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Abstract
A TU game is totally positive if it is a linear combination of unanimity games with non-
negative coefficients. We show that the core on each cone of convex games that con-
tains the set of totally positive games is characterized by the traditional properties Pareto 
efficiency, additivity (ADD), individual rationality, and the null-player property together 
with one new property, called unanimity requiring that the solution, when applied to a 
unanimity game on an arbitrary coalition, allows to distribute the entire available amount 
of money to each player of this coalition. We also show that the foregoing characteriza-
tion can be generalized to the domain of balanced games by replacing ADD by “ADD 
on the set of totally positive games plus super-additivity (SUPA) in general”. Adding 
converse SUPA allows to characterize the core on arbitrary domains of TU games that 
contain the set of all totally positive games. Converse SUPA requires a vector to be a 
member of the solution to a game whenever, when adding a totally positive game such 
that the sum becomes totally additive, the sum of the vector and each solution element 
of the totally positive game belongs to the solution of the aggregate game. Unlike in 
traditional characterizations of the core, our results do not use consistency properties.
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1 Introduction

The core is one of the most prominent solution concepts in cooperative game theory. 
It assigns to a transferable utility game (for short, a TU game, or a game) all Pareto-
efficient payoff vectors such that each coalition of players obtains at least the amount 
that is available in the coalition. We offer an axiomatic characterization of the core on 
domains of games with a fixed player set. Axiomatic characterizations of the core on 
several classes of TU and nontransferable utility games, typically with varying sets of 
players, have been provided by Peleg (1986), Tadenuma (1992), Winter and Wooders 
(1994), Voorneveld and van den Nouweland (1998), Hwang and Sudhölter (2001), and 
Llerena and Rafels (2007). We should like to mention in particular the characteriza-
tions on totally balanced games by Peleg (1989) and Sudhölter and Peleg (2002) and on 
convex games by Hokari et al. (2020) and Dietzenbacher and Sudhölter (2022), among 
others. All these characterizations invoke a consistency axiom.1 A solution is consist-
ent if the restriction to the remaining players of each vector selected by this solution is 
also selected in each reduced game on the set of remaining players, in which only the 
subset of remaining players considers its reduced game. We refer to Funaki and Yamato 
(2001) for some forms of reduced games used in some of the characterizations of the 
core. Merits of several variants of consistency and its converse for characterizing the 
core and several extensions were recently discussed by Bejan et al. (2022).

We provide characterizations of the core on several classes of TU games with a fixed 
player set which do not invoke any consistency axiom. One of the crucial properties in 
these characterizations is the additivity axiom requiring that the solution of the sum of 
two games is the sum of the solutions in these two games. Bloch and de Clippel (2010) 
show that the set of all balanced games, i.e., the set of games with a nonempty core, 
can be partitioned into subsets in which the core is an additive solution. One of these 
subsets is the set of convex games as proved already by Tijs and Branzei (2002), which 
contains the set of totally positive games. These two subsets of games are of particular 
interest in view of the rapidly increasing number of applications of the theory of coop-
erative games in various fields. For example, O’Neill (1982) and Aumann and Maschler 
(1985) analyzed bankruptcy games, Maniquet (2003) considered queuing games, and, 
more recently, Lucchetti et al. (2010), Ginsburgh and Zang (2012), Dehez and Ferey 
(2013), and Karpov (2014) used cooperative games to model problems in the fields 
of medicine, voting theory, law, and scientometrics, respectively. In all these applica-
tions the arising cooperative TU games are convex and/or totally positive. According to 
Sudhölter and Zarzuelo (2017, Theorem 5.1), a game is totally positive if and only if it 

1 An exception is the axiomatic characterization of the restricted core for the specific set of totally posi-
tive games (i.e., games that are nonnegative linear combinations of unanimity games) with ordered play-
ers by van den Brink et al. (2009).
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is the cost game of a generalized highway problem in which each customer selects an 
arbitrary, not necessarily connected, part of the highway.

For replacing consistency, we introduce two new axioms. A solution satisfies 
unanimity (UNA) if, when applied to the unanimity game on a coalition, it contains, 
for each player of this coalition, the vectors that assign the whole amount (i.e., one 
utility unit) to this player. UNA, hence, requires that the solution to a unanimity 
game contains the vertices of the imputation set of this game. This property is sim-
ilar to Peleg’s condition of “unanimity for 2-person games” (UTPG) in a charac-
terization of the core on totally balanced games (Peleg 1989; Sudhölter and Peleg 
2002). On the one hand, UTPG is stronger than UNA as it requires coincidence 
with the imputation set for all unanimity games (even for all games that are strategi-
cally equivalent to unanimity games). On the other hand, UNA is a generalization of 
UTPG because it is a condition for games that may have more than two players.

The other new property employed in some of our characterizations is called converse 
super-additivity (CSUPA). The traditional axiom super-additivity (SUPA) requires 
that the sum of solution elements of two games is a vector of the solution of the sum 
of these two games. CSUPA may be regarded as a converse super-additivity property 
because it requires that a payoff vector belongs to the solution of a game v if, for each 
totally positive game w ≠ 0 such that v + w is also totally positive, the sum of this vec-
tor and an arbitrary element of the solution of w belongs to the solution of v + w.

