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Abstract
We show that neither Peleg’s nor Tadenuma’s well-known axiomatizations of the core
by non-emptiness, individual rationality, super-additivity, and max consistency or
complement consistency, respectively, hold when only convex rather than balanced
TU games are considered, even if anonymity is required in addition. Moreover, we
show that the core and its relative interior are the only two solutions that satisfy
Peleg’s axioms together with anonymity and converse max consistency on the domain
of convex games.

JEL Classification C71

1 Introduction

The core is one of the most important solutions for cooperative games. It is important
mainly because it satisfies many desirable properties. In particular, it satisfies two
kinds of reduced game properties, namely, “max consistency” (Peleg 1986 Davis and
Maschler 1965) and “complement consistency” (Tadenuma 1992; Moulin 1985).1

There are two well-known axiomatic characterizations of the core on the domain of

1 For these two consistency axioms we use the terminology introduced by Thomson (1996) and call them
max consistency and complement consistency because each name suggests how the underlying “reduced
games” are defined in each case.
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balanced TU games based on each of these two axioms: (i) The core is the unique
solution that satisfies non-emptiness, individual rationality, super-additivity, and max
consistency (Peleg 1986); (ii) it is the unique solution that satisfies non-emptiness,
individual rationality and complement consistency (Tadenuma 1992).2

In this note, we investigate what happens when the domain is restricted to the
domain of convex TU games. Although the core satisfies Peleg’s four axioms on
this domain, it is not the only one.3 It so happens that except for the core itself, all
known examples of such solutions violate anonymity. So, one may conjecture that
an axiomatic characterization of the core might be obtained by adding anonymity to
Peleg’s four axioms. In this note, we disprove this conjecture. Moreover, we show that
there exist only two solutions, the core and its relative interior, that satisfy Peleg’s four
axioms together with anonymity and converse max consistency. We also consider a
similar problem for complement consistency. In particular, we show that the core is
not the only solution on the domain of convex games that satisfies Tadenuma’s three
axioms and anonymity.

2 Definitions and results

Let U be an arbitrary universe of at least three players, which is assumed to contain,
for the ease of displaying examples and proofs, the elements 1, 2, and 3. We use ⊂ for
strict set inclusion, and ⊆ for weak set inclusion. A transferable utility (TU) game
(or a game, for short) is a pair (N , v), where N is a nonempty and finite subset of U
and v is a function from 2N to R with v(∅) = 0. A game (N , v) is convex (Shapley
1971) if for all S, T ∈ 2N , we have v(S) + v(T ) ≤ v(S ∩ T ) + v(S ∪ T ). Let �U and
�U

vex denote the sets of all games and all convex games, respectively. For all x ∈ R
N

and all S ∈ 2N , we write x(S) := ∑
i∈S xi .

Given (N , v) ∈ �U , the core of (N , v), denoted C(N , v), is the set of vectors
x ∈ R

N such that x(N ) = v(N ) and for all S ⊂ N , x(S) ≥ v(S). A game has a
nonempty core if and only if it is balanced in the sense of Bondareva (1963) and
Shapley (1967). It is well-known that every convex game is balanced (Shapley 1971).

Given � ⊆ �U , a solution on � is a mapping that assigns to all (N , v) ∈ � a set
of vectors x ∈ R

N with x(N ) ≤ v(N ). The core, as a mapping, may be regarded as a
solution on any set of games. We use σ as a generic notation for solutions. Given two
solutions σ and σ ′ on �, we say that σ is a subsolution of σ ′, and write σ ⊆ σ ′, if
for all (N , v) ∈ �, σ(N , v) ⊆ σ ′(N , v).

Next, we definemax consistency (Peleg 1986) and complement consistency (Moulin
1985). Each of these axioms requires that the original choice in a game is “confirmed”
by any subset of players in the corresponding “reduced game” obtained when the
remaining players leave the game with their payoffs.

