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a b s t r a c t

We show that on the domain of convex games, Dutta-Ray’s egalitarian solution is characterized by
core selection, aggregate monotonicity, and bounded richness, a new property requiring that the
poorest players cannot be made richer within the core. Replacing ‘‘poorest’’ by ‘‘poorer’’ allows to
eliminate aggregate monotonicity. Moreover, we show that the egalitarian solution is characterized by
constrained welfare egalitarianism and either bilateral consistency à la Davis and Maschler or, together
with individual rationality, by bilateral consistency à la Hart and Mas-Colell.
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1. Introduction

In the context of transferable utility cooperative games
games, for short), Dutta and Ray (1989) introduced the egal-
tarian solution, which combines individual interests with the
orenz criterion to promote equality. Although this solution lacks
eneral existence properties, on the domain of convex games it
elects the unique Lorenz maximal imputation within the core.
n this domain, the first axiomatizations of the egalitarian solu-
ion were provided by Dutta (1990) by means of DM-consistency
r HM-consistency, that is, consistency with respect to (w.r.t) the
educed games proposed by Davis and Maschler (1965) or Hart
nd Mas-Colell (1989), respectively, together with constrained
galitarianism (CE), a prescriptive property that determines the
olution for two-person games. Klijn et al. (2000) reformulated
he above characterizations replacing CE by efficiency (EF), also
nown as Pareto optimality, that requires the solution to dis-
ribute the entire worth of the grand coalition, equal division
tability (EDS), which forces the solution to select an allocation
n the equal division core (Selten, 1972), and bounded maxi-
um payoff (BMP) imposing an upper bound for the payoffs of
he players receiving most, and only requiring DM-consistency
nd HM-consistency when these richest players leave with their
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assigned payoffs. Considering the anti-dual properties1 in the
characterizations of Dutta (1990) and Klijn et al. (2000), Oishi
et al. (2016) and Dietzenbacher and Yanovskaya (2020a,b) obtain
new axiomatizations.2 Hougaard et al. (2001) described another
axiomatization combining DM-consistency and EF with individual
rationality (IR) and rich are strong (RS). IR guarantees that no
single player is worse off compared to staying alone, and RS
requires that the solution can only make a player i richer than
another player j if the maximum surplus (in the sense of Davis
and Maschler, 1965) of i over j is positive and larger than the
maximum surplus of j over i. Arin et al. (2003) reinterpreted the
egalitarian solution providing a characterization without making
use of any consistency property and invoking core selection (CS)
requiring that each coalition receives at least what it can get by
itself, continuity, equal treatment of equals, and independence of
irrelevant core allocations.3 Recently, Llerena and Mauri (2017)

1 See Section 2 for formal definitions of anti-dual solution and anti-dual
roperty.
2 Dietzenbacher and Yanovskaya (2020a,b) also proposed new axiomatiza-

ions replacing DM-consistency by a weak version of complement consistency
Moulin, 1985), and its anti-dual projection consistency (Funaki, 1998), with EDS
and BMP (or their anti-dual properties).
3 See Arin et al. (2003) for the precise definitions of these three properties.
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rovided two characterizations imposing a weak version of DM-
onsistency and either IR together with internal and external
orenz stability (over the core)4 or CS and BMP.
In this paper, we provide several characterizations with and

without consistency. For the latter, we use aggregate monotonicity
(AM) defined by Megiddo (1974), a very natural property requir-
ing that no player suffers if only the worth of the grand coalition
increases,5 and bounded richness (BR), imposing an upper bound
for the payoffs of non-poorest players, together with CS. Up to
our knowledge, AM has not been employed before in any of the
existing characterizations of the egalitarian solution. Under EF,
BR is equivalent to bounded minimum payoff introduced in Oishi
et al. (2016), which is the anti-dual of BMP. This fact leads to
a parallel characterization making use of CS, BMP, and the anti-
dual of AM, called adjusted aggregate monotonicity. Strengthening
R, replacing ‘‘poorest’’ by ‘‘poorer’’, we introduce strong bounded
ichness (SBR) which allows to eliminate AM. At this point, it is
worth to mention that Arin and Iñarra (2001) characterize the
egalitarian solution on the domain of convex games by CS and RS.
Therefore, RS and SBR are equivalent in the presence of CS. Hence,
on convex games, a core allocation satisfies SBR if a positive
difference in the payoffs between two players can only occur
when any transfer from the richer to the poorer player produces
an unstable allocation, i.e., an allocation that is not in the core.

Moreover, we prove that, on the domain of convex games,
M-consistency for two-person reduced games, called bilateral

DM-consistency (2-DMC), implies CS. Furthermore, we show that
bilateral HM-consistency (2-HMC) together with IR imply EF.
These logical implications among properties allow us to revisit
some of the well-established characterizations. We also show
that the egalitarian solution can be characterized by constrained
welfare egalitarianism (CWE) in the sense of Calleja et al. (2021)
and either 2-DMC or 2-HMC and IR. We recall that CWE requires
to distribute an additional amount obtained by the grand coali-
tion to the poorer players making payoffs as equal as possible
subject to nobody is worse off. Hence, CWE implies AM. However,
egalitarianism may regard CWE, though stronger than AM, as
even more appealing. Indeed, CWE prioritizes those players who
received less before the grand coalition became richer.

To conclude, we investigate if our results are valid for some
extensions of the egalitarian solution and on larger domains than
convex games. Some incompatibilities arise when imposing the
properties we adopt in our axiomatizations, highlighting the lim-
its of the characterizations of the egalitarian solution presented
in the literature as well.

The remainder of the paper is organized as follows. Section 2
contains preliminaries on games. In Section 3 we introduce prop-
erties of solutions. Section 4 contains our main results. Section 4.1
is devoted to the characterization results of the egalitarian solu-
tion with AM and without consistency. In Section 4.2 we provide
alternative axiomatizations for a variable society of agents mak-
ing use of 2-DMC and 2-HMC. In Section 5, we study the com-
patibility of the groups of properties used in our characterization
results on some subdomains of balanced games.

2. Preliminaries

Let U be a set (the universe of potential players) and N be the
set of coalitions in U (a coalition is a nonempty finite subset of

4 These properties are inspired by the notion of stable sets, but changing the
sual order in RN for the Lorenz order. See Llerena and Mauri (2017) for formal
efinitions.
5 See also Hougaard et al. (2005) for a generalization of Dutta-Ray’s
galitarian solution on the domain of convex games satisfying monotonicity
roperties.
 b
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U). Given S, T ∈ N , we use S ⊂ T to indicate strict inclusion,
that is, S ⊆ T and S ̸= T . By |S| we denote the cardinality of the
oalition S ∈ N . We assume that |U | ≥ 3. Given N ∈ N , let RN

tand for the set of all real functions on N . An element x ∈ RN ,
= (xi)i∈N , is a payoff vector for N . For all S ⊆ N , x(S) =

∑
i∈S xi,

ith the convention x(∅) = 0. For each x ∈ RN and T ⊆ N , xT
enotes the restriction of x to T : xT = (xi)i∈T ∈ RT . Given N ∈ N ,
or all x, y ∈ RN , x ≥ y if xi ≥ yi for all i ∈ N . For all α ∈ R,
+ = max{0, α}. For any two vectors y, x ∈ RN with y(N) = x(N),
e say that y weakly Lorenz dominates x, denoted by y ⪰L x, if
in{y(S) | S ⊆ N, |S| = k} ≥ min{x(S) | S ⊆ N, |S| = k}, for all
= 1, 2, . . . , n−1. We say that y Lorenz dominates x, denoted by
≻L x, if at least one of the above inequalities is strict.
A transferable utility cooperative game (a game) is a pair (N, v)

here N ∈ N is the set of players and v : 2N
−→ R is the

haracteristic function that assigns to each S ⊆ N a real number
(S), with v(∅) = 0. Given a game (N, v) and ∅ ̸= N ′

⊂ N ,
he subgame associated to N ′ is denoted by

(
N ′, v

)
. The anti-

ual of a game (N, v) is the game (N, vad) defined by vad(S) =

(N \ S) − v(N) for each S ⊆ N . For a game (N, v), define

X∗(N, v) = {x ∈ RN
| x(N) ≤ v(N)} − the set of feasible payoff vectors,

C(N, v) = {x ∈ X∗(N, v) | x(S) ≥ v(S) ∀ S ⊆ N} − the core.

game (N, v) is balanced if it has a non-empty core. We denote by
bal the set of balanced games. A well-known subset of balanced
ames is the set of convex games. A game (N, v) is convex if, for
very S, T ⊆ N , v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ). We denote by
conv the set of all convex games and, for any coalition N ∈ N ,
y Γ N

bal and Γ
N
conv the subsets of games in Γbal and Γconv with N

s player set, respectively. Oishi et al. (2016) showed that the
omains of balanced games and convex games are closed under
nti-duality. For t ∈ R and any game (N, v), we define the game
N, vt ) as vt (S) = v(S) for all S ⊂ N and vt (N) = v(N) + t .
Note that (N, vt ) remains balanced (convex) if (N, v) is balanced
(convex) and t > 0. Any x ∈ RN defines the inessential game
(N, v) ∈ Γconv by v(S) =

∑
i∈S xi.

