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1 Introduction

It has long been established (Rosenmüller 1971;Wilson 1971; Harsanyi 1973) that for normal
formgameswith an arbitrary number of players, if the payoffs canbe independently perturbed,
there is generically a finite number of equilibria. For the case of extensive form games Kreps
and Wilson (1982) show that the equilibrium distributions on terminal nodes are generically
finite.

The equivalent result for outcome games has turned out to be difficult to elucidate. On
the one hand, Govindan and McLennan (2001) were the first to provide an example of a
game form for which the Nash equilibria of the games associated to an open set of utility
profiles induce a continuum of probability distributions on outcomes. Their example made
use of three players and six outcomes. Examples of game forms with the same feature have
appeared since: in Kukushkin et al. (2008) with two players and four outcomes and in Litan
et al. (2015) with three players and three outcomes.

On the other hand, there are a number of results that point towards the paucity of such
examples. Govindan andMcLennan (2001) proved that for gameswith two outcomes and any
number of players the number of equilibrium distributions on outcomes is generically finite.
Similar results have been obtained for two player, three outcomes games (González-Pimienta
2010), sender-receiver cheap-talk games (Park 1997), zero sum or common interest games
(Govindan and McLennan 1998; Litan and Marhuenda 2012) and games with three players
and two strategies each (Litan et al. 2015).

Clarifying for what types of game forms the number of probability distributions on out-
comes induced by the Nash equilibria of the associated game is generically finite remains an
open problem. In the present work we address this question and provide a partial answer. We
find sufficient and necessary conditions for the generic finiteness of the number of distribu-
tions on outcomes, induced by the completely mixed Nash equilibria associated to a bimatrix
outcome game form. These are specified in terms of the ranks of two matrices constructed
from the original game form and can be checked automatically.

2 Outcome game forms with two players

We follow very closely the notation and set up adopted in Litan et al. (2015) and Litan and
Marhuenda (2012). Let S1 = {1, 2, . . . ,m} and S2 = {1, 2, . . . , n} be the two players’ sets
of pure strategies. Let S = S1 × S2 and consider a finite set of outcomes �. We denote
by �(�) (resp. �+(�)) the set of (resp. strictly positive) probability measures on �. An
outcome game form is a function φ : S → �(�). We write φ = (φω)ω∈� and for each
outcome ω ∈ � we regard φω as an m × n matrix, the entries of which are the probabilities
that φ(i, j) (1 ≤ i ≤ n, 1 ≤ j ≤ m) assigns to the outcome ω ∈ �.

Agents have a utility function on outcomes u ∈ R
�, which extends to a von-Neumann–

Morgenstern expected utility function. For each u ∈ R
� we assign the matrix

u(φ) =
∑

ω∈�

u(ω)φω.

Given two profiles of utilities on outcomes u1, u2 ∈ R
� for the players, the matrices u1(φ)

and u2(φ) define the two-person game
(
u1(φ), u2(φ)

)
. A pair of strategies (x, y) ∈ �(S1)×

�(S2) is a Nash equilibrium (NE) of that game if xu1(φ)y � u1(φ)i ·y and xu2(φ)y �
xu2(φ)· j for all i ∈ S1 and j ∈ S2. Here, u(φ)i · (resp. u(φ)· j ) denote the i-th row (resp.
j-th column) of the matrix u(φ). Throughout the paper, xu(φ) (resp. u(φ)y) are regarded as
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elements of Rn (resp. Rm) and the scalar product of z, z̄ ∈ R
k is written as z · z̄ or simply

as zz̄. The pair (x, y) is a completely mixed NE (CMNE) if, in addition, x ∈ �+(S1) and
y ∈ �+(S2).

The strategies x ∈ �(S1) and y ∈ �(S2) of the players induce a probability distribution
on � that assigns the probability x φωy to the outcome ω ∈ �.

We identifyR� with Euclidean spaceR|�|.With this identification themapping u �→ u(φ)

is linear fromR
|�| into the linear space ofm×nmatrices.We say that a subset ofR� is generic

if it contains an open and dense subset. For l ∈ N, let dl denote the vector (1, . . . , 1) ∈ R
l .

