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If a TU game is extendable, then its core is a stable set. However, there are many TU
games with a stable core that are not extendable. A coalition is vital if there exists some
core element x such that none of the proper subcoalitions is effective for x. It is exact if it
is effective for some core element. If all coalitions that are vital and exact are extendable,
then the game has a stable core. It is shown that the contrary is also valid for matching
games, for simple flow games, and for minimum coloring games.
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1. Introduction

The core of a cooperative game is called stable if it is a stable set in the sense of von Neumann and Morgenstern (1953).
In this paper we restrict out attention to TU games. Several sufficient conditions for core stability may be found in the
literature. For details see, e.g., van Gellekom et al. (1999). A weak and simple sufficient condition, introduced by Kikuta and
Shapley (1986), is called extendability. A TU game is extendable if each core element of any subgame may be extended to a
core element of the entire game. In contrast to Azrieli and Lehrer (2007), who showed that core largeness in the sense of
Sharkey (1982) is equivalent to a strong version of extendability, the main part of the present paper is devoted to relaxing
extendability in such a way that the modified extendability properties (1) are still sufficient conditions and (2) become
necessary conditions for core stability when restricting the attention to some nontrivial important classes of games. We
show that the game has a stable core if certain coalitions are extendable, namely those that are vital in the sense of Gillies
(1959) and exact in the sense of Shapley (1971) and Schmeidler (1972). For some classes of games, e.g., for the class of
symmetric games (see Biswas et al., 1999), necessary and sufficient conditions for core stability have been found. We show
that vital–exact extendability is also a necessary condition for core stability for three important classes of games: Matching
games, simple flow games, and minimum coloring games. Moreover, our approach enables us to reprove in a simple way
two characterization results of Solymosi and Raghavan (2001) and of Bietenhader and Okamoto (2006).

The paper is organized as follows. In Section 2 the basic notation and the relevant definitions are presented and some
relevant well-known results are recalled. Section 3 is devoted to three new extendability concepts. Theorem 3.3 states that
the new variants of extendability are still sufficient for core stability. By means of examples it is shown that the modified
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conditions are weaker than extendability but still not necessary for core stability. Some properties of the new conditions
are also discussed. Section 3.1 is devoted to the proof of Theorem 3.3 and in Section 3.2 it turns out that, if the vital and
exact coalitions exhibit any of two additional properties (see Theorem 3.9 and Corollary 3.13), then the relaxed extendability
condition is necessary for core stability. Section 4 is devoted to three classes of games that have been investigated in the
literature. It is shown that the relaxed extendability condition is a necessary condition for core stability in these three cases.
The theory developed so far enables us to extend to the class of matching games the well-known characterization result of
assignment games with a stable core. Moreover, in the case of minimum coloring games, the well-known characterization
result is generalized.

2. Preliminaries

In this section we recall definitions of some relevant concepts and well-known results that may be found in von Neu-
mann and Morgenstern (1953) or Gillies (1959) unless otherwise specified.

A (cooperative TU) game is a pair (N, v) such that ∅ �= N is finite and v : 2N → R, v(∅) = 0. Let (N, v) be a game. For
S ⊆ N we denote by RS the set of all real functions on S . So RS is the |S|-dimensional Euclidean space. (Here and in the
sequel, if D is a finite set, then |D| denotes the cardinality of D .) If x, y ∈ RS , then we write x � y if xi � yi for all i ∈ S .
Moreover, we write x > y if x � y and x �= y and we write x � y if xi > yi for all i ∈ S .

Let X(N, v) = {x ∈ RN | x(N) = v(N)} denote the set of Pareto optimal allocations (preimputations) of (N, v). We use x(S) =∑
i∈S xi (x(∅) = 0) for every S ∈ 2N and every x ∈ RN . Additionally, xS denotes the restriction of x to S , i.e. xS = (xi)i∈S .
The core of (N, v), C(N, v), is given by

C(N, v) = {
x ∈ X(N, v)

∣∣ x(S) � v(S) ∀S ⊆ N
}
.

The set of imputations of (N, v), I(N, v), is I(N, v) = {x ∈ X(N, v) | xi � v({i}) ∀i ∈ N}.
A coalition (in N) is a nonempty subset of N . A subgame of (N, v) is a game (T , v T ) where T is a coalition and v T (S) =

v(S) for all S ⊆ T . The subgame (T , v T ) will also be denoted by (T , v).
Let x, y ∈ RN and S ∈ 2N \ {∅}. We say that x dominates y via S (at (N, v)), written x domS y, if x(S) � v(S) and

xS � yS . Also, we define x dom y, that is, x dominates y (at (N, v)), if there exists a coalition S in N such that x domS y.
Let X ⊆ RN . We say that X is internally stable (with respect to (w.r.t.) (N, v)) if for any x ∈ X and y ∈ RN , x dom y implies
that y /∈ X . Moreover, X is externally stable (w.r.t. (N, v)) if for any y ∈ I(N, v) \ X there exists x ∈ X such that x dom y. The
set X is stable if it is internally and externally stable.

Note that C(N, v) is internally stable and that any externally stable set contains C(N, v). We say that (N, v) has a stable
core if C(N, v) is stable, that is, externally stable, w.r.t. (N, v). We also remark that, if I(N, v) = ∅, then ∅ = C(N, v) is stable.
Hence, we shall not further consider the case that

∑
i∈N v({i}) > v(N).

We now recall some relevant results. The proof of the well-known Proposition 2.1 is presented, because its statement
will be used several times.

Proposition 2.1. (See Gillies, 1959.) Let (N, v) be a game such that I(N, v) �= ∅. If (N, v) has a stable core, then, for each i ∈ N, there
exists x ∈ C(N, v) such that xi = v({i}).

Proof. As (N, v) has a stable core and I(N, v) �= ∅, C(N, v) �= ∅. Assume, on the contrary, that there exists k ∈ N such
that xk > v({k}) for all x ∈ C(N, v). As C(N, v) is a compact set, t = min{xk | x ∈ C(N, v)} exists so that t > v({k}). Choose
x ∈ C(N, v) with xk = t , let ε > 0 satisfy t − (|N| − 1)ε � v({k}), and define y ∈ RN by yi = xi + ε for all i ∈ N \ {k}
and yk = xk − (|N| − 1)ε. Then y ∈ I(N, v) \ C(N, v). Hence, there exist z ∈ C(N, v) and ∅ �= T ⊆ N with z domT y. For
any S ⊆ N \ {k}, y(S) = ε|S| + x(S) � x(S) � v(S). Hence, k ∈ T so that zk � t = xk . As yN\{k} � xN\{k} , we conclude that
z(T ) > x(T ) � v(T ) and the desired contradiction has been obtained. �

The foregoing proposition has the following interesting consequence.3

Corollary 2.2. If the game (N, v) has a stable core, then any preimputation of (N, v) that is not in C(N, v) is dominated by some
element of C(N, v), provided that I(N, v) �= ∅.