A solution on Γbal is a mapping σ that assigns an element
σ (N, v) of X∗(N, v) to any (N, v) ∈ Γbal. The restriction of a
solution σ to a set Γ ⊆ Γbal is again denoted by σ . Moreover,
a solution on Γ ⊆ Γbal is the restriction to Γ of some solution.
Notice that we do not consider multi-valued solutions. Let σ be
a solution on Γ and σ ′ be a solution on Γ ′

= {(N, vad) | (N, v) ∈

Γ }. Then σ and σ ′ are anti-dual to each other if, for all (N, v) ∈ Γ ,
σ ′(N, vad) = −σ (N, v). If, moreover, Γ = Γ ′ and σ = σ ′, then σ
is self anti-dual. A solution σ on Γ satisfies

• Efficiency (EF) if for all (N, v) ∈ Γ ,
∑

i∈N σi(N, v) = v(N).

EF (or Pareto optimality) requires to distribute the entire worth of
the grand coalition. Two properties P and P’ are anti-dual to each
other if a solution satisfies P (on a domain Γ ) if and only if its
anti-dual solution (on the domain Γ ′) satisfies P’. If, moreover, P
coincides with P’, then P is self anti-dual.

The following well-known lemma (the proof of which is in-
cluded below for the benefit of the reader) allows to recall the
formula that determines the egalitarian solution of Dutta and Ray
(1989) on the domain of convex games.

Lemma 1. Let (N, v) ∈ Γconv and denote µ = max∅̸=S⊆N
v(S)
|S| . If

∅ ̸= S, T ⊆ N are such that v(S) = µ|S| and v(T ) = µ|T |, then
(S ∪ T ) = µ|S ∪ T | and v(S ∩ T ) = µ|S ∩ T |.

roof. Note that, by definition of µ, v(S ∪ T ) ≤ µ|S ∪ T | and
(S ∩ T ) ≤ µ|S ∩ T |. Hence, by convexity of (N, v), µ(|S ∪ T | +

S ∩ T |) = µ|S ∪ T |+µ|S ∩ T | ≥ v(S∪T )+v(S∩T ) ≥ v(S)+v(T ) =

(|S| + |T |) = µ(|S ∪ T | + |S ∩ T |) so that the inequalities must
e equalities. □
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Let (N, v) ∈ Γconv and denote

µ(v) = max
∅̸=S⊆N

v(S)
|S|

and S(v) =

⋃
{S ∈ 2N

\ {∅} | v(S) = µ(v)|S|}.

By Lemma 1, µ(v)|S(v)| = v(S(v)). Now, we are able to introduce
the egalitarian solution of (N, v), denoted by E(N, v). Namely,
et (S1, . . . , Sm) be the ordered partition of N that is recursively
etermined by the requirement that Sk = S(vk), where S0 = ∅

and for all k = 1, . . . ,m, Nk = N \
⋃k−1

j=0 Sj and (Nk, vk) is defined
by vk(T ) = v(T ∪ (N \ Nk)) − v(N \ Nk) for all T ⊆ Nk. Note that
N1 = N , v1 = v, and (Nk, vk) ∈ Γconv so that Sk is well defined.
The egalitarian solution E(N, v) = {x∗

} is given by

x∗

i = µ(vk) =
vk(Sk)
|Sk|

for all i ∈ Sk and all k = 1, . . . ,m. (1)

emark 1. Let (N, v) ∈ Γconv and x∗
= E(N, v). Let (S1, . . . , Sm)

e the ordered partition of N induced by x∗ that is defined by

x∗

i = x∗

j for all i, j ∈ Sk and all k = 1, . . . ,m;

x∗

i > x∗

j for all i ∈ St , j ∈ Sk and all 1 ≤ t < k ≤ m;⋃m
t=1 St = N.

hen the allocation x∗ satisfies
k∑

t=1

x∗(St ) = v

(
k⋃

t=1

St

)
for all k = 1, . . . ,m.

Moreover, according to Theorem 3 of Dutta and Ray (1989),
the egalitarian solution E selects the unique core element that
Lorenz dominates every other core element. That is, x∗

∈ C(N, v)
and x∗

≻L y for all y ∈ C(N, v) \ {x∗
}.

The equal split solution, ED, is defined by EDi(N, v) = v(N)/|N|

for all i ∈ N and all games (N, v) ∈ Γbal. Note that if ED(N, v) ∈

C(N, v), then6 E(N, v) = ED(N, v). The egalitarian solution and
the equal split solution are self anti-dual on the domain of convex
games.

3. Properties of solutions

In this section we introduce the properties employed in our
new characterizations of E. Except for the axiomatic approach
in Arin et al. (2003), the other characterizations found in the
literature impose one of the properties in at least two of the
following four groups of axioms.

The following stability properties used to axiomatize E are
prominent. They aim to avoid providing players with incentives
for blocking cooperation. So far, all existing characterizations of E
impose, directly or indirectly, one of these stability requirements.
Let Γ ⊆ Γbal. A solution σ on Γ satisfies

• Individual rationality (IR) if for all (N, v) ∈ Γ and all i ∈ N ,
σi(N, v) ≥ v({i});

• Core selection (CS) if for all (N, v) ∈ Γ , σ (N, v) ∈ C(N, v);
• Equal division stability (EDS) if for all (N, v) ∈ Γ and all

∅ ̸= S ⊆ N , there exists i ∈ S with σi(N, v) ≥
v(S)
|S| .

IR imposes that no single player can improve the payoff pro-
osed by the solution without cooperating, while CS is a sort
f secession-proofness property that extends this requirement to
ny coalition, i.e., no coalition worth is higher than the payoff
o that coalition proposed by the solution. Under EF, EDS is
quivalent to imposing the solution to select a payoff vector

6 For the definition of E(N, v) for an arbitrary game (N, v) see Dutta and Ray
(1989).
3

from the equal division core (Selten, 1972),7 which implies that
he proposed payoff vector cannot be blocked by any coalition
sing its equal division allocation. Note that since for balanced
ames the core is non-empty and, moreover, it is a subset of
he equal division core, on Γ ⊆ Γbal, CS implies EDS and EDS
mplies IR. Except for the first characterizations of Dutta (1990),
ll remaining axiomatic approaches impose one of the foregoing
tability properties or its anti-dual.
The second group, the ‘‘egalitarian bounds’’ properties, which

an be interpreted as solidarity requirements, establishes certain
galitarian bounds that fix thresholds for the payoffs of some
articular coalitions. Let Γ ⊆ Γbal. A solution σ on Γ satisfies

• Rich are strong (RS) if for all (N, v) ∈ Γ , xi < xj implies
sji(x, v) ≥ (sij(x, v))+ where x = σ (N, v) and, for all k, ℓ ∈ N ,
skℓ(x, v) = max{v(S) − x(S) | k ∈ S ⊆ N and ℓ ̸∈ S} is called
the maximum surplus of k over ℓ at x;

• Bounded maximum payoff (BMP) if for all (N, v) ∈ Γ ,∑
i∈Smax σi(N, v) ≤ v(Smax) where Smax

= argmaxj∈N
σj(N, v);

• Bounded richness (BR) if for all (N, v) ∈ Γ ,
∑

i∈N\Smin

σi(N, v) ≤ v(N \ Smin), where Smin
= argminj∈N σj(N, v);

• Strong bounded richness (SBR) if for all (N, v) ∈ Γ ,
∑

i∈N\S
σi(N, v) ≤ v(N \ S) for all α ∈ R, where S = {i ∈ N |

σi(N, v) < α}.

RS and BMP (or its anti-dual) are used in many characteriza-
ions of E. BR and SBR are new. RS applies to any pair of agents
, j ∈ N , and it requires that the solution may only assign a larger
ayoff to player j compared to player i if j is stronger than i,
.e., if the maximum surplus of j over i, sji(x, v), is positive and
arger than i’s maximum surplus over j. BMP imposes that the
ayoff to the coalition of players with the highest payoff does
ot exceed the worth of this coalition, while BR imposes this
pper bound for the payoff to the coalition of all non-poorest
layers. SBR strengthens BR (and also implies BMP) by replacing
oorest players by players who are poorer than any wealth level
∈ R. This axiom admits an interpretation in terms of individual

omplaints. Indeed, a solution σ satisfies SBR if, for all (N, v) ∈ Γ

nd all i ∈ N , x(S i) ≤ v(S i), where x = σ (N, v) and S i = {j ∈

| xj > xi}, because the inequality x(N) ≤ v(N) induced by
≤ mini∈N xi is automatically satisfied by feasibility of σ . This
eans that no player can request an amount from the coalition
f richer players because this coalition already does not receive
ore than its coalitional worth. Alternatively, under EF, it is the
ame to impose that the coalition of players who receive at most
he payoff of some player i ∈ N obtains already an amount that is
ot smaller than its contribution to the coalition of all remaining
richer) players, i.e., v(N) − v(S i) ≤ x(N \ S i). For games with at
ost two person, BMP, BR, and SBR are equivalent, and RS implies
ach of the three mentioned properties. On a domain of balanced
ames with at most two person, under EF, all properties are
quivalent. Due to the imposed upper bounds all these properties
rioritize the social goal of equality over selfishness.
In the original characterizations of E, Dutta (1990) uses a

roperty that applies to two-person games only. Let Γ ⊆ Γbal.
solution σ on Γ satisfies

7 For any game (N, v), the equal division core is defined by

DC(N, v) =

{
x ∈ RN

⏐⏐⏐⏐ x(N) = v(N) and ∀ ∅ ̸= S ⊆ N

there is i ∈ S such that xi ≥
v(S)
|S|

}
.
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• Constrained egalitarianism (CE) if for all (N, v) ∈ Γ with
N = {i, j}, i ̸= j, such that v({i}) ≤ v({j}), σj(N, v) =

max
{
v(N)
2 , v({j})

}
and σi(N, v) = v(N) − σj(N, v);

CE forces to select the egalitarian solution E for two-person
games, which divides the worth of the grand coalition as equal
as possible preserving IR. Therefore, it can be interpreted as a
stability property as well as an egalitarian bounds property.