In addition to the aforementioned new properties, we invoke classical axioms 
such as Pareto efficiency, the null-player property, individual rationality, and non-
emptiness. We also introduce variants of the well-known reasonableness proper-
ties. A solution is coalition-wise reasonable from above (REAB) or below (REBE), 
respectively, if each coalition receives at most its maximal or at least its minimal, 
respectively, contribution.

Our axiomatic characterizations of the core are valid for various domains. The 
first and main result is that, on each cone of convex games which contains the set of 
totally positive games, the core is the unique solution which satisfies UNA, additivity, 
Pareto efficiency, the null-player property, and individual rationality (Theorem 3.2). 
This result can be extended to the larger set of balanced games (Corollary 4.1). To 
do so, as in the previous result, we employ UNA, Pareto efficiency, the null-player 
property, and individual rationality on balanced games. Furthermore, we require non-
emptiness and super-additivity on the set of balanced games, and additivity on the set 
of totally positive games. Replacing non-emptiness by CSUPA yields a characteriza-
tion of the core on each set of games which contains the set of totally positive games 
(Corollary 4.4). Moreover, we show that REBE (alternatively, Pareto efficiency and 
REAB) may be used to replace “additivity on totally positive games”.

The article is organized as follows. Section 2 provides definitions and notation. 
Section 3 introduces and motivates UNA and states the first main result, the char-
acterization of the core on several domains of convex games. Section 4 states the 
characterization results of the core on the domain of balanced games and on more 
general domains. It also introduces converse super-additivity and the new reasona-
bleness properties and presents the second main result, the characterization of the 
core on arbitrary sets of games with a fixed player set that contain the set of totally 
positive games (Theorem 4.6). Section 5 concludes.
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2  Preliminaries

Let N be a finite set of at least two elements, which is called the set of players. 
Throughout, let n = |N| . A coalitional game with transferable utility (for short, a 
game) on N is a pair (N, v) where v is a function that associates a real number v(S) 
with each subset S of N. We always assume that v(�) = 0 . As N is fixed in this arti-
cle, we identify a game (N, v) with its coalition function v. A coalition is a non-
empty subset of N. Player i ∈ N is a null-player in game v if v(S ∪ {i}) = v(S) 
for all S ⊆ N ⧵ {i} . Two players i, j ∈ N are substitutes of the game v if 
v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N ⧵ {i, j}.

For each nonempty coalition T we denote by uT the unanimity game on T, i.e., for 
each S ⊆ N,

According to Shapley (1953), the unanimity games form a basis of the set of all 
games. Therefore, for each game v there exists a unique collection (�T (v))T∈2N⧵{�} of 
real coefficients such that

A game v is totally positive (Vasil’ev 1975) if �T (v) ≥ 0 for all T ∈ 2N ⧵ {�}.
For each S ⊆ N and each vector x = (xi)i∈N ∈ ℝ

N , let x(S) =
∑

i∈S xi ( x(�) = 0 ). 
We also denote the indicator function of S by 1S ∈ ℝ

N , i.e.,

Let X∗(v) and X(v) be the sets of feasible and Pareto efficient feasible vectors, 
respectively, i.e.,

The core of a game v is the set of vectors

Remark 2.1 For each game v there exist totally positive games u,  w 
such that v + u = w . Indeed, with A = {T ∈ 2N ⧵ {�} ∣ �T (v) ≤ 0} and 
B = {T ∈ 2N ⧵ {�} ∣ �T (v) ≥ 0} put u =

∑
T∈A(−�

T (v))uT and w =
∑

T∈B �
T (v)uT . 

Then u and w are totally positive and v + u = w.

A game v is convex (Shapley 1971) if v(S) + v(T) ≤ v(S ∩ T) + v(S ∪ T) for 
all S, T ⊆ N . A game v is balanced (Bondareva 1963; Shapley 1967) if and only 
if C(v) ≠ � . Let Γpos , Γvex and Γbal denote the sets of totally positive, convex and 

uT (S) =

{
1, if S ⊇ T ,

0, otherwise.

(2.1)v =
∑

T∈2N⧵{�}

�T (v)uT .

1
S
i
=

{
1, if i ∈ S,

0, if i ∈ N ⧵ S.

X∗(v) = {x ∈ ℝ
N ∣ x(N) ≤ v(N)} and X(v) = {x ∈ ℝ

N ∣ x(N) = v(N)}.

C(v) = {x ∈ X(v) ∣ x(S) ≥ v(S)∀S ⊆ N}.
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balanced games, respectively. As unanimity games are convex and the set of convex 
games is closed under summation and under multiplication by a non-negative scalar, 
each totally positive game is convex. Furthermore, each convex game is balanced 
(Shapley 1971).