In order to recall the Bondareva–Shapley theorem (see Bondareva, 1963 and Shapley, 1967) which gives necessary and
sufficient conditions for the nonemptiness of the core, the following notation is useful. For T ⊆ N , denote by χ T ∈ RN the
characteristic vector of T , defined by

χ T
i =

{
1, if i ∈ T ,

0, if i ∈ N \ T .

3 Corollary 2.2 may not hold for an arbitrary stable set. Indeed, if (N, v) is the three-person majority game, defined by N = {1,2,3}, v(N) = v(S) = 1, if
|S| = 2, and v(T ) = 0, if |T | � 1, then X = {(c, 3

4 − c, 1
4 ) | 0 � c � 3

4 } is a well-known stable set, but the preimputation (1,1,−1) is not dominated by an
element of X .
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A collection B ⊆ 2N \ {∅} is called balanced (over N) if positive numbers δS , S ∈ B, exist such that
∑

S∈B δSχ S = χ N . The
collection (δS )S∈B is called a system of balancing weights for B.

Theorem 2.3 (The Bondareva–Shapley Theorem). Let (N, v) be a game. Then C(N, v) �= ∅ if and only if for each balanced collection B
over N and any system (δS )S∈B of balancing weights for B,

∑
S∈B δS v(S) � v(N).

The foregoing theorem motivates calling a game (N, v) a balanced game if C(N, v) �= ∅. Note that (N, v) is totally balanced
if, for any ∅ �= S ⊆ N , (S, v) is balanced. The totally balanced cover of (N, v), (N, vtb), is given by

vtb(S) = max

{∑
T ∈B

δT v(T )

∣∣∣∣∣ B is a balanced collection over S and
(δT )T ∈B is system of balancing weights for B

}
∀S ⊆ N. (2.1)

The formulation of a weak sufficient condition for core stability requires some notation. Let (N, v) be a game and let
∅ �= S ⊆ N . The coalition S is called extendable (w.r.t. (N, v)) if, for any x ∈ C(S, v), there exists y ∈ C(N, v) such that
x = yS . Moreover, (N, v) is extendable if all coalitions are extendable. The proof of the following well-known result is
straightforward.

Theorem 2.4. (See Kikuta and Shapley, 1986.) Any extendable game (N, v) has a nonempty stable core.

3. Relaxing extendability

This section is organized as follows. The present part introduces conditions that are weaker than extendability. The main
result of this section, Theorem 3.3, states that these new variants of extendability are sufficient conditions for core stability.
Moreover, properties and relations of the new variants of extendability are presented. Section 3.1 is devoted to the proof of
the main result and in Section 3.2 we show that certain assumptions on the structure of a game guarantee that the new
conditions are necessary for core stability.

We now recall two possible properties of a coalition w.r.t. a game. Let (N, v) be a game and ∅ �= S ⊆ N. The coalition S
is called exact (w.r.t. (N, v)) if there exists x ∈ C(N, v) such that x(S) = v(S). In this case S is effective for x. If all coalitions
are exact, then (N, v) is called exact (see Shapley, 1971 or Schmeidler, 1972). We say that a balanced game (N, v) is exact
extendable if all exact coalitions are extendable. Moreover, S is called vital (w.r.t. (N, v)) if there exists x ∈ C(S, v) such that
x(T ) > v(T ) for4 all T ∈ 2S \ {∅, S}. We say that a balanced game (N, v) is vital extendable if all vital coalitions w.r.t. (N, v)

are extendable.

Remark 3.1. There is a simple characterization of a vital coalition (see Gillies, 1959). Indeed, S is vital if and only if for any
balanced collection B over S , S /∈ B, and any system (δT )T ∈B of balancing weights for B,

∑
T ∈B δT v(T ) < v(S).

Denote by E(N, v) the set of all coalitions S that are effective for x for all x ∈ C(N, v) or S = ∅, that is,

E(N, v) = {
S ⊆ N

∣∣ x(S) = v(S) ∀x ∈ C(N, v)
}
. (3.1)

Let (N, v) be a balanced game. Then ∅, N ∈ E(N, v). Moreover, if E(N, v) = {∅, N}, then (N, v) may or may not have
a stable core, provided that |N| � 3 (as simple examples show). Our analysis of, e.g., matching games (see Section 4.1),
however, requires to consider also the case that E(N, v) may contain nonempty proper subsets of N .

Definition 3.2. Let (N, v) be a balanced game. A coalition S ⊆ N is called strongly vital–exact (w.r.t. (N, v)) if S is vital and
if there exists x ∈ C(N, v) such that

x(S) = v(S) and x(T ) > v(T ) for all T ∈ 2S∖({S} ∪ E(N, v)
)
. (3.2)

The game (N, v) is vital–exact extendable if all strongly vital–exact coalitions are extendable.

Theorem 3.3. Any balanced, vital–exact extendable game (N, v) has a stable core.

Remark 3.4.

(1) Note that vital–exact extendability is implied by the condition that every vital and exact coalition is extendable. The
latter condition, however, is unnecessarily strong as Example 3.6 shows: Indeed, the game (N, v2) is balanced and
vital–exact extendable, but the coalition T is vital, exact, and not extendable.

4 Gillies (1959) introduced vital coalitions of at least two elements, whereas according to our definition singletons are always vital.
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(2) On the other hand, note that a further relaxation of vital–exact extendability might be problematic; e.g., if Def-
inition 3.2 of a strongly vital–exact coalition S is modified only inasmuch as “T ∈ 2S \ ({S} ∪ E(N, v))” is replaced
by “T ∈ 2S \ {S,∅}”, then the arising relaxation of vital–exact extendability may not be sufficient for core stability
as shown by the following example: Let (N, v) be defined by N = {1, . . . ,4}, v({1,3,4}) = v({2,3,4}) = v(N) = 1,
v(T ) = 0, otherwise. Then C(N, v) = {(0,0,α,1 − α) | 0 � α � 1}. Thus, all singletons are extendable. The remaining vi-
tal coalitions, i.e., {1,3,4} and {2,3,4}, violate the aforementioned modified definition of strong vital-exactness, because
x1 = v({1}) = x2 = v({2}) = 0 for x ∈ C(N, v). Clearly, (N, v) does not have a stable core.