2 Voorneveld and van den Nouweland (1998) provide an axiomatization of the core which is closely related
to Peleg’s result.
3 Although this fact is widely known, we do not know any published or unpublished paper that mentions
it.
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Consistency, anonymity, and the core on the domain of convex games 189

Given (N , v) ∈ �U , N ′ ∈ 2N\{N ,∅}, and x ∈ R
N , the max reduced game of

(N , v) relative to x and N ′ (Davis and Maschler 1965), denoted by
(
N ′, vmax

N ′,x

)
, is

defined by setting for all S ∈ 2N
′
,

vmax
N ′,x (S) :=

⎧
⎨

⎩

maxT⊆N\N ′
[
v
(
S ∪ T

) − x(T )
]

if S /∈ {N ′,∅},
v(N ) − x(N\N ′) if S = N ′,
0 if S = ∅.

Max consistency: For all (N , v) ∈ �, all x ∈ σ(v), and all N ′ ∈ 2N\{N ,∅}, we have
(N ′, vmax

N ′,x ) ∈ � and xN ′ ∈ σ(N ′, vmax
N ′,x ).

Given (N , v) ∈ �U , N ′ ∈ 2N\{N ,∅}, and x ∈ R
N , the complement reduced

game of (N , v) relative to x and N ′, denoted by (N ′, vcomp
N ′,x ), is defined by setting

for all S ∈ 2N
′
,

v
comp
N ′,x (S) :=

{
v
(
S ∪ (N\N ′)

) − x(N\N ′) if S �= ∅,

0 if S = ∅.

Complement consistency: For all (N , v) ∈ �, all x ∈ σ(N , v), and all N ′ ∈
2N\{N ,∅}, we have (N ′, vcomp

N ′,x ) ∈ � and xN ′ ∈ σ(N ′, vcomp
N ′,x ).

It should be noted that the core satisfies two further consistency properties for
max reduced games, namely Peleg’s converse max consistency (defined below) and
an axiom called reconfirmation property that may be used to characterize the core
on �U and many other domains (Hwang and Sudhölter 2001). When replacing the
max reduced game by the complement reduced game these properties are no longer
satisfied by the core.

The following axioms apply to games with a fixed set of players.
Non-emptiness: For all (N , v) ∈ �, σ(N , v) �= ∅;
Individual rationality: For all (N , v) ∈ �, all x ∈ σ(N , v), and all i ∈ N , we have
xi ≥ v({i});
Super-additivity: For all (N , v), (N , w) ∈ �with (N , v+w) ∈ �, we haveσ(N , v)+
σ(N , w) ⊆ σ(N , v + w).

As mentioned above, on the domain of balanced games, (i) the core is the unique
solution satisfying non-emptiness, individual rationality, super-additivity, and max
consistency (Peleg 1986); and (ii) the core is the unique solution satisfying non-
emptiness, individual rationality and complement consistency (Tadenuma 1992). As
the domain of convex games is closed under the reduction operation when the starting
point is an allocation in the core, max consistency of the core is also guaranteed on
the domain of convex games (Maschler et al. 1972). Moreover, the fact that the core
satisfies non-emptiness, individual rationality, and super-additivity on the domain of
convex games directly follows from the corresponding fact for the domain of balanced
games. Given a total order � of U , define the following single-valued solution σ�
(slightly abusing the notation by identifying the unique element of σ�(N , v) with
σ�(N , v)), which assigns to each game (N , v) the “contribution vector” with respect
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to �: for all (N , v) ∈ �U , and all i ∈ N ,

σ
�
i (N , v) := v

({
j ∈ N

∣
∣ j � i

}) − v
({

j ∈ N
∣
∣ j ≺ i

})
.

On the domain of convex games, this solution satisfiesmax consistency (Orshan 1994;
Núñez and Rafels 1998; Hokari 2005). Moreover, it satisfies non-emptiness, super-
additivity, and individual rationality. This means that on the domain of convex games,
the core is not the only solution that satisfies Peleg’s four axioms. Clearly, the above
solution violates the following property.
Anonymity: For all (N , v), (N ′, w) ∈ �, if there exists a bijection π : N → N ′ such
that for all S ⊆ N , w

({
π(i)

∣
∣ i ∈ S

}) = v(S), then for all x ∈ σ(N , v), we have

π(x) ∈ σ(N ′, w), where π(x) = y ∈ R
N ′

is defined by y j = xπ−1( j) for all j ∈ N ′.
As far as we know, other than the core itself, no anonymous solution on the domain of
convex games that satisfies Peleg’s four axioms can been found in the literature. Here,
we provide an example of such a solution.