The third group, extensively used in the literature, are con-
sistency properties, which require internal stability when some
players leave, thereby referring to suitable notions of reduced
games. Let Γ ⊆ Γbal. A solution σ on Γ satisfies

• DM-consistency (DMC) if for all (N, v) ∈ Γ and all ∅ ̸= S ⊂

N , (S, vS,x) ∈ Γ and σ (S, vS,x) = xS , where x = σ (N, v) and
(S, vS,x) is the game defined by

vS,x(T ) = max
Q⊆N\S

{v(T ∪ Q ) − x(Q )} for all ∅ ̸= T ⊂ S

and8

vS,x(S) = v(N) − x(N \ S).

• HM-consistency (HMC) if for all (N, v) ∈ Γ and all ∅ ̸= S ⊂

N , (S, vS,σ ) ∈ Γ and σ (S, vS,σ ) = xS , where x = σ (N, v) and
(S, vS,σ ) is the game defined by9

vS,σ (T ) = v(T∪(N \S))−
∑
i∈N\S

σi(T∪(N \S), v) for all ∅ ̸= T ⊆ S.

The bilateral DM-consistency (2-DMC) and bilateral HM-
consistency (2-HMC) only require DMC and HMC when |S| =

2, respectively.

Note that if the solution is consistent and assigns x to a game
(N, v), then, for every coalition S ⊂ N , the payoff allocation xS
solves the corresponding reduced game w.r.t. S and, therefore,
it is consistent with the expectation of the members of S as
reflected by this reduced game. The above definitions are due to
Sobolev (1975) and Hart and Mas-Colell (1989), respectively. The
egalitarian solution E satisfies DMC on Γconv . However, as was
shown by Hokari (2002), it satisfies 2-HMC but violates HMC on
Γconv .10 So far, except for those of Arin and Iñarra (2001) and
Arin et al. (2003), all remaining characterizations of E make use
of one consistency property. Most of them impose DMC, HMC,
weak versions (or variations) of these two,11 or the corresponding
anti-dual consistency property, but also complement consistency
(Moulin, 1985) or its anti-dual, projection consistency (Funaki,
1998).

Some of our new characterization results combine properties
of these three groups, but others invoke monotonicity properties
w.r.t. the worth of the grand coalition, another type of require-
ments that, up to our knowledge, have not been employed before
to characterize E. Let Γ ⊆ Γbal. A solution σ on Γ satisfies

• Aggregate monotonicity (AM) if for all (N, v) ∈ Γ and all
t > 0 such that (N, vt ) ∈ Γ , σ (N, vt ) ≥ σ (N, v);

• Constrained welfare egalitarianism (CWE) if for all (N, v) ∈

Γ , all t > 0 such that (N, vt ) ∈ Γ , and all i ∈ N ,

8 The game (S, vS,x) is called DM-reduced game of (N, v) w.r.t. S at x and was
ntroduced by Davis and Maschler (1965).
9 The game (S, vS,σ ) is called the HM-reduced game of (N, v) w.r.t. S at σ

and was introduced by Hart and Mas-Colell (1989). Note that the set of convex
games Γconv is closed under taking subgames.
10 Indeed, Hokari’s (2002) Example 1 shows that the HM-reduced game (of 3
or more players) of a convex game w.r.t. E may not be convex.
11 Usually the internal stability requirement is imposed only when some
particular coalition(s) leave.
4

Table 1
Solutions and properties on Γconv .

E Sh ν ν̄ ψ CC τ ED CIS ENSC

IR Yes Yes Yes Yes Yes Yes Yes No Yes No

CS Yes Yes Yes Yes Yes Yes No No No No

EDS Yes Yes Yes Yes Yes Yes No No No No

CE Yes No No No No No No No No No

RS Yes No No No No No No Yes No No

BMP Yes No No No No No No Yes No No

BR Yes No No No No No No Yes No No

SBR Yes No No No No No No Yes No No

2-DMC Yes No Yes No No No No No No No

2-HMC Yes Yes No No No No No No No No

AM Yes Yes No Yes No No No Yes Yes Yes

CWE Yes No No No No No No Yes No No

σi(N, vt ) = σi(N, v)+ (λ−σi(N, v))+, where λ is determined
by
∑

k∈N (λ− σk(N, v))+ = t .

AM requires that no player is worse off if only the worth of
the grand coalition is increased. CWE implies to distribute an
additional amount to the poorer players so that their final payoffs
become equal but not larger than the remaining players’ original
payoffs. Though CWE is stronger than AM, it may be regarded as
even more appealing from an egalitarian point of view.

In the following Table 1, the properties used to characterize
E are listed, together with a number of well-established efficient
solution concepts.12 It shows which properties are satisfied by
each solution on the domain of convex games. It also indicates
that egalitarian bounds properties are clearly oriented to ‘‘egal-
itarian based’’ solutions in the sense of Lorenz, E and ED. In
particular, a solution that satisfies the well-known property of
covariance under strategic equivalence13 automatically violates
all egalitarian bounds properties. It also makes clear that stabil-
ity conditions play a central role to distinguish the egalitarian
solution E among these two. Regarding monotonicity properties,
although many solution concepts satisfy AM, only E and ED satisfy
CWE as well. We employ both to characterize E, the difference
is that when imposing AM, a strong stability property and an
egalitarian bounds property are needed additionally, while if we
apply CWE we demand consistency only or consistency combined
with a weak stability property.

Concerning AM, it should be noted that, on the domain of
convex games, the nucleolus and the core-center satisfy this
property if |U | ≤ 3 and violate it, provided |U | ≥ 4 (Hokari, 2000;
Mirás-Calvo et al., 2021, respectively). Hokari and van Gellekom
(2002) show that the τ -value is not AM either if |U | ≥ 7. The
proof that the modiclus violates AM on the domain of convex
games, provided |U | ≥ 7, is available upon demand from each
of the authors.

12 In particular, we consider the Shapley value (Shapley, 1953), Sh, the
nucleolus (Schmeidler, 1969), ν, the per-capita nucleolus (Grotte, 1970), ν̄,
the modified nucleolus also known as modiclus (Sudhölter, 1996, 1997), ψ ,
the core-center (González-Díaz and Sánchez-Rodríguez, 2007), CC , the τ -value
(Tijs, 1981), τ , the equal split solution, ED, the center of imputations (Driessen
and Funaki, 1991), CIS, and the egalitarian non-separable contribution solution
(Moulin, 1985), ENSC . We invite the reader to contact the authors for a detailed
explanation (counterexamples) of the results in the table.
13 A solution σ on Γ ⊆ Γbal satisfies covariance under strategic equivalence
if for all (N, v) ∈ Γ , all α > 0 and all d ∈ RN , if (N, w) ∈ Γ is such that
w(S) = α v(S) + d(S) for all S ⊆ N , then σ (N, w) = α σ (N, v) + d.
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. Characterization results

This section is devoted to characterize E on Γconv and it is
divided into two parts. First, we characterize the egalitarian so-
lution by means of AM and for a fixed society of agents. In the
second part, we use consistency properties. Remarkably, we show
that 2-DMC implies CS and 2-HMC together with IR imply EF.
These logical consequences allow us to obtain new and compact
axiomatic approaches.

4.1. Characterizations of the egalitarian solution without consistency

In this subsection, we connect AM with stability properties.
It turns out that, combined with CS and either BR or SBR, AM
yields new characterizations of E. Moreover, BMP is not strong
enough to select E, while using RS provides the already known
characterization of Arin and Iñarra (2001). Our first result makes
use of CS, AM, and BR.

Theorem 1. Let N ∈ N . The egalitarian solution E on Γ N
conv is the

unique solution that satisfies CS, AM, and BR.

Proof. It is well known that the egalitarian solution E satisfies
S and AM. Note that CS implies EF. By Remark 1 it also satisfies
R. To show uniqueness, let σ be a solution satisfying these
roperties. Let (N, v) ∈ Γ N

conv . Denote x = σ (N, v). By CS, x ∈

(N, v). Let x∗
= E(N, v) and (S1, . . . , Sm) be the ordered partition

f N such that v(S1∪· · ·∪Sk) = x∗(S1∪· · ·∪Sk) for all k = 1, . . . ,m
(see Remark 1 and the preceding paragraph). It remains to show
that x = x∗. Let α = min{xi | i ∈ N} and S = {i ∈ N | xi = α}. We
proceed by induction on m.