Thus, Theorem 3.3 shows relations that may be summarized in the following diagram:

extendability ⇒⇒
exact extendability

vital extendability

⇒
⇒ vital–exact extendability ⇒ core stability. (3.3)

By means of examples we will show that none of the opposite implications of (3.3) is valid and that exact extendability
may not imply vital extendability and vice versa. Moreover, there are balanced games that are vital–exact extendable and
have nonextendable coalitions that are vital and exact.

Example 3.5. Let N = {1, . . . ,7} and let (N, v1) be defined as follows. Let T = {1,2}, T i = {2, i} for i = 3,4,5, and T j = {1, j}
for j = 6,7, and let v1(N) = 16, v1(T k) = 4 for all k = 3, . . . ,7, v1(T ) = 1, and for all other S ⊆ N , let v1(S) = 0. Then
(3,3,2,2,2,2,2) ∈ C(N, v1) so that E(N, v1) = {∅, N}. With

y1 = (12,4,0,0,0,0,0), y2 = (0,2,2,2,2,4,4), y3 = (4,0,4,4,4,0,0)

note that yi ∈ C(N, v1) for i = 1,2,3. The coalition T is vital, but not exact. Indeed, let y ∈ C(N, v1). As y(T k) � 4, k =
3, . . . ,7,

yi � 4 − y2 ∀i ∈ {3,4,5} and y j � 4 − y1 ∀ j ∈ {6,7} (3.4)

so that 16 = y(N) � 20 − y(T ) − y2, that is, y(T ) � 2. We conclude that a coalition S � N satisfying v1(S) > 0 is exact if
and only if it is one of the coalitions T j , j = 3, . . . ,7, and that these coalitions are extendable. An exact coalition S with
v1(S) = 0 is also extendable, because C(S, v1) is a singleton. Hence, (N, v1) is exact extendable, but not vital extendable.
Let (N, v ′

1) be the game that differs from (N, v1) only inasmuch as v ′
1(T ) = 0. Then (N, v ′

1) is vital extendable (because T
is not vital w.r.t. (N, v ′

1)) and exact extendable, but T is still not extendable.

Example 3.6. Now, let (N, v2) be the game that differs from (N, v1) defined in Example 3.5 only inasmuch as v2(N) = 18.
Any singleton and any of the coalitions T j , j = 3, . . . ,7, are still extendable which follows from the fact that yk + 2χ {i} ∈
C(N, v2) for any k = 1,2,3, and i ∈ N . Moreover, z = (0,1,3,3,3,4,4) is the unique element in C(N, v2) that satisfies
z(T ) = v2(T ). Hence, T is vital and exact, but not strongly vital–exact. We conclude that (N, v2) is vital–exact extendable,
but neither exact extendable nor vital extendable. Now, if the worth of N is further increased, that is, let 0 < ε < 1 and
(N, v3) differ from (N, v2) only inasmuch as v3(N) = v2(N) + ε, then (ε,1 − ε,3 + ε,3 + ε,3 + ε,4 − ε,4 − ε) ∈ C(N, v)

so that T is strongly vital–exact. Now, T is not extendable, because if y ∈ C(N, v3) satisfies y2 = 0, then y1 � 2 − ε > 1,
that is, y(T ) > v3(T ). Nevertheless, (N, v3) has a stable core. Indeed, if x ∈ I(N, v3) \ C(N, v3), then two cases may occur.
If x(T j) � 4 for all j = 3, . . . ,7, then, by (3.4) applied to x, x2 + x(T ) � 2 − ε. As x(T ) < 1, x2 > 1 − ε and x1 < ε so
that x is dominated by some core element via T . In the other case there exists � ∈ {3, . . . ,7} such that x(T �) < v(T �) and
extendability of T � guarantees that x is dominated by some core element.

Together with Example 4.4 (the game (N, v4) discussed in Section 4) the foregoing examples show that the relations
summarized in (3.3) are strict even if balancedness is assumed:

core stability
v3� vital–exact extendability

�

�
v2

vital extendability

v4�⇓ �⇑v1

exact extendability

v ′
1

�

�

extendability.

The properties of the games (N, v1) and (N, v3) of Example 3.5 also show that neither “exact extendability” nor “vital–
exact extendability” are strong prosperity properties in the sense of van Gellekom et al. (1999, Definition 2.1) who showed
that “extendability” is a strong prosperity property. Note that in a similar way (indeed, a nonempty proper coalition in N is
or is not vital regardless of the “prosperity” of N) it may be shown that “vital extendability” is a strong prosperity property.

An interesting invariance property shared by two of the new variants of “extendability” and by “core stability” is con-
tained in the following statements. Let (N, v) be a balanced game and (N, vtb) its totally balanced cover (see (2.1)):

(1) (N, v) has a stable core ⇐⇒ (N, vtb) has a stable core.
(2) (N, v) is vital extendable ⇐⇒ (N, vtb) is vital extendable.



Author's personal copy

E. Shellshear, P. Sudhölter / Games and Economic Behavior 67 (2009) 633–644 637

(3) (N, v) is vital–exact extendable ⇐⇒ (N, vtb) is vital–exact extendable.

For a proof of (1) see van Gellekom et al. (1999, p. 220) who also show by means of Example 2 that there exists
an extendable game whose totally balanced cover is not extendable. By (2.1), C(N, v) = C(N, vtb). We conclude that a
coalition is vital w.r.t. (N, v) iff it is vital w.r.t. (N, vtb). Moreover, if S is vital, then v(S) = vtb(S). Therefore, S is vital and
exact w.r.t. (N, v) iff S is vital and exact w.r.t. (N, vtb). Hence, if S is vital and exact, then {x ∈ C(N, v) | x(S) = v(S)} =
{x ∈ C(N, vtb) | x(S) = vtb(S)}. Again by (2.1), we may deduce from the foregoing equation that a coalition is strongly
vital–exact w.r.t. (N, v) iff it is strongly vital–exact w.r.t. (N, vtb). Thus, (2) and (3) are valid. The totally balanced cover of
(N, v1), (N, vtb

1 ), is not exact extendable. Indeed, it is straightforward to verify that vtb
1 ({1,2,3,6}) = 8 and that (1,0,4,3) ∈

C({1,2,3,6}, vtb
1 ). However, this vector is not the restriction of any element of C(N, vtb

1 ).