An ordering of N is a bijective mapping � ∶ N → {1,… , n} . Denote by ΠN the 
set of orderings of N. For each � ∈ ΠN and i ∈ N , denote by P�

i
 the coalition of pre-

decessors of i, i.e., P�
i
= {j ∈ N ∣ �(j) ≤ �(i)} . Moreover, for each game v, denote by 

a�(v) the contribution vector of � , i.e., the vector defined by

Note that a�(v) = x ∈ ℝ
N is uniquely determined by the n equations x(P�

i
) = v(P�

i
) 

for all i ∈ N.

Remark 2.2 According to Shapley (1971) the core of a convex game v is the convex 
hull of all of its contribution vectors:

As a consequence, for each c ≥ 0 and each coalition S,

A (set-valued) solution � on a set Γ of games assigns to each game v ∈ Γ a set of 
vectors 𝜎(v) ⊆ X∗(v) . Let � be a solution on a set Γ of games on N. Then � satisfies

• Non-emptiness (NE) if �(v) ≠ � for all v ∈ Γ,
• The null-player property (NP) if, for all v ∈ Γ and all null-players i ∈ N , xi = 0 

for all x ∈ �(v),
• Additivity (ADD) if, for all v, u,w ∈ Γ with w = u + v , �(u) + �(v) = �(w),
• Super-additivity (SUPA) if, for all v, u,w ∈ Γ with w = u + v , 𝜎(u) + 𝜎(v) ⊆ 𝜎(w),
• Individual rationality (IR) if, for all v ∈ Γ and all x ∈ �(v) , xi ≥ v({i}) for all 

i ∈ N,
• Pareto efficiency (EFF) if 𝜎(v) ⊆ X(N, v) for all v ∈ Γ,
• Scale covariance (SCOV) if, for all v ∈ Γ and all 𝛼 > 0 with �v ∈ Γ , 

�(�v) = ��(v).

The core satisfies NP, SUPA, IR, EFF, and SCOV on each set of games. It satis-
fies NE on each subset of balanced games. The core satisfies ADD on certain sets 
of games as shown by Bloch and de Clippel (2010), e.g., on each subset of Γvex . 
Note also that a solution satisfying ADD also satisfies SUPA, while the converse 
implication may not hold.

We conclude this section by proving the following useful lemma.

(2.2)a�
i
(v) = v(P�

i
) − v(P�

i
⧵ {i})∀i ∈ N.

(2.3)C(v) =

{
∑

�∈ΠN

��a
�(v)

||||
�� ≥ 0∀� ∈ ΠN ,

∑

�∈ΠN

�� = 1

}
.

(2.4)C(cuS) =

{
x ∈ ℝ

N
+

||||
x(S) = c, xj = 0∀j ∈ N ⧵ S

}
.
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Lemma 2.3 Let Γ be a set of games such that Γpos ⊆ Γ . Then the core on Γ satisfies 
ADD if and only if Γ ⊆ Γvex.

Proof Let Γ be as hypothesized. The if part is well-known as mentioned. To show the only if 
part, assume that the core on Γ satisfies ADD on Γ . Let v ∈ Γ and let S, T ⊆ N . It remains 
to show that v(S) + v(T) ≤ v(S ∩ T) + v(S ∪ T) . We may assume that S ⊈ T and T ⊈ S 
because otherwise the inequality is obviously satisfied. Hence, there exists � ∈ ΠN such that 
S ∩ T = {i ∈ N ∣ �(i) ≤ |S ∩ T|} and S ∪ T = {i ∈ N ∣ �(i) ≤ |S ∪ T|} . By Remark 
2.1 there exist u,w ∈ Γpos such that v + u = w . By Remark 2.2, z ∶= a�(w) ∈ C(w) . 
As Γpos ⊆ Γ and as the core is assumed to satisfy ADD, there exist x ∈ C(u) and 
y ∈ C(v) such that x + y = z . As z(S ∩ T) = w(S ∩ T) and z(S ∪ T) = w(S ∪ T) , 
we conclude that x(S ∩ T) = u(S ∩ T), x(S ∪ T) = u(S ∪ T), y(S ∩ T) = v(S ∩ T) , 
and y(S ∪ T) = v(S ∪ T) . However, v(S ∩ T) + v(S ∪ T) = y(S ∩ T) + y(S ∪ T)

= y(S) + y(T) ≥ v(S) + v(T) .   ◻

3  Axiomatization of the core on domains of convex games

In this section we provide a characterization of the core on an arbitrary cone of 
convex games that contains all totally positive games. Here, we say that a set of 
games is a cone if it is closed under multiplication with positive scalars (a set Γ of 
games is closed under multiplication with positive scalars if cv ∈ Γ for all v ∈ Γ 
and c > 0).