If m = 1 then, by EF of x and x∗, α ≤
v(N)
|N|

= x∗

j for all j ∈ N .
Hence, by BR and CS, v(N \ S) = x(N \ S) = v(N)− x(S) ≥ v(N)−
x∗(S) = x∗(N \S) ≥ v(N \S). We conclude that x(S) = x∗(S), S = N
and x = x∗.

Induction hypothesis: σ (N, v) = E(N, v) whenever m < ℓ for
some ℓ ∈ N, ℓ > 1.

We now assume that m = ℓ. Put

t = |Sm|

(
vm−1(Sm−1)

|Sm−1|
−
vm(Sm)
|Sm|

)
= |Sm|

(
x∗

k − x∗

h

)
> 0,

where k ∈ Sm−1 and h ∈ Sm.
Observe that y∗

∈ RN defined by y∗

i = max{x∗

i , vm−1(Sm−1)/
|Sm−1|} for all i ∈ N is the egalitarian solution of (N, vt ). Hence,
by induction hypothesis, σ (N, vt ) = y∗. By AM, x ≤ y∗. By CS,
Remark 1 implies xi = x∗

i for all i ∈ N \ Sm. By EF, α ≤ x∗

i
for all i ∈ N . Hence, by BR and CS, v(N \ S) = x(N \ S) =

v(N) − x(S) ≥ v(N) − x∗(S) = x∗(N \ S) = v(N \ S). We conclude
that α = min{x∗

i | i ∈ N} and, hence, S = Sm and x = x∗. □

Let Γ ⊆ Γbal. An efficient solution σ on Γ satisfies BR if and
only if it satisfies the bounded minimum payoff property (Oishi
et al., 2016), that is, for all (N, v) ∈ Γ ,∑
i∈Smin

σi(N, v) ≥ v(N) − v(N \ Smin),

which is the anti-dual of BMP. Hence, one might expect that,
on Γconv , CS, AM, and BMP characterize the egalitarian solution
E. However, we now show that BR cannot be replaced by BMP
in Theorem 1. To this end, define, for any (N, v) ∈ Γconv with
|N| ≥ 2, the convex root game of (N, v), denoted by (N, vr ), as
the convex game with smallest worth of the grand coalition such
that vr (S) = v(S) for all S ⊂ N . That is, if Γconv(v) = {w ∈

Γconv|w(S) = v(S) for all S ⊂ N}, (N, vr ) ∈ Γconv(v) is such that
vr (N) ≤ w(N) for allw ∈ Γconv(v). Note that (N, vr ) is well defined
since v (N) = max{v(S)+ v(T )− v(S ∩ T ) | S, T ⊂ N, S ∪ T = N}.
r S

5

Moreover, v = vtr with t = v(N)−vr (N). In the following example
we introduce a solution σ on Γconv , different from E, that satisfies
CS, AM, and BMP.

Example 1. Define σ as follows. Let (N, v) ∈ Γconv and n =

N|. If n = 1, then σ (N, v) = E(N, v). If n ≥ 2, put t∗ =

maxi∈N Ei(N, vr ) − vr (N) ≥ 0. Now, define σ (N, v) = E(N, v) =

D(N, v) if v(N) ≥ vr (N) + t∗. Otherwise, if vr (N) ≤ v(N) <
r (N) + t∗, define σ (N, v) = (1 − λ)E(N, vr ) + λE(N, vt

∗

r ) where
is determined by

∑
i∈N σi(N, v) = v(N). Hence, if t∗ > 0, λ =

v(N)−vr (N))/t∗ so that σ (N, v) is the vector on the line from E(N, vr )
o E(N, vt

∗

r ) whose components sum up v(N).
CS and AM follow from the observations that E(N, vr ) ∈

(N, vr ), E satisfies AM and λ is non-decreasing w.r.t. v(N). In
rder to check BMP, we may assume n ≥ 2 and vr (N) <

(N) < vr (N) + t∗ because E satisfies BMP. Now, σi(N, vt
∗

r ) =

Di(N, vt
∗

r ) = maxj∈N Ej(N, vr ) for all i ∈ N and, consequently,
max according to σ (N, vr ) is the same as Smax according to
(N, v). Thus, for every player i ∈ Smax, we have σi(N, v) =

axj∈N Ej(N, vr ) = Ei(N, vr ).
To see that σ ̸= E, let n = 3, say N = {1, 2, 3}, x = (2, 1, 0) ∈

N , and (N, v) the inessential game generated by x. Then, v = vr
nd σ (N, v) = E(N, v) = x. Moreover, t∗ = 6 − 3 = 3 and
(N, v3) = E(N, v3) = (2, 2, 2). By construction, σ (N, v1) =

2, 4/3, 2/3) ̸= (2, 1, 1) = E(N, v1). In case n > 3, a similar
example can be constructed adding null players.14

Nevertheless, a new characterization of E emerges combining
CS and BMP with the anti-dual property of AM. To this end, for
each (N, v) ∈ Γbal and t > 0, we first introduce the t-diminished
game (N, v−t ) ∈ Γbal defined by v−t (S) = v(S)− t , for all ∅ ̸= S ⊆

N . Let Γ ⊆ Γbal. A solution σ on Γ satisfies

• Adjusted aggregate monotonicity (AAM) if for all (N, v) ∈ Γ

and all t > 0 such that (N, v−t ) ∈ Γ , σ (N, v−t ) ≤ σ (N, v).

AAM requires that if the worth of each coalition decreases by the
same amount t > 0, then no player in the t-diminished game
should be better off.

Proposition 1. AM and AAM are anti-dual to each other.

Proof. Let σ be a solution on a domain Γ ⊆ Γbal of games and σ ′

its anti-dual solution on Γ ′
= {(N, vad) | (N, v) ∈ Γ }. Let (N, v) ∈

Γ ′ and t > 0 such that (N, v−t ) ∈ Γ ′. Let w = vad. Then v = wad

and (wt )ad = v−t , hence (N, w), (N, wt ) ∈ Γ . Now, suppose that
σ satisfies AM. Then σ ′(N, v−t ) = −σ (N, wt ) ≤ −σ (N, w) =

′(N, v), which shows that σ ′ satisfies AAM. Conversely, if σ ′

atisfies AAM, (N, w) ∈ Γ , t > 0, and (N, wt ) ∈ Γ , then, with
= wad, (wt )ad = v−t . Hence, σ (N, wt ) = −σ ′(N, v−t ) ≥

σ ′(N, v) = σ (N, w), which proves that σ satisfies AM. □

It is not difficult to check that CS is self anti-dual. This fact,
ogether with Proposition 1 and Theorem 1, lead to the following
haracterization result.

heorem 2. Let N ∈ N . The egalitarian solution E on Γ N
conv is the

nique solution that satisfies CS, AAM, and BMP.

emark 2. The following examples show that each of the prop-
rties employed in Theorems 1 and 2 is logically independent of
he remaining properties, provided |N| ≥ 3. If |N| ≤ 2, BR (BMP)
nd CS imply CE and, consequently, AM (AAM).

14 A player i ∈ N is a null player in a game (N, v) if v(S ∪ i) = v(S) for all
⊆ N\{i}.
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(i) The equal split solution ED satisfies AM, AAM, BR, and BMP
but not CS.

(ii) Let i, j be two distinct elements of N and define the game
(N, u) by u(S ∪ {i, j}) = 1 for all S ⊆ N \ {i, j} and u(S) = 0,
otherwise. Now define the solution σ as follows: σ (N, v) =

E(N, v) for all (N, v) ∈ Γ N
conv with v ̸= u and σi(N, u) =

2/3, σj(N, u) = 1/3, σk(N, u) = 0 for all k ∈ N \ {i, j}. Then,
σ satisfies CS and BR (because |N| > 2), but not AM. The
anti-dual solution of σ satisfies CS and BMP, but not AAM.

(iii) Let ≺ be a strict total order on N and ⪯ its reflexive cover.
For all (N, v) ∈ Γ N

conv and all i ∈ N define the marginal
contribution solution relative to ≺ as follows: mc≺

i (N, v) =

v({j ∈ N | j ⪯ i}) − v({j ∈ N | j ≺ i}). Then, mc≺ satisfies CS
and AM but not BR. The anti-dual solution of mc≺ satisfies
CS and AAM, but not BMP.