The number of pure NEs of a finite game is finite. In the case of games with a mixed
NE, by eliminating those strategies that are played with zero probability, we will focus
on the CMNEs of the corresponding subgames. Given two utility profiles u1, u2 ∈ R

�,
if a pair (x, y) ∈ �+(S1) × �+(S2) of completely mixed strategies is a NE of the game(
u1(φ), u2(φ)

)
, then it is a solution of the following systems of linear equations.

u1(φ)y = α1dm, y · dn = 1 (1)

xu2(φ) = α2dn, x · dm = 1 (2)

for some αi ∈ R, the payoff of player i = 1, 2.

Definition 2.1 Given an outcome game form φ and a pair of utility profiles u1, u2 ∈ R
�,

a quasi-equilibrium (QE) of the game
(
u1(φ), u2(φ)

)
is a pair of solutions (x, y) =(

x
(
u2

)
, y

(
u1

)) ∈ R
m × R

n of the system of Eqs. (1) and (2), for some αi = αi
(
ui

) ∈ R,
i = 1, 2.

We say that vector z ∈ R
� is a quasi(probability)-distribution on � for the game(

u1(φ), u2(φ)
)
if there exists a QE (x, y) of that game such that for each ω ∈ �,

z(ω) = xφωy.

Thus, the set of CMNE is a subset of the set of all QE of a given game. For the rest of the
paper we fix an outcome game form φ. Given an m × n matrix A and b ∈ R

m , (A|b) denotes
the m × (n + 1) matrix that arises from A by adding b as final column and At denotes the
transpose matrix of A. Let k = max{rank u(φ) : u ∈ R

�}. We rely on the following fact
shown by Mas-Colell (2010). There is an open and dense (and hence generic) subset G of
R

� such that the following conditions hold.

(a) For every u ∈ G, we have rank u(φ) = k. After reordering, if necessary, the strategies
of the players we may write

u(φ) =
(
B C
D E

)
(3)

where B = B(u) is a k × k matrix with |B| �= 0.1

(b) The functions k1 = rank (u(φ)|dm) and k2 = rank
(
u(φ)t |dn

)
are constant on G.

Throughout the rest of this exposition, we fix a reordering of the strategies of the players
such that (a) holds. Consider the following polynomial on |�| variables,

p(u) = |B (u) | dk B−1 (u) dk, u ∈ R
� (4)

Whenever p(u) �= 0 we define

α(u) = |B(u)|
p(u)

(5)

We have the following.

1 When there is no danger of confusion, we will not write explicitly the dependence on the utility u for
matrices.
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Proposition 2.2 If k = m = n, then generically there is at most one QE and, hence, at most
one CMNE. Suppose k < max{m, n}. Then,
(a) If k < max{k1, k2}, then for every u1, u2 ∈ G the game

(
u1(φ), u2(φ)

)
has no QE and,

hence, no CMNE.
(b) If k1 = k2 = k and p is the zero polynomial, then for any u1, u2 ∈ G the game(

u1(φ), u2(φ)
)
has no QE and, hence, no CMNE.

(c) Let u1, u2 ∈ G. Suppose k1 = k2 = k and for i = 1, 2, p
(
ui

) �= 0. Then, there is
a continuum of QEs of the game

(
u1(φ), u2(φ)

)
. Furthermore, the systems of linear

Eqs. (1) and (2) have a solution only if the payoffs are αi = α
(
ui

)
, i = 1, 2, with α

defined in (5).

Proof The case k1 = k2 = k of the Proposition is a standard result in elementary Linear
Algebra. See Lemmas 3.2, 3.3 and 3.4 in Litan and Marhuenda (2012) for the proof of
parts (b) and (c).

We prove next part (a). We consider only the case k1 = k + 1. The case k2 = k + 1 is
similar. We remark first that, since dm is not a linear combination of the columns of u(φ),
any y ∈ R

n which is a solution of (1) for some u ∈ G, must satisfy u(φ)y = 0.
Assume now that there are u1, u2 ∈ G such that the game

(
u1(φ), u2(φ)

)
has a QE (x, y)

with x ∈ R
m and y ∈ R

n . Then, u1(φ)y = 0 by the previous remark. Since, G is open,
there exists ε > 0 such that ū = u1 + εd|�| ∈ G. Moreover, (x, y) is also a QE of the game(
ū(φ), u2(φ)

)
and ū(φ) y = εdm . But, this contradicts the remark in the previous paragraph.

Hence, part (a) of the Proposition follows. ��
Since, k1, k2 ∈ {k, k + 1} and we are only interested in the existence of a continuum of

CMNEs, from now we consider only games for which the following holds.