For all (N , v) ∈ �U
vex , let

S(N , v) :=
{
S ∈ 2N |∀x ∈ C(N , v), x(S) = v(S)

}
,

and

ri C(N , v) :=
{
x ∈ C(N , v)

∣
∣
∣∀S ∈ 2N\ S(N , v), x(S) > v(S)

}
.

Note that ri C(N , v) is the relative interior ofC(N , v). Since the relative interior of
a nonempty convex set is nonempty, ri C(N , v) is nonempty. Note that ri C trivially
satisfies individual rationality and anonymity. On the domain of balanced games, ri C
satisfiesmax consistency (Orshan and Sudhölter 2010). Together with the fact that the
core satisfies the property on the domain of convex games, themax consistency of ri C
on the domain of balanced games implies the max consistency of ri C on the domain
of convex games. We show that this solution also satisfies super-additivity.

Lemma 1 On �U
vex , ri C satisfies super-additivity.

Proof Let (N , v), (N , w) ∈ �vex , x ∈ ri C(N , v), y ∈ ri C(N , w), and z ∈
ri C(N , v + w). Note that on the domain of convex games, the core is additive
(Shapley 1971; Dragan et al. 1989).4 Thus, x + y ∈ C(N , v + w) and there exist
x ′ ∈ C(N , v) and y′ ∈ C(N , w) such that z = x ′ + y′. Let S ∈ 2N\ S(N , v + w).
Then, z(S) = x ′(S) + y′(S) > v(S) + w(S). Thus, x ′(S) > v(S) or y′(S) > w(S).
This implies that S ∈ 2N\ S(N , v) or S ∈ 2N\ S(N , w), hence x(S) > v(S) or
y(S) > w(S), so that x(S) + y(S) > v(S) + w(S). ��

Thus, we have the following result:

Proposition 1 On the domain of convex games, the core is not the only solution that
satisfies non-emptiness, individual rationality, super-additivity,max consistency, and
anonymity.

4 The definition of additivity is obtained by replacing ⊆ with = in the definition of super-additivity.
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Consistency, anonymity, and the core on the domain of convex games 191

We now recall Peleg’s (1986) definition of converse max consistency.
Converse max consistency: For all (N , v) ∈ � with |N | ≥ 3 and all x ∈ R

N with
x(N ) = v(N ): If, for all N ′ ∈ 2N with |N ′| = 2, we have (N ′, vmax

N ′,x ) ∈ � and
xN ′ ∈ σ(N ′, vmax

N ′,x ), then x ∈ σ(N , v).
The following theorem shows that the core and ri C are the unique solutions that

satisfy this axiom and the five axioms that appear in Proposition 1.

Theorem 1 On the domain of convex games, the core, C, and its relative core, ri C,
are the only solutions that satisfy non-emptiness, individual rationality, anonymity,
super-additivity, max consistency, and converse max consistency.

As we have already seen, the core satisfies the axioms of Theorem 1, and ri C
satisfies the first five of the axioms. The following lemma shows that ri C satisfies
converse max consistency as well.

Lemma 2 On �U
vex , ri C satisfies converse max consistency.

In the proof of this lemma, we use the following remark that follows from the
definitions of a convex game and the core.

Remark 1 Let (N , v) ∈ �U
vex , x ∈ C(N , v), and S, T ∈ 2N . If x(S) = v(S) and

x(T ) = v(T ), then x(S ∩ T ) = v(S ∩ T ) and x(S ∪ T ) = v(S ∪ T ).