We now strengthen BR into SBR in Theorem 1, and it turns
ut that CS and SBR imply AM. Hence, these two properties alone
haracterize the egalitarian solution E.

heorem 3. Let N ∈ N . The egalitarian solution E on Γ N
conv is the

nique solution that satisfies CS and SBR.

roof. Indeed, E satisfies CS and SBR by Remark 1. To show
niqueness, let σ be a solution satisfying CS and SBR. Let (N, v) ∈
N
conv . Denote x = σ (N, v) and let x∗

= E(N, v) and (S1, . . . , Sm)
be the ordered partition of N such that v(S1 ∪ · · · ∪ Sk) = x∗(S1 ∪

· · · ∪ Sk) for all k = 1, . . . ,m (see Remark 1 and the preceding
aragraph). It remains to show that x = x∗. Assume, on the
ontrary, x ̸= x∗. Let m be minimal such that there exists i ∈ Sm
with xi < x∗

i =: α. Let S = {j ∈ N | xj < α} and T = N \ S.
Hence T ⊇

⋃m−1
k=1 Sk and xj ≥ x∗

j for all j ∈ T . By SBR and CS,
x(T ) = v(T ) = x∗(T ), hence xj = x∗

j ≥ α for all j ∈ T . As i ∈ Sm \ T ,
T ⊂

⋃m
k=1 Sk, hence x

(⋃m
k=1 Sk

)
< x∗

(⋃m
k=1 Sk

)
= v

(⋃m
k=1 Sk

)
,

and a contradiction to CS is obtained. □

Remark 3. The following examples show that each of the prop-
erties employed in Theorem 3 is logically independent of the
remaining properties, provided |N| ≥ 2.

(i) The equal split solution ED satisfies SBR but not CS.
(ii) The marginal contribution solution mc≺ satisfies CS but not

SBR.

Arin and Iñarra (2001) characterize E on Γ N
conv by CS and

RS.15 Hence, under CS, RS and SBR are equivalent on the domain
of convex games. The following two examples show that, even
under EF, SBR does not imply and is not implied by RS (provided
that |U | ≥ 4).

Example 2. Let |N| = 3, say N = {1, 2, 3}, (N, v) the inessential
game generated by (0, 1, 4), and x = (0, 2, 3). Then x ∈ X(N, v),
x2 + x3 = v({2, 3}), and x3 ≤ v({3}. Hence, the solution that as-
signs x to (N, v) and coincides with E for all other games satisfies
EF and SBR. However, the inequality s12(x, v) = v({1, 3}) − x1 −

x3 = 1 > 0 = s21(x, v) shows that it does not satisfy RS.

Example 3. Let |N| = 4, say N = {1, . . . , 4}, and (N, v) be
the convex game defined by v({1}) = 5, v({2}) = v({3}) =

4, v({1, 2}) = v({1, 3}) = 13, v({2, 3}) = 12, v({1, 2, 3}) = 21,
and v(S ∪ {4}) = v(S) for all S ⊆ N .16 Now, observe that

15 In fact, they show that the egalitarian core, defined to be the core elements
f a balanced game satisfying RS, coincides with E for convex games.
16 The game (N, v) arises adding the null player 4 to the 3-person convex
ame ({1, 2, 3}, w) defined by: w({1}) = 5, w({2}) = w({3}) = 4, w({1, 2}) =

w({1, 3}) = 13, w({2, 3}) = 12, and w({1, 2, 3}) = 21. Hence, (N, v) is convex.
6

x = (6, 5, 5, 5) ∈ X(N, v), s1j(x, v) = sj1(x, v) = 2 for j = 2, 3,
s14(x, v) = 5, and s4,1(N, v) < 0. Hence, the solution that assigns
x to (N, v) and coincides with E for all other games satisfies EF and
RS. As x1 > v({1}), it does neither satisfy BR nor SBR nor BMP.

To conclude this subsection, we show that EDS (and thus IR)
does not replace CS in Theorems 1, 2, and 3. To this end, we
introduce a modification σ̃ of the solution σ in Example 1 that
satisfies EDS (and thus IR), AM, AAM, and SBR (and thus BR
and BMP). The definition of σ̃ (N, v) differs from the definition of
σ (N, v) only if n = |N| ≥ 2 and vr (N) < v(N) < vr (N) + t∗, in
which case we define σ̃ (N, v) = E(N, vr ). Note that σ̃ ̸= E since it
does not satisfy EF, and thus neither CS. SBR and thus BR and BMP
come directly from the fact that E satisfies SBR and v(S) = vr (S)
for all S ⊂ N while v(N) ≥ vr (N). IR and AM are straightforward
since E(N, vr ) ∈ C(N, vr ) and nobody is worse off when increasing
the value of the grand coalition. To show EDS, we may restrict
our attention to the case vr (N) < v(N) < vr (N) + t∗. In this case,
ED(N, v) ̸∈ C(N, v), and thus there exist S ⊂ N and i ∈ S such
hat Ei(N, vr ) ≥ vr (S)/|S| = v(S)/|S| > v(N)/|N|, which proves
EDS. Finally, it can be shown that the solution σ̃ is self anti-dual
and, hence, it also satisfies AAM, which invalidates to weaken CS
in Theorem 2.

4.2. Characterizations of the egalitarian solution with consistency

In this subsection, and making use of some lemmas that point
out logical relations among consistency, stability and monotonic-
ity properties, we obtain new axiomatizations of E. The first
lemma shows that 2-DMC implies CS on the domain of convex
games with at least two players, denoted by Γ ≥2

conv .

Lemma 2. If the solution σ on Γ ≥2
conv satisfies 2-DMC, then it satisfies

CS as well.

Proof. Let (N, v) ∈ Γ ≥2
conv . We consider two cases:

(i) |N| = 2. By the assumption |U | ≥ 3 there exists k ∈ U \ N .
Let M = N ∪ {k} and (M, w) be the game that arises from
(N, v) by adding the null player k, i.e., w is given by w(S) =

v(S ∩ N) for all S ⊆ M . Note that (M, w) is still convex.
Claim: If (N, v) is inessential, then σ (N, v) is the unique
element of C(N, v).
In order to show the claim, note that (M, w) is inessential.
Let y ∈ RM be defined by yi = w({i}) for all i ∈ M , hence
y(S) = w(S) for all S ⊆ M . Moreover, let x = σ (M, w).
For any i ∈ M , by the definition of the Davis–Maschler
reduced game, wM\{i},x({j}) ≥ w({i, j}) − xi = y({i, j}) − xi
for both j ∈ M \ {i} and wM\{i},x(M \ {i}) = w(M) − xi =

y(M) − xi. By 2-DMC, (M \ {i}, wM\{i},x) is convex so that∑
j∈M\{i}wM\{i},x({j}) ≤ wM\{i},x(M \ {i}). We conclude that∑

j∈M\{i}

[y({i, j}) − xi] = y(M) + yi − 2xi ≤ y(M) − xi,

hence xi ≥ yi for all i ∈ M . Now, as x(M) ⩽ w(M) = y(M),
we have x = y. Finally, since (N, wN,y) = (N, v), by 2-DMC,
xN = yN = σ (N, v) with C(N, v) = {xN}.
Now let x = σ (M, w), i ∈ N , and N = {i, j}. By 2-DMC,
(M \ {i}, wM\{i},x) is convex and xM\{i} = σ (M \ {i}, wM\{i},x).
By definition of the Davis–Maschler reduced game,

wM\{i},x({j}) = max{w({j}), w({i, j})−xi} = max{v({j}), v(N)−xi},

wM\{i},x({k}) = max{w({k}), w({i, k})−xi} = max{0, v({i})−xi},
and
wM\{i},x(M \ {i}) = w(M) − xi = v(N) − xi
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so that 2-DMC implies v(N) − xi ≥ max{v({j}), v(N) − xi} +

max{0, v({i})− xi}. Hence, xi ≥ v({i}) and v(N)− xi ≥ v({j}).
We conclude that (M \{i}, wN\{i},x) is inessential and thus, by
2-DMC and our claim, xj = v(N) − xi and xk = 0. Therefore,
xN ∈ C(N, v) and the proof is finished by 2-DMC.

(ii) |N| ≥ 3. Let x = σ (N, v) and assume that x /∈ C(N, v). If
x(N) < v(N) select any S ⊆ N with |S| = 2. By 2-DMC,
(S, vS,x) ∈ Γ ≥2

conv and xS = σ (S, vS,x). Now vS,x(S) = v(N) −

x(N \ S) > x(S) so that xS /∈ C(S, vS,x) which contradicts
case (i). Therefore, we may assume that x(N) = v(N) and
x(T ) < v(T ) for some ∅ ̸= T ⫋ N so that there exist i ∈ T
and j ∈ N \ T . Let S = {i, j} and observe that vS,x({i}) ≥

v(T ) − x(T \ {i}) > xi by definition of the Davis–Maschler
reduced game. Therefore xS is not individually rational for
(S, vS,x) and the desired contradiction is obtained by 2-DMC
and case (i). □

emark 4. Lemma 2 does not hold on the domain of all convex
ames, including all 1-person games. Indeed, let (N, v) ∈ Γconv
nd ε > 0. Define the single-valued solution ρ as follows:
(N, v) = E(N, v) if |N| ≥ 2, and ρ(N, v) = v(N) − ε otherwise.
hen, ρ satisfies 2-DMC but not CS.

Since, on Γ ≥2
conv , CS implies EF, EDS, and IR, an immediate

onsequence of Lemma 2 is the following corollary.

orollary 1. If the solution σ on Γ ≥2
conv satisfies 2-DMC, then it

atisfies EF, EDS, and IR as well.