Assumption 2.3 The polynomial p in (4) is not the zero polynomial, and k1 = k2 = k <

max{m, n}.
Note that, under the above assumption, the set U = {u ∈ G : p(u) �= 0} is open and dense
in R

|�|. Hence, it is generic. Let α : U → R as in (5). Define the functions y p : U → R
n ,

yh : U × R
n−k → R

n , x p : U → R
m and xh : U × R

m−k → R
m by

y p(u) = (
α(u)B−1 (u) dk, 0

)

yh(u, v) = (−B−1 (u)C(u)v, v
)

x p(u) = (
α(u)dk B

−1 (u) , 0
)

xh(u, w) = (−wD(u)B−1 (u) , w
)

(6)

The following is proved in Lemmas 3.3 and 3.4 of Litan and Marhuenda (2012).

Lemma 2.4 Let Assumption 2.3 hold and let u ∈ U. Then,

(a) u(φ) y p (u) = α (u) dm and dn · y p (u) = 1;
(b) x p(u)u(φ) = α(u)dn and dm · x p(u) = 1;
(c) For every v ∈ R

n−k we have u(φ)yh(u, v) = 0 and dn · yh(u, v) = 0;
(d) For every w ∈ R

m−k we have xh (u, w) u(φ) = 0 and dm · xh (u, w) = 0;

For V ⊂ R
l a linear subspace and a ∈ R

l we let aV = Va = {a · v : v ∈ V }. From now on,
we follow the notation of Lemma 2.4. Given u ∈ U we define K1(u) = {z ∈ R

n : u(φ)z = 0}
and K2(u) = {t ∈ R

m : tu(φ) = 0}. Since, we are assuming that k1 = k2 = k, we have that
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K1(u) = ker u(φ) = ker (u(φ)|dm) and K2(u) = ker u(φ)t = ker
(
u(φ)t |dn

)
. We see from

Lemma 2.4 that K1(u) = {yh(u, v) : v ∈ R
n−k} and K2(u) = {xh(u, w) : w ∈ R

m−k}. It
follows that dim K1(u) = n − k, dim K2(u) = m − k. and K1(u) dn = dm K2(u) = 0. Let
u1, u2 ∈ U . Any QE (x, y) of the game

(
u1(φ), u2(φ)

)
may be written as

(
x p(u2) + xh(u2, w), y p

(
u1

) + yh(u1, v)
)

for some v ∈ R
n−k and w ∈ R

m−k . When there is no danger of confusion we will not write
explicitly the dependence on u1, u2, v or w. For each outcome ω ∈ �, define the following
polynomial in the variables (v,w) ∈ R

n−k × R
m−k

qω(v,w) = x p (
u2

)
φωy p

(
u1

) + x p (
u2

)
φωyh

(
u1, v

)

+ xh(u2, w)φω y p
(
u1

) + xh(u2, w)φω yh
(
u1, v

)
(7)

The probability that outcome ω ∈ � occurs is qω(v,w). Given x ∈ R
m , y ∈ R

n we define
the following subspaces.

x φω K1
(
u1

) = {x φωz : z ∈ K1
(
u1

)}
K2(u

2) φω y = {tφωy : t ∈ K2
(
u2

)}
K2(u

2) φω K1(u
1) = {tφωz : z ∈ K1

(
u1

)
, t ∈ K2(u

2)}

Lemma 2.5 Suppose that Assumption 2.3 holds. Let ω ∈ �, u1, u2 ∈ U. If either of the
following two conditions hold

(a) x
(
u2

)
φω K1

(
u1

) = {0} for every solution x
(
u2

)
of the system of Eq. (2).

(b) K2(u2) φω y
(
u1

) = {0} for every solution y
(
u1

)
of the system of Eq. (1).

then, K2(u2) φω K1(u1) = {0}.
Proof Suppose that condition (a) holds. Let t ∈ K2(u2). Recall that we may write t as
t = x1 − x2, where x1, x2 are two solutions of the system of Eq. (2). Let z ∈ K1(u1). Then,
tφωz = x1φωz−x2φωz = αdnz−αdnz = 0. Hence, it follows that K2(u2)φωK1(u1) = {0}.
Similarly, condition (b) implies that K2(u2)φωK1(u1) = {0}. ��
Proposition 2.6 Suppose that Assumption 2.3 holds. Let u1, u2 ∈ U. The set of QE of the
game defined by u1(φ) and u2(φ) induce finitely many quasi-distributions on � if and only
if the following two conditions hold.