3.1. The proof of Theorem 3.3

We now prove two useful lemmata. Let (N, v) be a balanced game.

Lemma 3.7. For any x ∈ X(N, v) \ C(N, v) there exists a strongly vital–exact coalition P such that x(P ) < v(P ).

Proof. By the definition of E(N, v) and the convexity of the core, there exists x0 ∈ C(N, v) such that x0(S) > v(S) for all
S ∈ 2N \ E(N, v). For λ ∈ R denote xλ = λx + (1 − λ)x0. As C(N, v) is convex and closed, there exists λ̂,0 � λ̂ < 1, such that

λ � 0 and xλ ∈ C(N, v) ⇐⇒ 0 � λ � λ̂.

Then there exists P ⊆ N such that x(P ) < v(P ) and xλ̂(P ) = v(P ). Hence, P is exact. Now, let P be minimal (w.r.t.
inclusion) such that x(P ) < v(P ) and xλ̂(P ) = v(P ). We claim that

xλ̂ ∈ C(N, v), xλ̂(P ) = v(P ), ∀Q ∈ 2P ∖({P } ∪ E(N, v)
)
: xλ̂(Q ) > v(Q ).

In order to verify our claim, note that, by minimality of P ,

Q � P , x(Q ) < v(Q ) �⇒ xλ̂(Q ) > v(Q ). (3.5)

Moreover, we observe that

Q � P , x(Q ) > v(Q ), 0 < λ � 1 �⇒ xλ(Q ) > v(Q ); (3.6)

Q � P , x(Q ) = v(Q ), Q ∈ E(N, v), 0 � λ � 1 �⇒ xλ(Q ) = v(Q ); (3.7)

Q � P , x(Q ) = v(Q ), Q /∈ E(N, v), 0 � λ < 1 �⇒ xλ(Q ) > v(Q ). (3.8)

By (3.5), (3.6), and (3.8), xλ̂ ∈ C(N, v), xλ̂(P ) = v(P ), xλ̂(Q ) > v(Q ) for all Q ∈ 2P \E(N, v), Q �= P , i.e., our claim. Hence,
P is an exact coalition that satisfies (3.2). In order to show that P is vital–exact it remains to show that P is vital, i.e., it
suffices to construct y ∈ RN such that

y(P ) = v(P ), y(Q ) > v(Q ) ∀Q ∈ 2P \ {P ,∅}.
By (3.7) there exists ε > 0, ε � 1 − λ̂, such that xλ̂+ε(Q ) � v(Q ) for all Q � P . Then d = v(P )− xλ̂+ε(P ) > 0. Now, with y =
xλ̂+ε + d

|P |χ
P we observe that y has the desired properties, i.e., y(P ) = v(P ) and y(Q ) > v(Q ) for all Q ∈ 2P \ {∅, P }. �

Lemma 3.8. If (N, v) is vital–exact extendable and x ∈ X(N, v)\C(N, v), then there exists a strongly vital–exact coalition S such that
x(S) < v(S) and x(T ) � v(T ) for all T � S.

Proof. By Lemma 3.7 there exists a strongly vital–exact coalition P such that x(P ) < v(P ). Let P be a minimal coalition
that satisfies the foregoing conditions. Assume, on the contrary, that there exists Q � P such that x(Q ) < v(Q ). Define

y = x + v(P ) − x(P )

|P \ Q | χ P\Q

and observe that x � y, x(Q ) = y(Q ), and y(P ) = v(P ). Hence y P ∈ X(P , v) \ C(P , v). By Lemma 3.7 applied to (P , v)

and y P , there exists a strongly vital–exact coalition T w.r.t. (P , v) such that y(T ) < v(T ) and, hence, x(T ) < v(T ). As P is
extendable, T is strongly vital–exact w.r.t. (N, v) so that the desired contradiction has been obtained. �
Proof of Theorem 3.3. Let z ∈ X(N, v) \ C(N, v). By Lemma 3.8 there exists a strongly vital–exact ∅ �= S ⊆ N such that
z(S) < v(S) and z(T ) � v(T ) for all T � S . Let y ∈ RS be given by yi = zi + v(S)−z(S)

|S| . Then y(S) = v(S) and y � z, hence

y(T ) > v(T ) for all ∅ �= T � S . We conclude that y ∈ C(S, v). As S is extendable, there exists x ∈ C(N, v) such that xS = y.
Thus x domS z. �
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3.2. Two consequences of Theorem 3.3

This subsection serves to show that all strongly vital–exact coalitions are extendable, if the set of strongly vital–exact
coalitions exhibits a certain structure. We say that (N, v) has disjoint antichains of strongly vital–exact coalitions if, for all
strongly vital–exact coalitions S and T , S ⊆ T or T ⊆ S or S ∩ T = ∅ (that is, the elements of any antichain of the partially
ordered set of strongly vital–exact coalitions, ordered by inclusion, are pairwise disjoint).

Theorem 3.9. If (N, v) is a balanced game that has disjoint antichains of strongly vital–exact coalitions, then (N, v) has a stable core.

Proof. Let S be a strongly vital–exact coalition. By Theorem 3.3 it suffices to show that S is extendable. To this extent let
x ∈ C(S, v). As S is exact, there exists y ∈ C(N, v), y(S) = v(S). Let z ∈ RN be given by zS = x and zN\S = yN\S . We conclude
that z(N) = v(N), z(T ) = y(T ) � v(T ) for all T ⊆ N \ S and all S ⊆ T ⊆ N , and z(P ) = x(P ) � v(P ) for all P ⊆ S . Hence,
z(Q ) � v(Q ) for all strongly vital–exact coalitions Q . By Lemma 3.7, z ∈ C(N, v) and the proof is complete. �

Balanced games that have disjoint antichains of strongly vital–exact coalitions may be constructed as follows. Let N
be a finite nonempty set, let x ∈ RN , and let (N, v) satisfy v(S) = x(S) for all S � N and v(N) � x(N). Then the strongly
vital–exact coalitions are the singletons and N provided that v(N) > x(N). Hence (N, v) has the desired property. Now let
(N1, v1), . . . , (Nk, vk) be k balanced games that have disjoint antichains of strongly vital–exact coalitions such that the N�

are pairwise disjoint. With N = ⋃
�=1,...,k N� let (N, v) be a game that satisfies v(S) = ∑k

�=1 v�(S ∩ N�) for all S � N and

v(N) �
∑k

�=1 v�(N�). Then (N, v) has the desired property.
The following theorem reveals some structure of the set of strongly vital–exact coalitions and will be used to show that

vital–exact extendability is a necessary condition for core stability for the second class of games.