Next, we show that IR combined with the strong aggregate
onotonicity property of CWE imply CE.

emma 3. If the solution σ on Γconv satisfies IR and CWE, then it
atisfies CE as well.

roof. Let (N, v) be a two person convex game with N =

i, j}, i ̸= j and v({i}) ≤ v({j}). Let t = v(N)−v({i})−v({j}) ≥ 0. By
R and CWE, for all k ∈ N , σk(N, v) = max{λ, v({k})}, where λ ∈ R
s determined by

∑
k∈N (λ−v({k}))+ = t . If t > v({j})−v({i}), then

=
v(N)
2 > v({j}) ≥ v({i}) and hence σj(N, v) = σi(N, v) =

v(N)
2 .

f t ≤ v({j}) − v({i}), then λ = v(N) − v({j}) < v({j}) and thus
j(N, v) = v({j}) and σi(N, v) = v(N) − v({j}). In both cases,
(N, v) = CE(N, v). □

Lemma 3.2 of Klijn et al. (2000) shows that EF, EDS, and BMP
mply CE. It is straightforward and left to the reader to check that
F, IR, and BR (or RS) together also imply CE. Theorem 5.3 of Dutta
1990) characterizes the egalitarian solution E by means of CE and
MC. In fact, in the uniqueness part of his proof, Dutta only used
-DMC rather than DMC.17 Moreover, Calleja et al. (2021) showed
hat the egalitarian solution E satisfies CWE. Combining these
esults with Corollary 1 and Lemma 3 we obtain the following
ew characterizations.

heorem 4. On the domain Γ ≥2
conv ,

(i) the egalitarian solution E is the unique solution that satisfies
2-DMC and BR.

(ii) the egalitarian solution E is the unique solution that satisfies
2-DMC and BMP.

(iii) the egalitarian solution E is the unique solution that satisfies
2-DMC and CWE.

17 However, since the set of convex games is closed under DM reduction,
heorem 5.3 of Dutta (1990) holds in the full domain of convex games, including
-person games.
7

In view of Lemma 2, it is worth to point out that, on Γ ≥2
conv ,

mposing 2-DMC allows to drop the monotonicity property (AM
r AAM) in Theorems 1 and 2, respectively. Obviously, Theo-
em 3 and the characterization in Arin and Iñarra (2001) can be
ewritten imposing 2-DMC, which is stronger than CS. Moreover,
ecause of Lemma 3, under 2-DMC, the properties imposing
galitarian bounds can be replaced by CWE.

emark 5. Each of the properties in Theorem 4 is logically
ndependent of the remaining properties.

(i) The equal split solution ED satisfies BMP, BR, and CWE but
not 2-DMC.

(ii) Schmeidler’s (1969) nucleolus, ν,18 satisfies 2-DMC but nei-
ther BMP nor BR nor CWE.

Note that, in view of Remark 4, none of the characterizations
f E presented in Theorem 4 hold when expanding the domain of
onvex games with at least 2 players to the domain of all convex
ames, including all 1-person games. A way to extend the results
o the entire domain Γconv is to impose, additionally and only for
-person games, IR (or EF).
The remainder of this section is devoted to the question to

hat extent the characterizations in Theorem 4 still hold if we
eplace 2-DMC by 2-HMC. We do not know if, on the domain
f convex games with at least two players, 2-HMC implies CS.
owever, on the full domain of convex games, if we additionally
mpose IR, then we can show that EF is also satisfied. We finally
educe that we can replace 2-DMC by 2-HMC in the modified
ersion of Theorem 4 that works on the domain of all convex
ames when employing IR in addition.

emma 4. If the solution σ on Γconv satisfies IR and 2-HMC, then
it satisfies EF as well.

Proof. Let (N, v) ∈ Γconv . If |N| = 1, the proof is finished by IR
(and feasibility).

If |N| = 2, by the assumption |U | ≥ 3 there exists k ∈ U \ N .
Let M = N ∪ {k} and (M, w) be the game that arises from
(N, v) by adding the null player k, i.e., w is given by w(S) =

(S ∩ N) for all S ⊆ M . Note that (M, w) is still convex. Recall
that, if (N, v) is inessential, then σ (N, v) is the unique element
of C(N, v) by IR (and feasibility). Let x = σ (M, w), i ∈ N , and
N = {i, j}. Then wM\{i},σ ({j}) = v(N)−σi(N, v) and wM\{i},σ ({k}) =

v({i})− σi({i, k}, w) = 0, where the last equation follows because
({i, k}, w) is inessential. By IR and 2-HMC, xj ≥ v(N) − σi(N, v)
and xk ≥ 0. Let y = σ (N, v). As y(N) ≤ v(N), xj ≥ v(N) − yi
and, analogously, xi ≥ v(N) − yj, we have v(N) ≥ x(M) ≥

2v(N) − y(N) + xk ≥ v(N) + xk ≥ v(N) so that all inequalities
must be equations, i.e., xi + xj = v(N) and xk = 0. Since ({i, k}, w)
and ({j, k}, w) are inessential, by IR (and feasibility) σk({i, k}, w) =

σk({j, k}, w) = 0 and thus (N, wN,σ ) = (N, v). Finally, by 2-HMC
we conclude that xN = σ (N, wN,σ ) = σ (N, v) is efficient.

If |N| ≥ 3, assume that x = σ (N, v) satisfies x(N) < v(N).
hen, for any S ⊆ N with |S| = 2, x(S) < vS,σ (S) = v(N)−x(N \S),
contradiction. □

As we have seen before, EF, IR, and either BMP or BR or RS
r CWE imply CE. Theorem 5.4 of Dutta (1990) stating that CE
nd HMC characterize the egalitarian solution E is not entirely
orrect as shown by Hokari (2002). In fact, E does not satisfy HMC
ecause a HM-reduced game of a convex game is not necessarily

18 That is, the unique feasible payoff vector that lexicographically minimizes
the non-increasingly ordered vector of excesses (v(S) − x(S))S⊆N over the set of
feasible payoff vectors.
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onvex. However, the following mild modification of the forego-
ng theorem holds. A careful inspection of Dutta’s proof shows
hat HM-reduced games of convex games have a non-empty core.
ence, two-person HM-reduced games are convex. Therefore, E
atisfies 2-HMC on the domain of convex games. Also, as in the
ase of Dutta’s characterization of E with DMC, the uniqueness
roof only uses 2-HMC rather than HMC.19 Hence, on Γ ≥2

conv , E
s characterized by CE and 2-HMC. These observations, together
ith Lemma 4, lead to the following characterizations.

heorem 5. On the domain Γconv ,

(i) the egalitarian solution E is the unique solution that satisfies
2-HMC, IR, and BR;

(ii) the egalitarian solution E is the unique solution that satisfies
2-HMC, IR, and BMP;

(iii) the egalitarian solution E is the unique solution that satisfies
2-HMC, IR, and RS;

(iv) the egalitarian solution E is the unique solution that satisfies
2-HMC, IR, and CWE.

Indeed, by Lemma 4, CS and AM (or AAM) can be replaced by
2-HMC and IR in Theorem 1 (Theorem 2). Clearly, Theorem 5 (i)
still holds when replacing BR by the stronger SBR. Moreover, the
egalitarian bounds properties can be replaced by CWE.

Remark 6. Each of the properties in Theorem 5 is logically
independent of the remaining properties.

(i) The single-valued solution ρ as defined in Remark 4 satisfies
2-HMC, BR, BMP, RS, and CWE but not IR.

(ii) For all (N, v) ∈ Γconv define the solution σ as follows:
σ (N, v) = E(N, vr ). Then, σ satisfies IR, BR, BMP, and RS,
but not 2-HMC.

(iii) For all (N, v) ∈ Γconv define the solution σ as follows:
σ (N, v) = ν(N, v) if (N, v) = (N, vr ), and σi(N, v) =

νi(N, vr ) + (λ − νi(N, vr ))+ otherwise, where λ ∈ R is
determined by

∑
i∈N (λ − νi(N, vr ))+ = v(N) − vr (N). Then,

σ satisfies IR, CWE but not 2-HMC.
(iv) Let ≺ be a strict total order on U . The marginal contribution

solution mc≺ satisfies 2-HMC and IR, but neither BMP nor
BR nor RS nor CWE.