(a) x
(
u2

)
φωK1

(
u1

) = {0} for every ω ∈ � and every solution x
(
u2

)
of the system of

Eq. (2).
(b) K2(u2)φωy

(
u1

) = {0} for every ω ∈ � and for every solution y
(
u1

)
of the system of

Eq. (1).

Proof Since, the set of QE’s of the game
(
u1(φ), u2(φ)

)
is convex we have that the set

{z ∈ R
� : z is a quasi-distribution on � for the game

(
u1(φ), u2(φ)

)}
is connected.Hence, theQEs induce finitelymany quasi-distributions on outcomes if and only
if they induce a unique quasi-distribution on outcomes. We prove next part (a). Assume there
is a unique quasi-distribution induced on outcomes by the QEs of the game. Let x = x

(
u2

)
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be a solution of (2), and z = z
(
u1

) ∈ K1
(
u1

)
. We write z = y1 − y2, where y1, y2 are two

solutions of (1). Then, for each ω ∈ �, we have that x φωy1 = x φωy2. So,

x φωz = x φωy1 − x φωy2 = 0

Thus, x φωK1
(
u1

) = {0} and (a) follows. Similarly, we can prove (b).
Conversely, suppose that conditions (a) and (b) hold. Let u1, u2 ∈ U and ω ∈ �.

By Lemma 2.5 we have that K2(u2)φωK1
(
u1

) = {0}. Therefore, in (7), for every QE(
x p(u2) + xh(u2, w), y p

(
u1

) + yh(u1, v)
)
, we have that

(
x p(u2) + xh(u2, w)

)
φω

(
y p

(
u1

) + yh(u1, v)
)

= x p(u2) φω y p
(
u1

)

And the QEs of the game defined by u1(φ) and u2(φ) induce a unique quasi-distribution on
�. ��
Corollary 2.7 Let Assumption 2.3 hold. Suppose there are two sets of vectors V1 ⊂ R

n and
V2 ⊂ R

m such that for every u ∈ U and i = 1, 2 we have that Vi generates Ki (u). Then, for
any u1, u2 ∈ U the set of CMNE of the game

(
u1(φ), u2(φ)

)
induce finitely many probability

distributions on outcomes.

Proof Let z ∈ V1 and t ∈ V2. For every u ∈ U , we have that tu(φ) = u(φ)z = 0.
Since, the entries of u(φ) are linear in u and U contains an open subset of R|�|, we see that
tφω = φωz = 0 for every ω ∈ �. Hence, φωK1 (u) = K2 (u) φω = {0} for every u ∈ U and
ω ∈ �. The result follows now from Proposition 2.6. ��
The following result provides necessary and sufficient conditions for the existence of finitely
many probability distributions on outcomes in games induced by outcome game forms.

Theorem 2.8 Let Assumption 2.3 hold, u1, u2 ∈ U and suppose there is, at least, one CMNE
of the game

(
u1(φ), u2(φ)

)
. Then, the set of all the CMNE of that game induces finitely many

probability distributions on outcomes iff for every ω ∈ �

rank

⎛

⎝
u1(φ) 0
φω u2(φ)

0 dn

⎞

⎠ = 2k and rank

(
u2(φ) φω 0
0 u1(φ) dm

)
= 2k

The proof is based on techniques developed in Litan and Marhuenda (2012). A review of
these and the details of the proof are provided in the appendix.

A The proof of Theorem 2.8

Lemma A.1 Suppose that Assumption 2.3 holds. Let u1, u2 ∈ U. The set of QE of the game(
u1(φ), u2(φ)

)
induce finitely many quasi-distributions on outcomes if and only if for every

ω ∈ � and every QE
(
x

(
u2

)
, y

(
u1

))
of that game the following two conditions hold.

(a) x
(
u2

)
φω is in the image of u1(φ)t

(b) φωy
(
u1

)
is in the image of u2(φ).