For this purpose we introduce one further property. This axiom may be 
regarded as a weakening of a natural generalization to n-person games of a 
well-known property for 2-person games used by Peleg (1989) in an axioma-
tization of the core based on some consistency properties. As our characteri-
zation results do not rely on consistency properties, such a generalization to 
n-person games seems reasonable. Recall that, according to Peleg (1989), a 
solution satisfies unanimity for 2-person games (UTPG) if the solution assigns 
the set of all imputations, i.e., Xir(v) = {x ∈ X(v) ∣ xi ≥ v({i}) for all i ∈ N} , to 
each 2-person game v under consideration. Now, a 2-person game for which Xir 
is nonempty is, up to strategic equivalence, a unanimity game. Hence, UTPG 
mainly requires that the solution selects the set of imputations for each 2-per-
son unanimity game. Hence, a natural generalization of UTPG to n-person 
games would be to require that the solution assigns to each unanimity game its 
set of imputations, i.e., its core. Our new axiom is weaker. It only requires that 
the vertices of the imputation set are contained in the solution of every una-
nimity game. The formal definition is as follows. Let Γ be a set of games and 
let � be a solution on Γ . Then � satisfies

• Unanimity (UNA) if, for all T ∈ 2N ⧵ {�} such that uT ∈ Γ , 1{i} ∈ �(uT ) for each 
i ∈ T .
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The interpretation of UNA is simple: A solution that satisfies UNA is liberal in the 
sense that it allows to assign the entire amount of money available in a unanimity 
game to each player in the determining coalition. Hence, the convex hull of these 
vectors is the entire set of imputations, i.e., the entire core. Clearly, the core satisfies 
UNA on any domain of games.

The following lemma is useful.

Lemma 3.1 Let Γ ⊇ Γpos and � be a solution on Γ that satisfies SUPA such that 
a𝜋(v) ∈ 𝜎(v) ⊆ C(v) for all � ∈ ΠN and v ∈ Γpos . Then 𝜎(w) ⊆ C(w) for all w ∈ Γ.

Proof Let v ∈ Γ . By Remark 2.1, there exist u,w ∈ Γpos such that v + u = w . Let 
y ∈ �(v) . Let S ∈ 2N ⧵ {�}. It remains to show that y(S) ≥ v(S) . To this end let 
� ∈ ΠN such that S = {j ∈ N ∣ �(j) ≤ |S|} . By (2.2), 

∑
j∈S a

�
j
(u) = u(S) . Hence, by 

SUPA, a𝜋(u) + y ∈ 𝜎(w) ⊆ C(w) , which implies that y(S) ≥ v(S).  ◻

Theorem 3.2 Let Γ be a cone of games such that Γpos ⊆ Γ ⊆ Γvex . Then the core is 
the unique solution on Γ that satisfies EFF, ADD, IR, NP, and UNA.

Proof The core satisfies the axioms (see the two preceding sections). It remains 
to show uniqueness. To this end let � be a solution on Γ that satisfies the desired 
six axioms. Step 1: We first show that the prerequisites of Lemma 3.1 are sat-
isfied. Let v ∈ Γpos. If v = cuS for some c ≥ 0, S ∈ 2N ⧵ {�} and x ∈ �(v) , 
then, by EFF, x(N) = v(N) = c , and, by NP, xi = 0 for all i ∈ N ⧵ S . Hence, 
x(S) = v(N) . By IR, xj ≥ 0 for all j ∈ S . Hence, x ∈ C(v) by (2.4). For � ∈ ΠN , 
a�(v) = ca�(uS) . Hence, for c ∈ ℕ , a�(v) ∈ �(v) by UNA and ADD. If c = 0 , 
then a�(v) = (0,… , 0) ∈ ℝ

N is the unique core element by (2.4). By ADD, 
�(v) + �(uN) = �(uN) so that, by UNA, �(v) ≠ � , hence �(v) = {(0,… , 0)} . If 
c > 0 such that c ∈ ℝ ⧵ ℕ , then, for c� ∈ ℕ with c′ > c , a�(c�uS) ∈ �(c�uS) as shown 
before. By ADD, �(cuS) + �((c� − c)uS) ∋ c�a�(uS) . As 𝜎(cuS) ⊆ cC(uS) = C(cuS) 
and 𝜎((c� − c)uS) ⊆ (c� − c)C(uS) = C((c� − c)uS) , ADD guarantees that there 
are y ∈ C(cuS) and z ∈ C((c� − c)uS) such that y + z = a�(c�uS) ∶= x� . By (2.2), 
x�(P�

i
) = c�uS(P�

i
) for all i ∈ N . Hence, y(P�

i
) = cuS(P�

i
) and z(P�

i
) = (c� − c)uS(P�

i
) 

for all i ∈ N so that y = a�(cuS) and z = a�((c� − c)uS). If v ∈ Γpos is arbitrary, then 
a𝜋(v) ∈ 𝜎(v) ⊆ C(v) by ADD.