Theorem 3.10. If (N, v) is a balanced game, then there exist a balanced collection P ⊆ E(N, v) of strongly vital–exact coalitions w.r.t.
(N, v) and a system (δP )P∈P of balancing weights for P such that∑

P∈P
δP v(P ) = v(N).

Proof. Let (N, v) be balanced. We claim that the following statement is true:

R ∈ E(N, v), ∅ �= R, R is vital �⇒ R is strongly vital–exact w.r.t. (N, v). (3.9)

In order to show our claim, note that by convexity of the core and by the definition of E(N, v), there exists x ∈ C(N, v) such
that x(T ) > v(T ) for all T ∈ 2N \ E(N, v). Hence, x(R) = v(R) and x(T ) > v(T ) for all T � R with T /∈ E(N, v) so that R is
strongly vital–exact.

We proceed by induction on n = |N|. If n = 1, then N is vital, hence strongly vital–exact, so that the proof is finished in
this case. Let the theorem be true for n � t and some t ∈ N and assume now that n = t + 1. If N is vital, then the theorem
is true. Hence, we may assume that N is not vital. By Remark 3.1 and Theorem 2.3, there exist a balanced collection
R̂ on N and a system (δ̂R)R∈R̂ of balancing weights for R̂ such that N /∈ R̂ and

∑
R∈R̂ δ̂R v(R) = v(N). Moreover, for

x ∈ C(N, v), v(N) = x(N) = ∑
R∈R̂ δ̂R x(R) = ∑

R∈R̂ δ̂R v(R) so that R ∈ E(N, v) for all R ∈ R̂. As (R, v) is balanced, the
inductive hypothesis implies that there exist a balanced collection PR on R of strongly vital–exact coalitions w.r.t. (R, v)

and a system (δP
R )P∈PR of balancing weights for PR such that v(R) = ∑

P∈PR
δP

R v(P ). Define, for any P ∈ P = ⋃
R∈R̂ PR ,

δP =
∑

R∈{R∈R̂|P∈PR }
δ̂RδP

R .

We conclude that
∑

P∈P δP χ P = χ N and
∑

P∈P δP v(P ) = v(N). Thus, P is a balanced collection on N and P ⊆ E(N, v) so
that the proof is finished by (3.9). �

Now, the second class of games is constructed as follows. Let (N, v) be a game that satisfies the following property:

S is strongly vital–exact �⇒ |S| � 2. (3.10)

For all x, y ∈ X(N, v) and all α � 0 define zα,x,y ∈ RN by

zα,x,y
i =

{
xi + min{yi − xi,α}, if yi � xi,

xi − min{xi − yi,α}, if xi � yi,
(3.11)

and note that zα,x,y is well-defined.

Lemma 3.11. If (N, v) satisfies (3.10), if x, y ∈ C(N, v), and if α � 0, then zα,x,y ∈ C(N, v).
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Proof. If C(N, v) = ∅, then the statement of the lemma is vacuously true. Hence, we assume now that (N, v) is balanced. By
Theorem 3.10 there exist a balanced collection P of strongly vital–exact coalitions on N and a system (δP )P∈P of balancing
weights for P such that

∑
P∈P δP v(P ) = v(N). Let z = zα,x,y and let i ∈ N . If yi � xi , then zi � xi � v({i}). If yi < xi ,

then zi � yi � v({i}). Hence, z is individually rational. Let P ∈ P . If |P | = 1, then x(P ) = y(P ) = v(P ) so that z(P ) = v(P ).
If |P | = 2, then x(P ) = y(P ) = v(P ) also implies z(P ) = v(P ). By (3.10), z(P ) = v(P ) for all P ∈ P . We conclude that
z(N) = v(N). Now, let S = {i, j}, i �= j, i, j ∈ N . By (3.10) and Lemma 3.7 it suffices to show that z(S) � v(S). If yi � xi and
y j � x j , then z(S) � x(S) � v(S). If yi � xi and y j < x j , then the case z(S) < y(S) may just occur, if yi − xi > α. However, in
this case z(S) � x(S). The case yi < xi and y j � x j may be treated similarly. Finally, if yi < xi and y j < x j , then z(S) � y(S).
Thus, z ∈ C(N, v). �
Proposition 3.12. If (N, v) satisfies (3.10) and if each {i}, i ∈ N, is exact, then (N, v) is vital–exact extendable.

Proof. Let S be a strongly vital–exact coalition and x ∈ C(N, v) such that x(S) = v(S). If |S| = 1, then the proof is already
finished. Hence, we may assume that S = {k, �} for some k, � ∈ N , k �= �. Let y ∈ C(N, v) such that yk = v({k}) and let
α = xk − v({k}). By Lemma 3.11, z = zα,x,y ∈ C(N, v). Now, zk = yk = v({k}) and z� = α + x� = v({k, �}) − v({k}). By applying
the same argument to x and a point y′ ∈ C(N, v) for which y′

� = v({�}), one may show the existence of z′ ∈ C(N, v) such
that z′

� = v({�}) and z′
k + z′

� = v({k, �})}. Notice that the core of (S, v) is the segment{
w ∈ RS

∣∣ wk � v
({k}), w� � v

({�}), wk + w� = v
({k, �})}.

By convexity of C(N, v), S is extendable. �
Proposition 2.1 implies the following result.

Corollary 3.13. If (N, v) is a balanced game that satisfies (3.10), then the following conditions are equivalent:

(1) (N, v) has a stable core.
(2) (N, v) is vital–exact extendable.
(3) For each i ∈ N, the singleton {i} is an exact coalition.

Note that (3.10) is sharp in the sense that if |S| � 2 is replaced by |S| � 3, then Corollary 3.13 is no longer valid. This
statement may be shown by means of Example 4.5.