Proof Let u1, u2 ∈ U . By Proposition 2.6, the set of QE of the game
(
u1(φ), u2(φ)

)
induce

finitely many quasi-distributions on outcomes if and only if for every ω ∈ �, every solution
x

(
u2

)
of the system of Eq. (2) and every solution y

(
u1

)
of the system of Eq. (1) we have
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that x
(
u2

)
φωK1

(
u1

) = {0} and K2(u2)φωy
(
u1

) = {0}. This is equivalent to the statement
that x

(
u2

)
φω is orthogonal to K1

(
u1

)
and φωy

(
u1

)
is orthogonal to K2(u2), which occurs

if and only if x
(
u2

)
φω is in the image of u1(φ)t and φω y

(
u1

)
is in the image of u2(φ). ��

Lemma A.2 Let ω ∈ � and u1, u2 ∈ U. Let Assumption 2.3 hold and suppose that
K2(u2)φωK1(u1) = {0}. Then,

rank

(
u1(φ) 0
φω u2(φ)

)
= 2k

Proof We use the notation

φω =
(
Bω Cω

Dω Eω

)

to denote the decomposition of the matrix u(φ) in (3) applied to the matrix φω. Let

F =
(
u1(φ) 0
φω u2(φ)

)

We can write now

F =

⎛

⎜⎜⎝

B
(
u1

)
C

(
u1

)
0 0

D
(
u1

)
E

(
u1

)
0 0

Bω Cω B
(
u2

)
C

(
u2

)

Dω Eω D
(
u2

)
E

(
u2

)

⎞

⎟⎟⎠

By elementary row and column operations,

rank F = rank

⎛

⎝
B

(
u1

)
C

(
u1

)
0

Bω Cω B
(
u2

)

Dω Eω D
(
u2

)

⎞

⎠ = rank

⎛

⎝
B

(
u1

)
C

(
u1

)
0

Bω Cω B
(
u2

)

Dω
1 Eω

1 0

⎞

⎠

where

Dω
1 = Dω − D

(
u2

)
B−1 (

u2
)
Bω (8)

Eω
1 = Eω − D

(
u2

)
B−1 (

u2
)
Cω (9)

Finally,

rank F = rank

⎛

⎝
B

(
u1

)
0 0

Bω Cω
2 B

(
u2

)

Dω
1 Eω

2 0

⎞

⎠

with Cω
2 = Cω − BωB−1

(
u1

)
C

(
u1

)
and

Eω
2 = Eω

1 − Dω
1 B

−1 (
u1

)
C

(
u1

)

= Eω−D
(
u2

)
B−1 (

u2
)
Cω−DωB−1 (

u1
)
C

(
u1

)+D
(
u2

)
B−1 (

u2
)
BωB−1 (

u1
)
C

(
u1

)

= (−D
(
u2

)
B−1

(
u2

)
Im−k

) (
Bω Cω

Dω Eω

)(−B−1
(
u1

)
C

(
u1

)

In−k

)

= (−D
(
u2

)
B−1

(
u2

)
Im−k

)
φω

(−B−1
(
u1

)
C

(
u1

)

In−k

)
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It follows from Lemma 2.4 that

K1(u
1) =

{
yh(u1, v) : v ∈ R

n−k
}

=
{(−B−1

(
u1

)
C

(
u1

)

In−k

)
v : v ∈ R

n−k
}

and

K2(u
2) =

{
xh(u2, w) : w ∈ R

m−k
}

=
{
w

(−D
(
u2

)
B−1

(
u2

)
Im−k

) : w ∈ R
m−k

}

Since K2(u2)φωK1(u1) = {0}, for any v ∈ R
n−k and w ∈ R

m−k we have that

w Eω
2 v = w

(−D
(
u2

)
B−1

(
u2

)
Im−k

)
φω

(−B−1
(
u1

)
C

(
u1

)

In−k

)
v = 0

Therefore, Eω
2 = 0 and

rank F = rank

⎛

⎝
B

(
u1

)
0 0

Bω Cω
2 B

(
u2

)

Dω
1 0 0

⎞

⎠ = rank

(
B

(
u1

)
0 0

Bω Cω
2 B

(
u2

)
)

= 2k

because, since rank B
(
u1

) = rank B
(
u2

) = k, the rows of Dω
1 are a linear combination of

the rows of B
(
u1

)
. ��

Lemma A.3 Suppose that Assumption 2.3 holds. Let u1, u2 ∈ U, ω ∈ �. Then,

(a) x
(
u2

)
φωK1

(
u1

) = {0} for every solution x
(
u2

)
of the system of Eq. (2) if and only if

rank

⎛

⎝
u1(φ) 0
φω u2(φ)

0 dn

⎞

⎠ = 2k

(b) K2(u2)φωy
(
u1

) = 0 for every solution y
(
u1

)
of the system of Eq. (1) if and only if

rank

(
u2(φ) φω 0
0 u1(φ) dm

)
= 2k

Proof We prove only part (a). The proof of part (b) is similar. Fix a solution x = x
(
u2