Proof of Lemma 2 Let (N , v) ∈ �U
vex with |N | ≥ 3, and x ∈ R

N be such that for all
N ′ ∈ 2N with |N ′| = 2, we have (N ′, vmax

N ′,x ) ∈ �U
vex and xN ′ ∈ ri C(N ′, vmax

N ′,x ).
Since ri C is a subsolution of the core and the core satisfies converse max consis-

tency, x ∈ C(N , v). Suppose, on the contrary, that there exists S ∈ 2N\ S(N , v) such
that x(S) = v(S). Let i ∈ S. Note that for all j ∈ N\S,

vmax{i, j},x ({i}) = max
T⊆N\{i, j} [v({i} ∪ T ) − x(T )] ≥ v(S) − x(S\{i}) = xi .

Since (xi , x j ) ∈ ri C({i, j}, vmax{i, j},x ) and ri C satisfies individual rationality, xi =
vmax{i, j},x ({i}). This implies x j = vmax{i, j},x ({ j}). Thus, there exists Ti j ⊂ N such that
j ∈ Ti j , i /∈ Ti j , and x(Ti j ) = v(Ti j ). Let Ti := ⋃

j∈N\S Ti j . Then, by Remark 1,
x(Ti ) = v(Ti ).

Note that N\S = ⋂
i∈S Ti . Again by Remark 1, x(N\S) = v(N\S). This implies

v(S) + v(N\S) = x(S) + x(N\S) = x(N ) = v(N ).

Thus, for all y ∈ C(N , v), we have y(S) = v(S), which contradicts our assumption
that S ∈ 2N\ S(N , v). ��

We postpone the uniqueness part of the proof and first show that the axioms in
Theorem 1 imply the following two properties.
Translation covariance: For all (N , v), (N , w) ∈ � such that there exists b ∈ R

N

with w(S) = v(S) + b(S) for all S ∈ 2N , we have σ(N , w) = σ(N , v) + b;
Pareto optimality: For all (N , v) ∈ � and all x ∈ σ(N , v), x(N ) = v(N ).

123



192 T. Hokari et al.

Lemma 3 If σ on �U
vex satisfies non-emptiness, individual rationality, and super-

additivity, then it satisfies translation covariance.

Proof Let b ∈ R
N and (N , v), (N , w) ∈ �U

vex be such that for all S ∈ 2N , w(S) =
v(S) + b(S). Let x ∈ σ(N , v). It remains to show that x + b ∈ σ(N , w). Now,
the additive game (N , b) is convex and, by individual rationality and non-emptiness,
σ(N , b) = {b}. By super-additivity, x + b ∈ σ(N , v + b). ��

The following remark can be proved by literally copying Peleg’s (1986) proof of
the corresponding statement for balanced games.

Remark 2 If σ on �U
vex satisfies individual rationality and max consistency, then it

satisfies Pareto optimality.

Proof of Theorem 1 It has been already shown that the core and ri C satisfy the desired
properties.

To show the uniqueness part, let σ be a solution that satisfies the properties. By
Lemma 3 and Remark 2, σ satisfies translation covariance and Pareto optimality.
Also, by non-emptiness, individual rationality, and max consistency, σ is a nonempty
subsolution of the core. Let (N , v) ∈ �U

vex .

Claim 1: ri C(N , v) ⊆ σ(N , v). If |N | = 1 then non-emptiness and Pareto optimality
finish the proof. By converse max consistency of ri C , we may assume |N | = 2. If
(N , v) is inessential (additive), then the proof is finished because the core is a singleton.
For coalitions N and S with ∅ �= S ⊆ N , let (N , uSN ) denote the unanimity game of
S with player set N , which is defined, for all T ∈ 2N , by

uSN (T ) :=
{
1 if S ⊆ T ,

0 otherwise.

Hence, by translation covariance and anonymity, we may assume that v is of the form
αuN

N for some α > 0 of the unanimity game of N on N = {1, 2}, i.e., v({i}) = 0 for
i = 1, 2 and v(N ) = α. Again, by anonymity, it suffices to show that (α − t, t) ∈
σ(N , v) for all t ∈ (0, α/2]. Let M : = {1, 2, 3}.
Claim A: If α > 0 and (α − t, t) ∈ σ(N , αuN

N ), then (α − t, 0, t) ∈ σ(M, αu{1,3}
M ).