5. (Im)possibilities on larger domains

In this section, we investigate larger domains of games. It
is well known that, on balanced games, the existence of the
egalitarian solution E is not guaranteed. An alternative way to
combine core stability and egalitarianism, already proposed by
Dutta and Ray (1989) and latter adopted simultaneously by Arin
and Iñarra (2001) and Hougaard et al. (2001), is to focus on the
set of Lorenz maximal allocations within the core. According to
Arin and Iñarra (2001) and Arin et al. (2003), a solution σ is said
to be core egalitarian20 if, for all (N, v) ∈ Γbal, σ (N, v) ∈ C(N, v)
and there is no y ∈ C(N, v) such that y ≻L σ (N, v). Examples
of core egalitarian solutions are the lexmin solution (Yanovskaya,
1995; Arin and Iñarra, 2001) and its anti-dual, the lexmax solution

19 To be more precise, recall that E does not satisfy HMC (see Footnote 10),
ut 2-HMC because all 2-person HM-reduced games w.r.t. E are balanced and,
ence, convex. Therefore, Dutta’s proof shows that E is characterized by 2-HMC
nd CE on Γ ≥2

conv , and this result may be extended to the entire set Γconv by
dding IR (or EF) only for 1-person games, or by replacing 2-HMC by weak
MC, requiring HMC for coalitions S with |S| = 2 and |S| = 1. Indeed, if a

solution satisfies weak HMC and EF for convex 2-person games, then it satisfies
EF in general.
20 Although they use the term egalitarian, here, and to avoid confusion, we
rename it by core egalitarian.
8

(Arin et al., 2003). A proper subset of balanced games including
convex games for which the egalitarian solution exists is the set
of exact partition games (Llerena and Mauri, 2017), denoted by
Γexpa. A game (N, v) is an exact partition game if there exists a
core element x such that, for the ordered partition (S1, . . . , Sm)
nduced by x (see Remark 1 for the definition of ‘‘induced’’),
(S1 ∪ · · · ∪ Sk) = v (S1 ∪ · · · ∪ Sk) for all k = 1, . . . ,m. For

an exact partition game (N, v), E(N, v) is the unique singleton
{x} with the foregoing property. By Γ N

expa we denote the subset
of games in Γexpa with N ∈ N as player set. Notice that exact
artition games are closed under increments of the worth of the
rand coalition, i.e., for all t > 0, (N, vt ) ∈ Γexpa if (N, v) ∈ Γexpa.
oreover, Dietzenbacher and Yanovskaya (2020a) prove that this
omain is closed under the anti-duality operation, i.e., (N, v) ∈

expa if and only if (N, vad) ∈ Γexpa.21
We study whether or not the results in Section 4 can be

xtended either to Γexpa or Γbal. Following the arguments in the
roofs of Theorems 1 and 3 it can be checked that, for N ∈ N ,
oth characterizations remain valid on Γ N

expa. Furthermore, since
he egalitarian solution E is self anti-dual on the domain of ex-
ct partition games (see Dietzenbacher and Yanovskaya, 2020b),
heorem 2 also holds on Γ N

expa. Unfortunately, as shown below,
one of the three theorems can be extended to the domain of
alanced games, since the properties listed in these theorems are
ncompatible on Γ N

bal. We first show that the maximal domain
here CS and SBR are compatible and, thus, the characterization

n Theorem 3 holds, is the domain of exact partition games.

roposition 2. Let N ∈ N and σ be a solution on Γ N
⊆ Γ N

bal
atisfying CS and SBR. Then Γ N

⊆ Γ N
expa.

roof. Let N ∈ N and σ be a solution on Γ N
⊆ Γ N

bal satisfying
S and SBR. Let (N, v) ∈ Γ N , x = σ (N, v) and (S1, . . . , Sm) be the
rdered partition of N induced by x. Let k ∈ {1, . . . ,m−1}, i ∈ Sk,
nd α = xi. Then, with S = {i ∈ N | xi < α} = Sk+1 ∪ · · · ∪ Sm,
\S = S1∪· · ·∪Sk. By CS and SBR x(S1∪· · ·∪Sk) = v(S1∪· · ·∪Sk),
hich proves that (N, v) ∈ Γ N

expa. □

On the domain of convex games SBR and RS are equivalent un-
er CS, but RS and CS remain compatible for the set of all balanced
ames. Indeed, the lexmin solution satisfies both properties (Arin
nd Iñarra, 2001). In the following proposition we show that CS
nd either BMP or BR are incompatible on the class of balanced
ames.

roposition 3. Let N ∈ N with |N| ≥ 3. Then, there is no solution
n Γ N

bal satisfying CS and either BMP or BR.

roof. Let N ∈ N with |N| ≥ 3 and σ be a solution on Γ N
bal

atisfying CS. Let i, j be two distinct elements of N and define the
ame (N, v) ∈ Γ N

bal, with |N| ≥ 3, by v({i}) = v({j}) = 1/2, v(N) =

, and v(S) = 0 otherwise. By CS, σi(N, v) = σj(N, v) = 1/2 and
k(N, v) = 0 for all k ∈ N \ {i, j}, a contradiction to BMP and
R. □

Observe that in the proof of Proposition 3 CS can be replaced
y IR. Hence, on balanced games, IR (and thus EDS) are also in-
ompatible with any of the egalitarian bounds property. So, there
s a trade off between stability and egalitarian bounds properties,
he combination of which is extensively used to characterize E on
he domains of convex or exact partition games.

21 Recently, Dietzenbacher and Yanovskaya (2020a,b) extend some of the
axiomatizations of E on the domain of convex games to the larger domain of
exact partition games.
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Interestingly, it is not difficult to check that Lemmas 2–4 hold
on the sets of exact partition games and balanced games. On the
contrary, since 2-DMC implies CS, from Proposition 3 it follows
that 2-DMC and either BMP or BR are not compatible on Γbal,
and, hence, Theorem 4 (i) and (ii) do not longer hold. To see that
Theorem 4 (iii) is also not valid on Γbal we show that 2-DMC and
CWE are incompatible.

Proposition 4. There is no solution on Γbal satisfying 2-DMC and
WE.

roof. Let σ be a solution on Γbal satisfying 2-DMC and CWE.
hen, as Lemma 2 also holds for balanced rather than convex
ames (the proof may be literally copied), when restricting σ to
ames with at least two players, it satisfies CS as well. Let (N, v) ∈

bal be the game with |N| = 3, say N = {1, 2, 3}, and character-
stic function v({h}) = 0 for all h ∈ N , v({1, 2}) = v({1, 3}) = 1,
({2, 3}) = 0, and v(N) = 1. By CS, σ (N, v) = (1, 0, 0). By
WE, σ (N, v1) = (1, 1/2, 1/2) := x. Now, with N ′

= {1, 2},
1
N ′,x({1}) = 1/2, v1N ′,x({2}) = 0, and v1N ′,x(N

′) = 3/2. Therefore,
v1N ′,x)r = (v1N ′,x)

−1, and, applying CS, σ (N ′, (v1N ′,x)r ) = (1/2, 0). By
WE, σ (N ′, v1N ′,x) = (3/4, 3/4), which contradicts 2-DMC. □

By definition, on the set balanced games any core egalitarian
olution satisfies CS and, thus, IR and EDS. Moreover, as a conse-
uence of Propositions 2 and 3, it does not satisfy BMP, BR (SBR),
r RS. Example 2 of Calleja et al. (2021) shows that there is no
ore egalitarian solution satisfying AM, and, with the help of the
nti-dual games of this example it is straightforward to verify
hat AAM is also violated. However, if a core egalitarian solution
eets AM on some subdomain of balanced games closed under

ncrements w.r.t. the worth of the grand coalition, then it satisfies
WE as well (see Theorem 4 in Calleja et al., 2021).
Clearly, on the set of exact partition games, all properties

mployed in Theorem 4 are still satisfied by E. However, as E
oes no longer satisfy converse DM-consistency22 on this larger
omain (see Example 1 of Llerena and Mauri, 2017), the question
f whether E is the unique solution on Γexpa that satisfies 2-DMC
nd CE remains open.
Concerning Theorem 5, the following proposition shows that

-HMC and CE are not compatible on the domains Γexpa and Γbal.
s a consequence, none of the characterizations in Theorem 5
old on these larger domains, and, moreover, the characterization
n Theorem 5.4 of Dutta (1990) cannot be extended to Γexpa nor
o Γbal.

roposition 5. Neither on Γexpa nor on Γbal there is a solution
atisfying 2-HMC and CE.

roof. Note first that CE implies EF for 2-person balanced games
nd, as the proof of Lemma 4 can be easily modified for the sets of
xact partition games or balanced games, a solution that satisfies
-HMC and CE would also satisfy EF on each of the two sets of
ames. Now suppose, on the contrary, there is a solution σ on Γbal
atisfying 2-HMC and CE. Let (N, v) be the game with |N| = 3, say

= {1, 2, 3}, and characteristic function as follows: v({h}) = 0
or all h ∈ N , v({1, 2}) = 1, v({1, 3}) = v({2, 3}) = 1/2, and
(N) = 1. Then C(N, v) = {(1/2, 1/2, 0)}, which shows that (N, v)
s an exact partition game. Now consider the HM-reduced game
f (N, v) w.r.t. N ′

= {1, 2} at σ . By CE,

N ′,σ ({1}) = v({1, 3}) − σ3({1, 3}, v) = 1/2 − 1/4 = 1/4,

N ′,σ ({2}) = v({2, 3}) − σ3({2, 3}, v) = 1/2 − 1/4 = 1/4,

22 See Peleg and Sudhölter (2007) for a formal definition of converse
M-consistency.
9

and

vN ′,σ (N ′) = 1 − σ3(N, v).

y 2-HMC, (N ′, vN ′,σ ) is balanced so that 1 − σ3(N, v) ≥ 1/4 +

/4 = 1/2, i.e., σ3(N, v) ≤ 1/2. Considering the HM-reduced
ames of (N, v) w.r.t. N ′′

= {1, 3} and N ′′′
= {2, 3} at σ , similar

arguments show that σ2(N, v) ≤ 1/4 and σ1(N, v) ≤ 1/4. By EF,
σ (N, v) = (1/4, 1/4, 1/2). Hence, vN ′′,σ ({1}) = 1/2, vN ′′,σ ({3}) =

1/4, and vN ′′,σ (N ′′) = 3/4. By CE, σ1(N ′′, vN ′′,σ ) = 1/2 ̸= 1/4 =

σ1(N, v), which contradicts 2-HMC. □

To conclude, note that any core egalitarian solution satisfies
2-DMC which follows from Theorem 2 in Arin and Iñarra (2001)
and the fact that two-person balanced games are convex, and
thus E is the unique core egalitarian allocation. So, in contrast to
Proposition 5, 2-DMC and CE are compatible on Γbal.