Step 2: We now show that, for each v ∈ Γ and � ∈ ΠN , a𝜋(v) ∈ 𝜎(v) ⊆ C(v) . 
Indeed, by Lemma 3.1, 𝜎(v) ⊆ C(v) . By Remark 2.1, there exist u,w ∈ Γpos such that 
v + u = w . As w ∈ Γpos , z ∶= a�(w) ∈ �(w) . By ADD, there exist x ∈ 𝜎(u) ⊆ C(u) 
and y ∈ �(v) such that x + y = z . For each r ∈ {1,… , n} put Sr = {i ∈ N ∣ �(i) ≤ r} 
and note that z(Sr) = w(Sr) . As 𝜎(v) ⊆ C(v) , we conclude that x(Sr) = u(Sr) and 
y(Sr) = v(Sr) so that y = a�(v).
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Step 3: We now finish the proof. If y is an arbitrary element of C(v), then, by 
(2.3), y =

∑
�∈ΠN ��a

�(v) for some �� ≥ 0 , � ∈ ΠN , such that 
∑

�∈ΠN �� = 1 . As 
v =

∑
�∈ΠN ��v , and as ca�(v) = a�(cv) and cv ∈ Γ for all c ≥ 0 , we get y ∈ �(v) 

because � satisfies ADD.   ◻

Let Γ be a cone of games such that Γpos ⊆ Γ ⊆ Γvex . The following examples 
show that each of the axioms employed in Theorem 3.2 is logically independent 
of the remaining axioms:

• The solution �1 on Γ , defined by 

 for each v ∈ Γ , satisfies all axioms except EFF.
• The solution �2 on Γ , defined by �2(v) = C(v) if v ∈ Γ contains at least 

one null player and �2(v) = C(v) ∪ {ESD(v)} if v ∈ Γ does not con-
tain a null player, where ESD is the equal surplus division value given by 
ESDi(v) = v({i}) + (v(N) −

∑
j∈N v({j}))∕n for each v ∈ Γ and each i ∈ N , satis-

fies all axioms except ADD.
• The solution �3 on Γ , defined by �3(uT ) = {x ∈ X(uT ) ∣ xj = 0 for all j ∈ N ⧵ T} 

for all T ∈ 2N ⧵ {�} and, for each v ∈ Γ , by �3(v) =
∑

T∈2N⧵{�} �
T (v)�3(uT ) , sat-

isfies all axioms except IR.
• The solution �4 on Γ , defined by �4(v) = {x ∈ X(v) ∣ xi ≥ v({i}) for all i ∈ N} 

for all v ∈ Γ , satisfies all axioms except NP provided that n ≥ 3 . For n = 2 , NP 
follows from IR and EFF.

• The solution �5 on Γ , defined by �5(v) = {�(v)} for each v ∈ Γ , where �(v) is the 
Shapley value 

�
recall that �(v) =

∑
�∈ΠN

a� (v)

n!

�
, satisfies all axioms except UNA.

The following example, which can easily be generalized to the case n > 3 , shows 
that it is crucial to assume in Theorem 3.2 that the set Γ is a cone. For n = 2 , all 
convex games are totally positive.

Example 3.3 Let n = 3 , say N = {1, 2, 3} , let v
0

= u{2} + 2u{3} + u{1,2} + u{1,3}

+u{2,3} − uN , and let Γ = Γpos ∪ {v0} . Note that v0 ∈ Γvex . We define the solution � on Γ 
by �(v0) = {�a�(v0) + (1 − �)a�

�

(v0) ∣ 0 ≤ � ≤ 1,�,�� ∈ ΠN} and �(v) = C(v) for all 
v ∈ Γpos . As {a�(v0) ∣ � ∈ ΠN} = {(0, 2, 3), (1, 1, 3), (1, 2, 2)} , we obtain

i.e.,

�1(v) = (C(v) −ℝ
N
+
) ∩ {x ∈ ℝ

N ∣ xi ≥ v({i}) for all i ∈ N}

�(v0) ={(�, 2 − �, 3) ∣ 0 ≤ � ≤ 1}
∪ {(�, 2, 3 − �) ∣ 0 ≤ � ≤ 1}
∪ {(1, 2 − �, 2 + �) ∣ 0 ≤ � ≤ 1},
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Except ADD, the remaining axioms in Theorem 3.2 are punctual/“local” properties, 
i.e., properties that do not require to compare games. All properties are satisfied for 
all games in Γpos because restricted to this domain our solution is the core. EFF, IR, 
and NP are also satisfied for v0 because 𝜎(v0) ⊆ C(v0) . As v0 is not a unanimity 
game, UNA is also trivially valid. Hence, it remains to show that ADD is satisfied. 
For this purpose, let u, v,w ∈ Γ such that u + v = w . By SUPA of the core it remains 
to show that 𝜎(w) ⊆ 𝜎(u) + 𝜎(v) . If u, v ∈ Γpos , then w ∈ Γpos and the proof is fin-
ished by ADD of the core. The case that u = v = v0 does not appear because 
2v0 ∉ Γ . Hence, we may assume that u = v0, v ∈ Γpos, and w ∈ Γpos . Hence, 
v = uN + v� for some v� ∈ Γpos . By ADD of the core, 
�(w) = C(w) = C(v0 + v) = C(v0 + uN) + C(v�) = �(v0 + uN) + �(v�). Hence, it suf-
fices to consider the case v = uN . Let v1 = v0 − u{2} − 2u{3} , i.e., v1 is the 0-normali-
zation of v0 . As the core is covariant under strategic equivalence, it remains to show 
that C(v1 + uN) ⊆ X + C(uN) . Let z ∈ �(v1 + uN) = C(v1 + uN) . By symmetry of v1 , 
hence of v1 + uN , we may assume that z3 ≥ 1 because z(N) = 3 . Let 
x =

(
z1

z1+z2
,

z2

z1+z2
, 1
)
 and y = z − x . Then (see Fig. 1) x ∈ X and y ∈ C(uN) so that the 

proof is finished.