Indeed, up to renaming players 2 and 3, the reduced game of (M, αu{1,3}
M ) relative

to (α − t, 0, t) and {1, 3} coincides, with (N , αuN
N ), and as 0 ≤ t ≤ α, the reduced

games of (M, αu{1,3}
M ) relative to (α− t, 0, t) and {1, 2} or {2, 3} are the corresponding

additive games so that anonymity and converse max consistency show Claim A.
Claim B: For all α > 0, (α, α, α) ∈ σ

(
M, 3αuM

M

)
and (α, α) ∈ σ(N , 2αuN

N ). Indeed
the 2nd statement follows from the 1st statement bymax consistency. In order to show
the 1st statement, note that by non-emptiness there exists x ∈ σ(M, αuM

M ) and, by
Pareto optimality, x(M) = α. By anonymity, y = (x3, x1, x2) and z = (x2, x3, x1)
are also members of σ(M, αuM

M ) so that, by super-additivity, x + y + z = (α, α, α) ∈
σ

(
M, 3αuM

M

)
.

ClaimC: Ifα > 0 and (α−t, t) ∈ σ(N , αuN
N ), then (α−t, t, t) ∈ σ

(
M, (α + t)uM

M

)
.

Indeed, up to renaming players 2 and 3 the reduced game of
(
M, (α + t)uM

M

)
relative
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Consistency, anonymity, and the core on the domain of convex games 193

to (α− t, t, t) and {1, 2} is (N , αuN
N ), the reduced game of

(
M, (α + t)uM

M

)
relative to

(α− t, t, t) and {1, 3} is, (N , αuN
N ), and the reduced game of

(
M, (α + t)uM

M

)
relative

to (α − t, t, t) and {2, 3} is ({2, 3}, 2tu{2,3}
{2,3}). Thus, Claim C follows from converse

max consistency, anonymity, and Claim B.
Now the proof of Claim 1 is finished as soon as we show that, for all k ∈ N and all
t > 0,

(β, t) ∈ σ(N , (β + t)uN
N ), if kt < β ≤ (k + 1)t . (1)

We proceed by induction on k.
For t < β ≤ 2t , (t, t, t) ∈ σ(M, 3tuM

M ) and (β−t, 0, β−t) ∈ σ(M, 2(β−t)u{1,3}
M ) by

Claims A and B. By super-additivity, (β, t, β) ∈ σ(M, w) where w = 3tuM
M + 2(β −

t)u{1,3}
M . Now, as β ≥ 2(β − t), the reduced game (N , wmax

N ,(β,t,β)) is (N , (β + t)uN
N )

so that the base case k = 1 follows.
If k > 1, then, by the inductive hypothesis, for all t > 0, (kt, t) ∈ σ(N , (k + 1)tuN

N ),

hence, (kt, t, t) ∈ σ(M, (k+2)tuM
M ) byClaimC and, for all β with kt < β ≤ (k+1)t ,

(β−kt, 0, β−kt) ∈ σ(M, 2(β−kt)u{1,3}
M ) byClaimB.Therefore, by super-additivity,

(β, t, β − (k − 1)t) ∈ σ(M, w) where w = (k + 2)tuM
M + 2(β − kt)u{1,3}

M . As
2(β − kt) ≤ β − (k −1)t , the reduced game (N , wmax

N ,(β,t,β)) is (N , (β + t)uN
N ) so that

the inductive step is finished by max consistency.
Claim 2: If σ �= ri C , then σ = C . Hence, we assume that there exists a convex game
(N ′, v′) and x ∈ σ(N ′, v′)\ri C(N ′, v′). By max consistency of σ and converse max
consistency of ri C , we may assume that |N ′| = 2. By anonymity, we may assume that
N ′ = N and x1 = v′({1}). By translation covariance, wemay assume that there exists
β > 0 such that v′ = βuN

N , i.e., x = (0, β). By translation covariance, anonymity, and
converse max consistency, it suffices to show that (0, γ ) ∈ σ(N , γ uN