)
of

the system of Eq. (2). Let

F =
⎛

⎝
u1(φ) 0
φω u2(φ)

0 dn

⎞

⎠

Since, dn = 1
α(u2)

xu2(φ), by elementary row operations we have that

rank F = rank

⎛

⎜⎝
u1(φ) 0
φω u2(φ)

1
α(u2)

xφω 0

⎞

⎟⎠

Assume that x φωK1
(
u1

) = 0. Then, by Lemma A.1, x φω is in the image of u1(φ)t and
hence x φω is a linear combination of the rows of u1(φ). Therefore,

rank F = rank

(
u1(φ) 0
φω u2(φ)

)

and, by Lemmas 2.5 and A.2 we have that rank F = 2k.
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Conversely, suppose now that rank F = 2k. We proceed now as in Lemma A.2 and write
F as

F =

⎛

⎜⎜⎜⎝

u1(φ) 0 0

Bω Cω B
(
u2

)
C

(
u2

)

Dω Eω D
(
u2

)
E

(
u2

)

0 0 dk dn−k

⎞

⎟⎟⎟⎠

The above argument shows that

rank F = rank

⎛

⎜⎜⎜⎝

u1(φ) 0 0

Bω Cω B
(
u2

)
C

(
u2

)

Dω Eω D
(
u2

)
E

(
u2

)

1
α(u2)

x(u2)φω 0 0

⎞

⎟⎟⎟⎠

Since rank u2(φ) = rank B
(
u2

) = k, we get that

rank F = rank

⎛

⎜⎜⎜⎜⎝

u1(φ) 0

Bω
1 Cω

1 B
(
u2

)

Dω
1 Eω

1 0
1

α(u2)
x φω 0

⎞

⎟⎟⎟⎟⎠
= 2k

where Dω
1 , Eω

1 are defined in (8) and (9). Since, rank u1(φ) = rank B
(
u2

) = k, the rows of
the matrix

(
Dω
1 Eω

1

)
and x φω are a linear combination of the rows of u1(φ). It follows that

x φω is orthogonal to K1
(
u1

)
and (a) follows. ��

The following result follows now immediately from Proposition 2.6 and Lemma A.3.

Theorem A.4 Suppose that Assumption 2.3 holds. Let u1, u2 ∈ U. Then, the set of all the
QE of the game

(
u1(φ), u2(φ)

)
induces finitely many quasi-distributions on outcomes iff for

every ω ∈ �

rank

⎛

⎝
u1(φ) 0
φω u2(φ)

0 dn

⎞

⎠ = 2k and rank

(
u2(φ) φω 0
0 u1(φ) dm

)
= 2k

We address now the proof of Theorem 2.8. We show first the ‘if’ part. If the rank conditions
in Theorem 2.8 hold, then by Theorem A.4 the set of QE induce a unique quasi-distribution
on outcomes. Since the set of CMNE is a subset of the set of QE, the set of CMNE also
induces, at most, a unique distribution on outcomes. Thus, the ‘if’ part of Theorem 2.8 holds.

Conversely, suppose that the set of CMNE of the game
(
u1(φ), u2(φ)

)
induces finitely

many distributions on outcomes and that the game
(
u1(φ), u2(φ)

)
has, at least, a CMNE ,

say x̄ = x p(u2) + xh(u2, w0) ∈ �+(S1) and ȳ = y p
(
u1

) + yh(u1, v0) ∈ �+(S2) with
w0 ∈ R

m−k , v0 ∈ R
n−k . By continuity, there are open sets H1 ⊂ R

n−k and H2 ⊂ R
m−k

such that for v ∈ H1, w ∈ H2 we have that x = x p(u2) + xh(u2, w) ∈ �+(S1) and
y = y p

(
u1

) + yh(u1, v) ∈ �+(S2) is a CMNE of the game
(
u1(φ), u2(φ)

)
.

If the rank conditions in Theorem 2.8 do not hold, then, by TheoremA.4 for some outcome
ω ∈ � the polynomial qω(v,w) in (7) is not constant and, hence, it takes a continuum of
values as the variables (v,w) vary on the open set H1 × H2. It follows that the set CMNE of
the game

(
u1(φ), u2(φ)

)
induce infinitelymany distributions on outcomes, which contradicts

our assumption. And the ‘only if’ part of Theorem 2.8 follows.
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