Acknowledgments

We are grateful to E. Sánchez-Rodríguez for making her joint
preprint of the paper Mirás-Calvo et al. (2021) accessible to us
and thank two anonymous referees of this journal for their help-
ful comments and suggestions. The first two authors acknowl-
edge support from research grants ECO2017-86481-P (AEI/FEDER,
UE) and PID2019-105982GB-I00/AEI/10.13039/501100011033
(MINECO 2019, Spain), the second author also acknowledges sup-
port from Universitat Rovira i Virgili and Generalitat de Catalunya,
Spain under projects 2019PFR-URV-B2-53 and 2017SGR770, and
the third author acknowledges support from research grant
PID2019-105291GB-I00 (MINECO 2019, Spain).

References

Arin, J., Iñarra, E., 2001. Egalitarian solutions in the core. Internat. J. Game Theory
30, 187–193.

Arin, J., Kuipers, J., Vermeulen, D., 2003. Some characterizations of egalitarian
solutions on classes of TU-games. Math. Social Sci. 46, 327–345.

Calleja, P., Llerena, F., Sudhölter, P., 2021. Constrained welfare egalitarianism in
surplus-sharing problems. Math. Social Sci. 109, 45–51.

Davis, M., Maschler, M., 1965. The kernel of a cooperative game. Nav. Res. Logist.
Q. 12, 223–259.

Dietzenbacher, B., Yanovskaya, E., 2020a. Consistency of the equal split-off set.
Internat. J. Game Theory http://dx.doi.org/10.1007/s00182-020-00713-5.

Dietzenbacher, B., Yanovskaya, E., 2020b. Antiduality in exact partition games.
Math. Social Sci. 108, 116–121.

Driessen, T.S.H., Funaki, Y., 1991. Coincidence of and collinearity between game
theoretic solutions. OR Spectrum 13, 15–30.

Dutta, B., 1990. The egalitarian solution and reduced game properties in convex
games. Internat. J. Game Theory 19, 153–169.

Dutta, B., Ray, D., 1989. A concept of egalitarianism under participation
constraints. Econometrica 57, 615–635.

Funaki, Y., 1998. Dual Axiomatizations of Solutions of Cooperative Games.
Mimeo.

González-Díaz, J., Sánchez-Rodríguez, E., 2007. A natural selection from the core
of a TU game: The core-center. Internat. J. Game Theory 36, 27–46.

Grotte, J.H., 1970. Computation of and Observations on the Nucleolus, the
Normalized Nucleolus and the Central Games (Unpublished Master’s thesis).
Cornell University. Ithaca, New York.

Hart, S., Mas-Colell, A., 1989. Potential, value, and consistency. Econometrica 57,
589–614.

Hokari, T., 2000. The nucleolus is not aggregate-monotonic on the domain of
convex games. Internat. J. Game Theory 29, 133–137.

Hokari, T., 2002. Monotone-path Dutta–Ray solutions on convex games. Soc.
Choice Welf. 19, 825–844.

Hokari, T., van Gellekom, A., 2002. Population monotonicity and consistency in
convex games: Some logical relations. Internat. J. Game Theory 31, 593–607.

Hougaard, J.L., Peleg, B., Osterdal, L.P., 2005. The Dutta–Ray solution on the class
of convex games: A generalization and monotonicity properties. Int. Game
Theory Rev. 7, 431–442.

Hougaard, J.L., Peleg, B., Thorlund-Petersen, L., 2001. On the set of Lorenz-
maximal imputations in the core of a balanced game. Internat. J. Game
Theory 30, 147–165.

Klijn, F., Slikker, M., Tijs, S., Zarzuelo, J., 2000. The egalitarian solution for convex
games: some characterizations. Math. Social Sci. 40, 111–121.

http://refhub.elsevier.com/S0304-4068(21)00015-X/sb1
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb1
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb1
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb2
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb2
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb2
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb3
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb3
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb3
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb4
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb4
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb4
http://dx.doi.org/10.1007/s00182-020-00713-5
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb6
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb6
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb6
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb7
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb7
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb7
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb8
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb8
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb8
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb9
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb9
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb9
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb10
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb10
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb10
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb11
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb11
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb11
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb13
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb13
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb13
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb14
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb14
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb14
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb15
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb15
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb15
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb16
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb16
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb16
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb17
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb17
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb17
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb17
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb17
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb18
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb18
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb18
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb18
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb18
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb19
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb19
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb19


P. Calleja, F. Llerena and P. Sudhölter Journal of Mathematical Economics 95 (2021) 102477

L

M

M

M

O

P

S

S

lerena, F., Mauri, L., 2017. On the existence of the Dutta–Ray’s egalitarian
solution. Math. Social Sci. 89, 92–99.

egiddo, N., 1974. On the monotonicity of the bargaining set, the kernel, and
the nucleolus of a game. SIAM J. Appl. Math. 27, 355–358.

irás-Calvo, M.A., Quintero-Sandomingo, C., Sánchez-Rodríguez, E., 2021. Con-
siderations on the aggregate monotonicity of the nucleolus and the
core-center. Math. Methods Oper. Res. http://dx.doi.org/10.1007/s00186-
020-00733-7.

oulin, H., 1985. The separability axiom and equal sharing methods. J. Econom.
Theory 36, 120–148.

ishi, T., Nakayama, M., Hokari, T., Funaki, Y., 2016. Duality and anti-duality in
TU games applied to solutions, axioms, and axiomatizations. J. Math. Econom.
63, 44–53.

eleg, B., Sudhölter, P., 2007. Introduction of the Theory of Cooperative Games.
Springer, Berlin Heidelberg.

chmeidler, D., 1969. The nucleolus of a characteristic function game. SIAM J.
Appl. Math. 17, 1163–1170.

elten, R., 1972. Equal share analysis of characteristic function experiments. In:
Sauermann, H. (Ed.), Beiträge zur Experimentellen Wirtschaftsforschung, Vol.
6. J.C.B. Mohr, Tübingen, pp. 130–165.
10
Shapley, L.S., 1953. A value for n-person games. In: Kuhn, H., Tucker, A.W. (Eds.),
Contributions to the Theory of Games, Vol. 2. Princeton University Press, pp.
307–317.

Sobolev, A.I., 1975. The characterization of optimality principles in cooperative
games by functional equations. In: Vorobiev, N.N. (Ed.), Mathematical Meth-
ods in the Social Sciences, Vol. 6. Academy of Sciences of the Lithuanian SSR,
Vilnius, pp. 95–151 (in Russian).

Sudhölter, P., 1996. The modified nucleolus as canonical representation of
weighted majority games. Math. Oper. Res. 21, 734–756.

Sudhölter, P., 1997. The modified nucleolus: Properties and axiomatizations.
Internat. J. Game Theory 26, 147–182.

Tijs, S.H., 1981. Bounds for the core and the τ -value. In: Moeschlin, O., Pal-
laschke, D. (Eds.), Game Theory and Mathematical Economics. North-Holland
Publishing Company, Amsterdam, pp. 123–132.

Yanovskaya, E., 1995. Lexicographical Maxim Core Solutions of Coop-
eratives Games. Mimeo, St. Petersburg Institute for Economics and
Mathematics.

http://refhub.elsevier.com/S0304-4068(21)00015-X/sb20
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb20
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb20
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb21
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb21
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb21
http://dx.doi.org/10.1007/s00186-020-00733-7
http://dx.doi.org/10.1007/s00186-020-00733-7
http://dx.doi.org/10.1007/s00186-020-00733-7
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb23
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb23
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb23
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb24
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb24
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb24
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb24
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb24
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb25
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb25
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb25
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb26
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb26
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb26
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb27
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb27
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb27
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb27
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb27
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb28
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb28
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb28
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb28
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb28
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb29
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb29
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb29
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb29
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb29
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb29
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb29
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb30
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb30
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb30
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb31
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb31
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb31
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb32
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb32
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb32
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb32
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb32
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb33
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb33
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb33
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb33
http://refhub.elsevier.com/S0304-4068(21)00015-X/sb33

	Axiomatizations of Dutta-Ray's egalitarian solution on the domain of convex games
	Introduction
	Preliminaries
	Properties of solutions
	Characterization results
	Characterizations of the egalitarian solution without consistency
	Characterizations of the egalitarian solution with consistency 

	(Im)possibilities on larger domains
	Acknowledgments
	References