Remark 3.14. Let (N, v) be a balanced game. Schmeidler (1972) presents a simple necessary and sufficient condition for
exactness of a singleton {i}, i ∈ N: The singleton {i} is exact if and only if

v
({i}) = max

{∑
S�N

δS v(S) − δN v(N)

∣∣∣∣ δT � 0 ∀T ⊆ N,
∑
S�N

δSχ S − δNχ N = χ {i}
}
. (3.12)

Note that by Corollary 3.13, (3.12) may be used to check whether a balanced game that satisfies (3.10) has a stable core.
Moreover, a similar remark applies to minimum coloring games (see Theorem 4.11).

4. Three remarkable classes of games

Example 3.5 shows that the inverse of Theorem 3.3 does not hold in general. However, each of the three current subsec-
tions shows a specific example in which the inverse is true, that is, vital–exact extendability is necessary for core stability.
For the examples in Sections 4.2 and 4.3 even vital extendability is a necessary condition for core stability, whereas vital
extendability is not necessary for core stability for the class of games that is discussed in Section 4.1. Moreover, in each of
the considered classes there are vital–exact extendable games that are not exact extendable.

4.1. Matching games and assignment games

Assignment games (see (4.7) for the definition) as introduced by Shapley and Shubik (1972) are bipartite matching games
in the sense of Kern and Paulusma (2003). In order to recall the definition of a matching game, some notation is needed.
Let N �= ∅ be finite. For any ∅ �= S ⊆ N denote S2 = {T ⊆ S | |T | ∈ {1,2}}. Any subset of S2 that is a partition of S is called
a matching of S . Let M(S) denote the set of matchings of S . A function w : N2 → R+ (where R+ denotes the set of
nonnegative reals) is called a weight function on N if

w
({i}) = 0 ∀i ∈ N. (4.1)

A TU game (N, v) is a matching game if there exists a weight function w on N such that
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v(S) = max
P∈M(S)

∑
T ∈P

w(T ) ∀S ⊆ N. (4.2)

Remark 4.1. By (4.2) an arbitrary matching game satisfies (3.10) so that Corollary 3.13 is applicable.

Let w be a weight function on N and let v = v w be defined by (4.2). We say that (N, v w) is the matching game defined
by w . Moreover, a matching P of N is optimal for w if v w(N) = ∑

S∈P w(S). For i ∈ N let wi : N2 → R+ be defined by

wi
({k}) = 0 and wi

({k, �}) = (
w

({k, �}) − w
({i,k}) − w

({i, �}))+ ∀k, � ∈ N, k �= �,

where t+ = max{t,0} for t ∈ R, and note that wi is a weight function.

Theorem 4.2. If (N, v) is a matching game defined by a weight function w on N, then the following conditions are equivalent:

(1) (N, v) has a stable core.
(2) For all i ∈ N,

C
(
N, v wi

) �= ∅ and v wi (N) = v(N) −
∑
k∈N

w
({i,k}). (4.3)

(3) Each singleton is exact.

Proof. Let i ∈ N . Assume that (N, v) has a stable core. By Proposition 2.1 there exists x ∈ C(N, v) such that xi = 0. Hence,
x j � w({i, j}) for all j ∈ N . Let y ∈ RN be defined by y j = x j − w({i, j}) for all j ∈ N . Then y j � 0 for all j ∈ N and, for all
j,k ∈ N,k �= j,

y j + yk = x j + xk − w
({i, j}) − w

({i,k}) �
(

w
({ j,k}) − w

({i, j}) − w
({i,k}))+ = wi

({ j,k}).
Moreover, y(N) = v(N) − ∑

k∈N w({i,k}) so that (4.3) has been verified.
Now assume that (4.3) is satisfied. Let y ∈ C(N, v wi ) and define x ∈ RN by xk = yk + w({i,k}) for all k ∈ N . Then x(S) �

w(S) for all S ∈ N2 and x(N) = v(N) so that x ∈ C(N, v). As wi({i,k}) = 0 by definition for all k ∈ N , v wi (S ∪ {i}) = v wi (S)

for all S ⊆ N so that yi = 0. We conclude that xi = 0. By Remark 4.1, Corollary 3.13 completes the proof. �
Corollary 4.3. If (N, v) is a matching game with a stable core defined by a weight function w on N and if P is an optimal matching
for w, then, for i, i′, j ∈ N with i �= j, {i′}, {i, j} ∈ P ,

w
({i′,k}) = 0 ∀k ∈ N \ {i′}; (4.4)

w
({i, j}) � w

({i,k}) + w
({ j,k}) ∀k ∈ N \ {i, j}. (4.5)

Proof. Let k ∈ N . By (4.3),

v wk (N) �
∑
S∈P

wk(S) =
∑
S∈P

(
w(S) −

∑
�∈S

w
({k, �}))

+
�

∑
S∈P

(
w(S) −

∑
�∈S

w
({k, �}))

=
∑
S∈P

w(S) −
∑
�∈N

w
({k, �}) = v(N) −

∑
�∈N

w
({k, �}) = v wk (N),

so that

w(S) −
∑
�∈S

w
({k, �}) � 0 ∀S ∈ P, k ∈ N. (4.6)

If {i′} ∈ P , then (4.6) applied to S = {i′} yields 0 = w({i′}) � w({i′,k}) � 0 (see (4.1)) so that (4.4) is shown. If {i, j} ∈ P with
i �= j, then (4.6) applied to S = {i, j} shows (4.5). �

A graph is a pair G = (V , E), where V is a finite nonempty set, called the set of vertices, and E is a set of 2-element
subsets of V , called the set of edges. Note that the weight function w defines the graph (N, E w) by S ∈ E w if w(S) > 0.

We assume now that |N| � 2. The matching game (N, v w) is an assignment game if (N, E w) is bipartite, that is, there is
a partition {P , Q } of N such that

|S ∩ P | = |S ∩ Q | = 1 ∀S ∈ E w . (4.7)

Let (N, v w) be an assignment game, let {P , Q } be a partition of N that satisfies (4.7), and denote v = v w . Thus, the
nonnegative real matrix A = (w({i, j}))i∈P , j∈Q , the assignment matrix of (N, v), determines the assignment game (N, v).
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The theory developed so far enables us to reprove Theorem 1 of Solymosi and Raghavan (2001): Assume without loss of
generality that |P | � |Q |. Then there is an injective mapping b : P → Q such that {{i,b(i)} | i ∈ P } ∪ {{ j} | j ∈ Q \ b(P )} is
an optimal matching of N for w , that is, v(N) = ∑

i∈P w({i,b(i)}). Now, the aforementioned theorem may be formulated as
follows. The assignment game (N, v) has a stable core if and only if

w
({i, j}) = 0 ∀ j ∈ Q \ b(P ), ∀i ∈ P ; (4.8)

w
({

i,b(i)
}) = max

r∈Q
w

({i, r}) = max
r∈P

w
({

r,b(i)
}) ∀i ∈ P . (4.9)

A careful inspection of Corollary 4.3 shows that (4.8) and (4.9) coincide with (4.4) and (4.5), respectively. In order to
verify the if direction, it should be noted that, if w is a weight function such that (N, E w) is bipartite, then for i ∈ N ,
(N, E wi ) is bipartite. As assignment games are balanced (see Shapley and Shubik, 1972), the first part of (4.3) is automati-
cally satisfied. Moreover, a careful inspection of the definition of wi shows that the second part of (4.3) is implied by (4.8)
and (4.9).