4   Axiomatization of the core on general domains of games

We use the results of the former section to establish characterizations of the core 
on broader domains of games. An immediate consequence of Theorem 3.2 is the 
following corollary.

X∶=�(v
0

) − (0, 1, 2) = {(�, 1 − �, 1) ∣ 0 ≤ � ≤ 1}

∪ {(�, 1, 1 − �) ∣ 0 ≤ � ≤ 1}

∪ {(1, 1 − �, �) ∣ 0 ≤ � ≤ 1}.

Fig. 1  Sketch to Example 3.3
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Corollary 4.1 The core is the unique solution on Γbal that satisfies EFF, IR, NP, NE, 
UNA and SUPA and, on Γpos , ADD.

Proof The core satisfies the desired properties. In order to show uniqueness, let � 
be solution that satisfies EFF, IR, NP, NE, UNA, and SUPA on Γbal and ADD on 
Γpos . Let v ∈ Γbal . It remains to show that �(v) = C(v) . For w ∈ Γpos , �(w) = C(w) 
by Theorem  3.2. Hence, by Lemma 3.1, 𝜎(v) ⊆ C(v) for all v ∈ Γbal . In order 
to prove the converse inclusion, let x ∈ C(v) . If n = 2 , then v is convex so that 
�N(v) ≥ 0 and �(�N(v)uN) = C(�N(v)uN) . Moreover, C(�{i}(v)u{i}) = {�{i}

1
{i}} for 

all i ∈ N so that, by NE, C(�{i}(v)u{i}) = �(�{i}(v)u{i}) . By ADD of the core on Γvex , 
x ∈

∑
i∈N C(�{i}(v)u{i}) + C(�N(v)u(N)) so that, by SUPA, x ∈ �(v).

For n ≥ 3 we proceed as Peleg (1986) by considering the game w given by 
w({i}) = v({i}) for all i ∈ N and w(S) = x(S) otherwise. Note that C(w) = {x} . By 
Lemma 3.1 and NE, �(w) = C(w) = {x} . Furthermore, set u = v − w and note that 
C(u) = {(0,… , 0)} . As before we conclude that �(u) = {0} . SUPA finishes the 
proof.  ◻

Note that NE is not only crucial in the foregoing proof, but also necessary 
for the statement of Corollary 4.1. Indeed, the solution that assigns the core to 
each totally positive game and the empty set to each other balanced game satisfies 
EFF, IR, NP, UNA, SUPA, and, on Γpos , ADD, and it violates NE.

In order to provide a characterization of the core on an arbitrary set of games 
that contains the set of totally positive games, we note that, by Lemma 3.1, the 
core on such a set of games is the maximum solution that coincides with the core 
on Γpos and satisfies SUPA. Here, “maximum” is meant in the sense that each 
solution � that satisfies the mentioned properties is a subsolution of the core (i.e., 
𝜎(v) ⊆ C(v) for all v ∈ Γ ) and that the core satisfies the mentioned properties. In 
order to replace “maximum”, we reconsider the axiom SUPA. Recall that a solu-
tion � on a set Γ of games satisfies SUPA if for each v ∈ Γ and all x ∈ ℝ

N:

This formulation of SUPA motivates to define the following “converse” version of 
SUPA, which requires that, for each v ∈ Γ and all x ∈ ℝ

N:

 Assume that Γ contains Γpos , the set of totally positive games. Then (4.1) is satisfied 
for a solution � if and only if 0 ∈ ℝ

N is a member of �(0) . But even if the condition 
w ≠ 0 is added in (4.1), the arising property remains very weak. For instance, the 
solution that assigns the core to each totally positive game and the empty set to each 
other game is still satisfying the aforementioned slightly stronger property provided 
Γ contains, for each v ∈ Γ , also v + w for each w ∈ Γpos ⧵ {0} . We now show that the 
core on Γ satisfies the following property that is even stronger than this modification 
of (4.1). A solution � on a set Γ of games satisfies

x ∈ 𝜎(v) ⇒ {x} + 𝜎(w) ⊆ 𝜎(v + w) for all w ∈ Γ such that v + w ∈ Γ.

(4.1)x ∈ 𝜎(v) ⇐ {x} + 𝜎(w) ⊆ 𝜎(v + w) for all w ∈ Γ such that v + w ∈ Γ.
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• Converse super-additivity (CSUPA) if, for all v ∈ Γ and all x ∈ ℝ
N the fol-

lowing condition is satisfied: If x + y ∈ �(v + w) for all y ∈ �(w) and all 
w ∈ Γ ∩ Γpos such that w ≠ 0 and v + w ∈ Γ ∩ Γpos , then x ∈ �(v).

