c I 

′′ + c I 
′′′ 

, by the well-known additivity of φ (see (4.6) ),

 := φ(N, I) = y ′ + y ′′ + y ′′′ . Moreover, agent i is a null-player of

(N, c I 
′ 
) and (N, c I 

′′′ 
) (an agent k ∈ N is a null-player of a TU game

 N , c ) if c(S ∪ { k } ) = c(S) for all S ⊆ N ) so that x ′ 
i 
= x ′′′ 

i 
= 0 by def-

nition of φ. Now, (N, I ′′ ) ∈ A so that y ′′ 
N\{ i } = φ(N \ { i } , I ′′−i,y ′′ , ctr )

y Theorem 4.3 . Also, it is well-known that the Shapley value

atisfies the strong null-player property, i.e., φN\{ i } (N, c) = φ(N \
 i } , c) (where ( N �{ i }, c ) denotes the subgame of ( N , c ) with player

et N �{ i }). Let (N \ { i } , I ′−i ) and (N \ { i } , I ′′′−i ) denote the corre-

ponding highway subproblems of ( N , I ′ ) and ( N , I ′ ′ ′ ). As c I 
−i,x, ctr =

 

I ′−i + c I 
′′−i,y ′ , ctr + c I 

′′′−i 
, additivity of the Shapley value yields φ(N \

 i } , I −i,x, ctr ) = y ′ 
N\{ i } + y ′′ 

N\{ i } + y ′′′ 
N\{ i } = x N\{ i } . 

To prove uniqueness, let σ be a solution that satisfies NEM, PO,

nd CONTR. Let (N, I) ∈ H, I j = [ a j , b j ] for all j ∈ N , x ∈ σ ( N , I ). It

emains to show that x = φ(N, I) . We proceed by induction on | N |.

f | N| = 1 , then x = φ(N, I) by NEM and PO. Now assume that x =
(N, I) whenever | N | < k for some k ≥ 2. If | N| = k, choose i ∈ N

uch that a i ≥ a j for all j ∈ N . Then i is not only a left agent of type

, but the truncated highway problem (N, I [ a i , max I N ] ) is an airport

roblem so that, by Theorem 4.3 , σ
(
N, I [ a i , max I N ] 

)
= φ

(
N, I [ a i , max I N ] 

)
.

ONTR of φ and the inductive hypothesis complete the proof. �
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