N ) for all γ > 0.
Now, let k ∈ N be such that k > γ/β. By applying super-additivity k times, we obtain
(0, kβ) = kx = x + · · · + x︸ ︷︷ ︸

k

∈ σ(N , v′ + · · · + v′
︸ ︷︷ ︸

k

) = σ(N , kv′). Therefore, we may

assume that β > γ .
We claim that (β, β, 0) ∈ σ(M, β(u{1,3}

M + u{2,3}
M )). To prove this claim, note

that the reduced games of (M, β(u{1,3}
M + u{2,3}

M )) relative to (β, β, 0) and coali-
tions {1, 2}, {1, 3}, and {2, 3}, respectively, are the additive game (N , (β, β)), the
game ({1, 3}, βu{1,3}

{1,3}), and the game ({2, 3}, βu{1,3}
{1,3}), respectively. The restriction of

(β, β, 0) to each of these 2-person coalitions belongs to the solution of the correspond-
ing reduced game by anonymity. Hence, the proof of this claim is finished by converse
max consistency.
By Claim 1, ri C is a subsolution of σ . Thus, (β − γ, 0, γ ) ∈ σ(M, βu{1,3}

M ).
Now the proof can be completed. Let y = (β − γ, 0, γ ) + (β, β, 0) = (2β −

γ, β, γ ). By super-additivity, y ∈ σ(M, β(2u{1,3}
M + u{2,3}

M )). Now, the reduced game

of (M, β(2u{1,3}
M +u{2,3}

M )) relative to y and N is (N , γ uN
N+(2β−γ, β−γ )). Hence, by

max consistency and translation covariance, (0, γ ) = (2β−γ, β)−(2β−γ, β−γ ) ∈
σ(N , γ uN

N ) so that Claim 2 is proved. ��
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194 T. Hokari et al.

We now show that each axiom in Theorem 1 is logically independent of the remain-
ing axioms.
(i) Without non-emptiness, the empty solution becomes admissible.
(ii) Without individual rationality, the solution that selects

{
x ∈ R

∣
∣ x ≤ v({i})} in

the one-person case and coincides with the core otherwise becomes admissible.
(iii) Without super-additivity, the kernel (Davis and Maschler 1965), which in fact
coincideswith Schmeidler’s (1969) nucleolus for convex games (Maschler et al. 1972),
becomes admissible.
(iv) Without anonymity, the solution σ� defined above becomes admissible.
(v) Without max consistency, the solution that coincides with the nucleolus in the
two-person case and with the core otherwise becomes admissible.
(vi) Without converse max consistency, the solution that coincides with the core in the
two-person case and with ri C otherwise, becomes admissible.

Now, let us consider complement consistency. It turns out that the core satisfies this
axiom on the domain of convex games. Indeed, this fact follows from the facts that
the core enjoys this property on the domain of balanced games and that the domain of
convex games is closed under the reduction operation when starting from an allocation
in the core. The proof that the complement reduced game of a convex game relative to
a core element is convex is similar to the proof of the corresponding statement where
complement reduced game is replaced by max reduced game.

Hence, on the domain of convex games, the core satisfies Tadenuma’s three axioms
and anonymity. We construct another solution that satisfies these four axioms.

Our starting point is the solution σ�, defined above, that picks for each game the
contribution vector with respect to a given ordering ≺ of players. Although σ� itself
does not satisfy complement consistency, we can enlarge it so that the resulting solution
satisfies the axiom. Thenwe endogenize the total order� tomake the resulting solution
anonymous.

Consider the following solution σ ∗ on the domain of convex games: for all (N , v) ∈
�U

vex and all x ∈ C(N , v), x ∈ σ ∗(N , v) if and only if there exists a total order � on
N such that
(i) for all i, j ∈ N , if v(N ) − v(N\{i}) < v(N ) − v(N\{ j}), then i ≺ j ;
(ii) for all i ∈ N , if

{
j ∈ N

∣
∣ j ≺ i

} �= ∅, then

xi ≤ v
({

j ∈ N
∣
∣ j � i

}) − v
({

j ∈ N
∣
∣ j ≺ i

})
.