Lemma 4.2 Let Γ be a set of games that contains Γpos . Then the core on Γ satisfies 
CSUPA.

Proof Let v ∈ Γ and x ∈ ℝ
N such that {x} + C(w) ⊆ C(v + w) for each 

w ∈ Γpos ⧵ {0} such that v + w ∈ Γpos . It remains to show that x ∈ C(v) . By Remark 
2.1, there exists w ∈ Γpos such that v + w ∈ Γpos . We may assume that w ≠ 0 because 
in the case that v ∈ Γpos we may select an arbitrary w ∈ Γpos ⧵ {0} . Assume, on the 
contrary, x ∈ ℝ

N ⧵ C(v) , then either x(N) > v(N) or there exists S ⊆ N such that 
x(S) < v(S) . In the former case (x + z)(N) > (v + w)(N) for all z ∈ C(w) so that 
x + z ∉ C(v + w) . In the latter case, there exists z ∈ C(w) such that z(S) = w(S) . 
Hence, (x + z)(S) < (v + w)(S), i.e., x + z ∉ C(v + w) as well, and the desired contra-
diction has been obtained.  ◻

Thus, we may now show the following result.

Proposition 4.3 Let Γpos ⊆ Γ . A solution on Γ that coincides with the core on Γpos 
satisfies SUPA and CSUPA if and only if it coincides with the core on the entire set 
Γ.

Proof The core satisfies SUPA so that the if part is due to Lemma 4.2. For the only 
if part, assume that � satisfies SUPA and CSUPA on Γ ⊇ Γpos and coincides with 
the core on Γpos . Let v ∈ Γ . By Lemma 3.1, 𝜎(v) ⊆ C(v) . In order to show the other 
inclusion, let x ∈ C(v) . By SUPA of the core, {x} + C(w) ⊆ C(v + w) for all w ∈ Γ 
such that v + w ∈ Γ , hence x ∈ �(v) by CSUPA.  ◻

Therefore, Proposition 4.3 and Theorem 3.2 lead to the following corollary.

Corollary 4.4 Let Γ be a set of games that contains Γpos . Then the core is the unique 
solution on Γ that satisfies EFF, SUPA, CSUPA, IR, NP, and UNA and, when 
restricted to Γpos , ADD.

Further axiomatizations of the core that avoid “ADD on Γpos ” may be obtained by 
replacing IR and NP by one of the following versions of reasonableness.

For a game v and i ∈ N denote the maximal and minimal contribution of i by 
bmax
i

(v) and bmin
i

(v) , i.e.,

Recall that x ∈ ℝ
N is called reasonable from above (Milnor 1952) if xi ≤ bmax

i
(v) 

for all i ∈ N . Similarly, we say that x is reasonable from below if xi ≥ bmin
i

(v) for all 

bmax
i

(v) = maxS⊆N⧵{i}(v(S ∪ {i}) − v(S)) and

bmin
i

(v) = minS⊆N⧵{i}(v(S ∪ {i}) − v(S)).
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i ∈ N . Arguments supporting these kinds of reasonableness are as follows. It seems, 
indeed, unreasonable to pay to any player more than her maximal contribution to 
any coalition and, vice versa, a player may refuse to join any coalition if she does 
not receive at least her minimal contribution. Note that individual rationality implies 
reasonableness from below.

We now define coalition-wise reasonableness as follows. The maximal and 
minimal contribution of a coalition T ∈ 2N ⧵ {�} , respectively, is

Let Γ be a set of games and � be a solution on Γ . Say that � satisfies

• Coalition-wise reasonableness from above (REAB) if, for all v ∈ Γ, x ∈ �(v) 
and T ∈ 2N ⧵ {�} , x(T) ≤ bmax

T
(v);

• Coalition-wise reasonableness from below (REBE) if, for all v ∈ Γ, x ∈ �(v) 
and T ∈ 2N ⧵ {�} , x(T) ≥ bmin

T
(v).

Note that the core satisfies REBE by definition. If x ∈ X∗(v) does not sat-
isfy REAB, then there exists a coalition T such that x(T) > v(S ∪ T) − v(S) 
for all S ⊆ N ⧵ T  , hence, x(T) > v(N) − v(N ⧵ T) which implies T ≠ N and, as 
x(N) ≤ v(N) , x(N ⧵ T) < v(N ⧵ T) . Hence, the core also satisfies REAB.

Now, if v ∈ Γvex , T ∈ 2N ⧵ {�} , and S ⊆ N ⧵ T  , then

so that bmin
T

(v) = v(T) and bmax
T

(v) = v(N) − v(N ⧵ T).

Remark 4.5 Let v ∈ Γvex . 

(1) The core of v coincides with the set of all feasible vectors that are coalition-wise 
reasonable from below because bmin

T
(v) = v(T) for all T ∈ 2N ⧵ {�}.