The following example shows that neither exact extendability nor vital extendability is necessary for core stability for
assignment games.

Example 4.4. Let

A =
(6 4 0

0 6 0
4 0 6

)
, B =

(2 2 2
2 2 2
1 2 2

)
,

and let (N, v4) be the assignment game defined by A, where 1,2, and 3 are the “row” players and 4,5, and 6 are the
“column” players. The unique optimal matching {{i,b(i)} | i = 1,2,3} is given by b(i) = 3 + i for i = 1,2,3. Hence, (4.8)
and (4.9) are satisfied so that (N, v4) has a stable core. Moreover, x = (3,5,1,3,1,5) ∈ C(N, v4) and x(S) = v4(S), where
S = {1,3,4,5}. Now, S is not extendable, because (4,0,4,0) ∈ C(S, v4) and any y ∈ C(N, v4) must assign w({i,b(i)}) to
any coalition {i,b(i)} of optimally matched players, e.g., satisfies y1 + y4 = w({1,4}) = 6. We conclude that (N, v4) is not
exact extendable. In order to show that (N, v4) is vital extendable, it suffices to show that {1,5} and {3,4} are extend-
able. A careful inspection of the core elements (0,2,0,6,4,6), (4,6,6,2,0,0), (6,6,4,0,0,2), (2,0,0,4,6,6) shows that
the aforementioned coalitions are extendable. Moreover, we remark that there are also assignment games with a stable core
that are not vital extendable. Indeed, let (N, v5) be the assignment game defined by B . As each pair (i, j), i ∈ P , j ∈ Q , be-
longs to an optimal matching except the pair (3,4), we conclude that C(N, v5) = {(α,α,α,2 − α,2 − α,2 − α) | 0 � α � 2}.
Consequently, the vital coalition {3,4} is not exact and, hence not extendable.

4.2. Simple flow games

Kalai and Zemel (1982) present two equivalent representations of totally balanced games: A game is totally balanced
game if and only if (a) it is a flow game or (b) it is the minimum of finitely many additive games. The following example
shows that even for the minimum of two additive games, the simplest nontrivial case in (b), vital–exact extendability may
not be necessary for core stability. Moreover, for “simple” flow games we shall derive that vital extendability is necessary
and sufficient for core stability.

Example 4.5. Let N = {1, . . . ,6}, let λ = (2,1,1,2,1,1), let N1 = {1,2,3}, let N2 = {4,5,6} and let (N, v) be the game
given by v(S) = mini=1,2 λ(S ∩ Ni). The game (N, v) is exact (see, e.g., Raghavan and Sudhölter, 2005) and it has a stable
core. Indeed, C(N, v) is the convex hull of (2,1,1,0,0,0) and (0,0,0,2,1,1) (see, e.g., Rosenmüller, 2000) so that if y ∈
I(N, v) \ C(N, v) is not dominated by any core element via some 2-person coalition, then y satisfies y2 = y3 and y5 = y6.
Hence, y is dominated by some core element via S = {1,5,6} or via T = {2,3,4} and it also follows that S and T are
strongly vital–exact coalitions. These coalition are not extendable, because for any x ∈ C(N, v), x2 = x3 and x5 = x6, but
C(S, v) contains some z with z5 �= z6 (e.g., given by z1 = z6 = 1/2, z5 = 1) and a similar statement holds for T .

Adopting the notation of Sun and Fang (2007), who characterized the simple flow games that have a stable core, D =
(V , E, s, t) is a simple (directed) network with source s and sink t , if V is the vertex set, E �= ∅ is the arc set, and s and t are
distinct vertices in V . The term “simple” refers to the fact that all arcs have the same capacity, let us say 1. The flow game
(E, v D) associated with D = (V , E, s, t) is the TU game defined by the requirement that, for any ∅ �= S ⊆ E , v D(S) is the
maximal flow from s to t in the network (V , S, s, t). A game (N, v) is a simple flow game if it is the game associated with
some simple directed network with a source and a sink.

A (simple) path in a network D = (V , E, s, t) is a sequence of arcs from s to t that visits each vertex at most once. It is
well known that

v D(S) is the maximal number of arc-disjoint paths in (V , S, s, t) for all S ∈ 2E \ {∅}. (4.10)

Let D = (V , E, s, t) be a simple network with source and sink and denote v = v D .
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Remark 4.6. If a coalition S is vital and v(S) > 0, then v(S) = 1 and v(T ) = 0 for all T � S . Indeed, by (4.10), the elements
of S , suitably ordered, must form a path.

An arc e ∈ E is called a dummy arc5 if there exists a path containing e and if v(E \ {e}) = v(E). We recall that a cut of D
is a coalition C ⊆ E such that each path contains an arc of C . For a proof of the following “max-flow min-cut” theorem see,
e.g., Ford and Fulkerson (1962):

v D(E) = min
{|C | ∣∣ C is a cut of D

}
. (4.11)

We are now able to recall Theorem 3 of Sun and Fang (2007).

Theorem 4.7. Let D = (V , E, s, t) be a simple network with source and sink. Then (E, v D) has a stable core if and only if E does not
contain any dummy arc.

We use the preceding theorem and the following lemma and remark to show that vital extendability is necessary for
core stability in the case of simple flow games. Let D = (V , E, s, t) be a simple network with source and sink.

Lemma 4.8. If E does not contain any dummy arc and if e ∈ E satisfies v D(E \ {e}) < v D(E), then there exists a minimum cut C with
e ∈ C.