Since the contribution vectors are in the core on this domain, σ ∗ satisfies non-
emptiness. Note that it coincides with the core when |N | ≤ 2. The following example
illustrates a case in which σ ∗(N , v) does not coincides with the core, and there are
two total orders that satisfy condition (i) above.
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(4, 0, 0)

(0, 0, 4)

(0, 4, 0)(3, 1, 0)

(3, 0, 1)

(1, 3, 0)

(0, 3, 1)

Example 1 (Figure 1) Let N ≡ {1, 2, 3} and (N , v) ∈ �U
vex be such that v({1}) =

v({2}) = v({3}) = 0, v({1, 2}) = 0, v({1, 3}) = v({2, 3}) = 1, and v(N ) = 4. Then,
v(N ) − v({2, 3}) = v(N ) − v({1, 3}) < v(N ) − v({1, 2}). So, there are two total
orders on N that satisfy condition (i) in the definition of σ ∗(N , v): 1 ≺ 2 ≺ 3 and
2 ≺′ 1 ≺′ 3. Thus, σ ∗(N , v) = {

x ∈ C(N , v)
∣
∣ x2 = 0 or x1 = 0

}
.

Note that σ ∗ trivially satisfies anonymity and individual rationality. We show that
it also satisfies complement consistency.

Lemma 4 On �U
vex , σ

∗ satisfies complement consistency.

Proof Let (N , v) ∈ �U
vex , x ∈ σ ∗(N , v), and N ′ ∈ 2N\{N ,∅}. By the definition of

σ ∗(N , v), there exists a total order � on N such that
(i) for all i, j ∈ N , if v(N ) − v(N\{i}) < v(N ) − v(N\{ j}), then i ≺ j ;
(ii) for all i ∈ N , if

{
j ∈ N

∣
∣ j ≺ i

} �= ∅, then

xi ≤ v
({

j ∈ N
∣
∣ j ≺ i

} ∪ {
i
}) − v

({
j ∈ N

∣
∣ j ≺ i

})
.

Since x ∈ C(N , v) and the core is complement consistent, we have (N , v
comp
N ′,x ) ∈ �vex

and xN ′ ∈ C(N ′, vcomp
N ′,x ). We want to show that xN ′ ∈ σ ∗(N ′, vcomp

N ′,x ).

If |N ′| ≤ 2, then σ ∗(N ′, vcomp
N ′,x ) = C(N ′, vcomp

N ′,x ), and we are done.
Suppose that |N ′| ≥ 3. Note that, for all i ∈ N ′, since N ′\{i} �= ∅, by the definition

of v
comp
N ′,x ,

v
comp
N ′,x (N ′) − v

comp
N ′,x (N ′\{i}) = v(N ) − v(N\{i}).

Thus, if i, j ∈ N ′ are such that

v
comp
N ′,x (N ′) − v

comp
N ′,x (N ′\{i}) < v

comp
N ′,x (N ′) − v

comp
N ′,x (N ′\{ j}),

then i ≺ j .
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Let i ∈ N ′ and S := {
j ∈ N

∣
∣ j ≺ i

}
. If S ∩ N ′ �= ∅, then, by the definition of

v
comp
N ′,x and the convexity of (N , v),

v
comp
N ′,x ((S ∪ {i}) ∩ N ′) − v

comp
N ′,x (S ∩ N ′)

= v((S ∪ {i}) ∪ (N\N ′)) − v(S ∪ (N\N ′))
≥ v(S ∪ {i}) − v(S)

≥ xi .

Thus, xN ′ ∈ σ ∗(N ′, vcomp
N ′,x ). ��

Thus, we have the following result:

Proposition 2 On the domain of convex games, the core is not the unique solu-
tion that satisfies non-emptiness, individual rationality, complement consistency, and
anonymity.

Although we have shown that two well-known axiomatizations break down if the
domain is restricted to the class of convex games, we should mention that there is
another axiomatization of the core on the domain of all TU games provided by Peleg
(1986), which remains valid even on the domain of convex games. It says that on this
domain, the core is the unique solution that satisfies max consistency, converse max
consistency, and coincides with the core in the two-person case.
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