(2) Similarly it can be shown that the core of v is the set of Pareto efficient feasible 
vectors that are coalition-wise reasonable from above.

We conclude with the following result.

Theorem 4.6 Let Γpos ⊆ Γ . The core on Γ is the unique solution that satisfies REBE, 
UNA, SUPA, SCOV, and CSUPA. Moreover, in this characterization REBE can be 
replaced by EFF and REAB.

Proof It remains to show the uniqueness part. Let � be a solution that satisfies REBE 
(or EFF and REAB, respectively), UNA, SUPA, SCOV, and CSUPA. In view of 
Proposition 4.3 it suffices to show that � coincides with the core on Γpos . In view of 
Remark 4.5, � is a subsolution of the core on Γpos . Now, we proceed similarly as in 
the proof of Theorem 3.2. Let v ∈ Γpos . Let T ∈ 2N ⧵ {�}, c > 0 , and � ∈ ΠN . By 
UNA and SCOV, a�(cuT ) ∈ �(cuT ) . Hence, if v ≠ 0 , then a�(v) ∈ �(v) by SUPA. 

bmax
T

(v) = maxS⊆N⧵T (v(S ∪ T) − v(S)) and

bmin
T

(v) = minS⊆N⧵T (v(S ∪ T) − v(S)).

v(S) + v(T) ≤ v(S ∪ T) and v(S ∪ T) + v(N ⧵ T) ≤ v(N) + v(S)
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If v = 0 , then 0 + a�(w) ∈ �(0 + w) for each w ∈ Γpos ⧵ {0} so 0 = a�(0) ∈ �(0) is 
guaranteed by CSUPA. The proof can now be completed by literally copying Step 3 
of the proof of Theorem 3.2 by using SUPA instead of ADD.  ◻

It should be noted that each property in Theorem 4.6 is logically independent of 
the remaining properties. Indeed, the solution that assigns X(v), the set of feasible 
Pareto efficient vectors, to each v ∈ Γ exclusively violates REBE or REAB, respec-
tively. The solution � defined by �(v) = {x ∈ X∗(V) ∣ x(T) ≥ v(T)∀T ∈ 2N ⧵ {N}} 
for all v ∈ Γ exclusively violates EFF and REBE. The solution that assigns the 
empty set to each additive game and the core to each other game in Γ exclusively 
violates UNA. The solution � defined by �(v) = {a�(v) ∣ � ∈ ΠN} for all v ∈ Γpos 
and �(w) = C(w) for all w ∈ Γ ⧵ Γpos exclusively violates SUPA. The solution that 
assigns the core to each game v ∈ Γ satisfying v(S) ∈ ℕ ∪ {0} for all S ⊆ N and 
the empty set to all other games in Γ satisfies all axioms except SCOV. The solu-
tion �∗ defined by �∗(v) = C(v) for all v ∈ Γpos and �∗(w) = � for all w ∈ Γ ⧵ Γpos 
exclusively violates CSUPA provided that Γpos ⫋ Γ . On Γpos the core is character-
ized by the remaining properties.

5  Concluding remarks

Some final remarks are of interest.

• For T ⊆ 2N ⧵ {�} , put Γvex
T

= {v ∈ Γvex ∣ �T (v) ≠ 0 ⇒ T ∈ T} , where �T is 
defined by (2.1). That is, Γvex

T
 is the set of convex games that are linear com-

binations of unanimity games on coalitions in T  . Moreover, let Γpos

T
 be the set 

of all totally positive games that are linear combinations of such unanimity 
games, i.e., Γpos

T
= Γvex

T
∩ Γpos . Then the statement of Theorem 3.2 is valid for 

each cone Γ satisfying Γpos

T
⊆ Γ ⊆ Γvex

T
.

• A game v is called almost positive if �T (v) ≥ 0 for all T ⊆ N with |T| ≥ 2 . 
Hence, almost positive games arise by adding inessential (additive) games 
to totally positive games. It should be noted that despite of Example 3.3 the 
statement of Theorem 3.2 holds for an arbitrary set of almost positive games 
(not necessarily a cone) that contains all totally positive games because the 
core of an inessential game is a singleton.

• Note that CSUPA is the only axiom invoked in Corollary 4.4 that has to be 
requested for all games in Γ , whereas it is sufficient to apply all other axioms 
to totally positive games.

Fig. 2 illustrates the domains for which our results are formulated. The union of 
the green cones reminds us that Theorem 3.2 works on each set of games con-
tained in the set of convex games (the purple cone) that contains all totally posi-
tive games (the blue cone) and is a cone. Corollary 4.4 and Theorem 4.6 are valid 
on each set of games that contains all totally positive games (the blue cone). Such 
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a set of games can include non-balanced games and not all convex games. Fig. 2 
illustrates that Theorem 3.2 can be applied to sets of games that are not neces-
sarily convex. This is also true for the sets of games for which Corollary 4.4 and 
Theorem  4.6 work. Finally, Corollary 4.1 applies to the set of balanced games 
(the orange cone).
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