Proof. By (4.10) there are v D(E) arc-disjoint paths. We may assume that v D(E) > 1. As v D(E) > v D(E \ {e}), the arc e must
be contained in one of the paths and v D(E \ {e}) = v D(E)− 1. Hence, if C ′ is a minimum cut of (V , E \ {e}, s, t), then C ′ ∪ {e}
is a minimum cut of D by (4.11). �
Remark 4.9. In a constructive way Kalai and Zemel (1982, p. 478) show that the core of an arbitrary flow game is nonempty.
Applied to a simple flow game (N, v) associated with the simple network D = (V , E, s, t) they prove that, for any minimum
cut C of D , χ C ∈ C(E, v D).

Proposition 4.10. A simple flow game (N, v) has a stable core if and only if it is vital extendable.

Proof. Let D = (V , E, s, t) be a simple network with source and sink and let (E, v) be the associated simple flow game. As
the if direction is valid by Theorem 3.3, we assume now that (E, v) has a stable core. Let S be a vital coalition. If v(S) = 0,
then |S| = 1 and, by Proposition 2.1, S is extendable. If v(S) > 0, then, by Remark 4.6, v(S) = 1 and v(T ) = 0 for all T � S
and the elements of S form a path. By Lemma 4.8 and Remark 4.9, for any e ∈ S , there exists x ∈ C(E, v) such that xe = 1
and xe′ = 0 for all e′ ∈ S \ {e}. However, C(S, v) is the convex hull of those core elements when restricted to S . �

It should be remarked that Fang et al. (2007, p. 444) present an example of a simple flow game (associated with G3)
that has a stable core and is not extendable. (Indeed, the 4-person coalition corresponding to the arcs that are marked by
+ is not exact, but the core of the corresponding subgame is nonempty.)

4.3. Minimum coloring games

Deng et al. (1999) introduced minimum coloring games and we basically adopt the notation of Bietenhader and Okamoto
(2006). Let G = (V , E) be a graph (see Section 4.1). For any U ⊆ V , U �= ∅, let GU denote the subgraph of G whose vertex
set is U and whose edges are those edges in E that are subsets of U .

The graph G is complete if E is the set of all 2-element subsets of V . A nonempty set U ⊆ V is a clique if GU is complete.
Let ω(G) denote the size of a maximum clique. A coloring of G is a mapping c : V → R satisfying c(i) �= c( j) for all {i, j} ∈ E .
A minimal coloring is a coloring c such that |c(V )| is minimal. Let γ (G) denote the chromatic number of G , i.e., γ (G) = |c(V )|
for any minimal coloring of G . A set U ⊆ V , U �= ∅, is independent if γ (GU ) = 1. The graph G is perfect if ω(GU ) = γ (GU )

for all U ∈ 2V \ {∅}.
Let G = (V , E) be a graph. The minimum coloring game on G is the TU game (N, vG) defined by the following require-

ments: (1) N = V ; (2) vG(S) = |S| − γ (G S ) for6 all S ∈ 2V \ {∅}.

Theorem 4.11. Let (N, v) be a balanced minimum coloring game. Then the following conditions are equivalent:

5 Sun and Fang (2007) use this term although a dummy arc is not a dummy player. Indeed, an arc is a dummy player if and only if it either connects s
and t or it is not contained in any path.

6 Bietenhader and Okamoto (2006) consider the “cost” game whose coalition function simply assigns γ (G S ) to any coalition S . We consider the “cost
sharing” game instead so that, e.g., the definition of the core remains unchanged.
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(1) (N, v) has a stable core.
(2) (N, v) is vital extendable.
(3) Every singleton is exact w.r.t. (N, v).

We postpone the proof of Theorem 4.11 and first prove the following lemma.

Lemma 4.12. Let (N, v) be a minimum coloring game on the graph G = (V , E). Then ∅ �= S ⊆ N is vital if and only if S is independent.

Proof. If S is independent, then v(T ) = |T |−1 for all ∅ �= T ⊆ S . Let x ∈ RS be defined by xi = |S|−1
|S| for all i ∈ S . Then x(S) =

v(S) and x(T ) > v(T ) for all ∅ �= T � S so that S is vital. Conversely, assume now that S is a coalition with v(S) < |S|− 1. It
remains to show that S is not vital. Let c : S → R be a minimal coloring of G S and let i ∈ S . Then T = { j ∈ S | c( j) �= c(i)} �= ∅
and cT (the restriction of c to T ) is a minimal coloring of G T . We conclude that v(S) = v(T ) + v(S \ T ) and, hence, that S
is not vital. �
Proof of Theorem 4.11. By Proposition 2.1, Theorem 3.3 and (3.3) it remains to show that (3) implies (2). Let S be a vital
coalition and y ∈ C(N, v). For any j ∈ N , v(N) − v(N \ { j}) + y(N \ { j}) � v(N) = y(N) = y j + y(N \ { j}). We conclude that
y j � v(N) − v(N \ { j}). As v(N) − v(N \ { j}) � 1 for any minimum coloring game, we conclude that y j � 1. Now, let i ∈ S .
By (3), there exists x ∈ C(N, v) with xi = v({i}) = 0. By Lemma 4.12, v(S) = |S| − 1. Therefore, x j = 1 for all j ∈ S \ {i} and
convexity of the core completes the proof. �

We now use Theorem 4.11 to characterize minimum coloring games that have stable cores.

Theorem 4.13. Let G = (N, E) be a graph, let c be a minimal coloring of G, and denote, for k ∈ c(N), Tk = {i ∈ N | c(i) �= k}. The
minimum coloring game (N, vG) has a stable core if and only if for any k ∈ c(N),

γ
(
G Tk∪{i}) = γ (G) and

(
Tk ∪ {i}, vGTk∪{i})

is balanced ∀i ∈ N \ Tk. (4.12)

Proof. Let v = vG . If γ (G) = 1, then (N, v) has a stable core and the proof is immediate. Hence, we may assume that
γ (G) � 2 so that for any k ∈ c(N), N \ Tk is independent and

v(Tk) + v(N \ Tk) = |Tk| −
(
γ (G) − 1

) + |N \ Tk| − 1 = |N| − γ (G) = v(N). (4.13)

In order to verify the only if direction let k ∈ c(N) and i ∈ N \Tk . By Theorem 4.11 there exists x ∈ C(N, v) such that xi = 0.
By (4.13), x(N \ Tk) = v(N \ Tk) and x(Tk) = v(Tk). As v(Tk) = x(Tk) = x(Tk ∪ {i}) � v(Tk ∪ {i}) � v(Tk), γ (G Tk∪{i}) = γ (G)

and xTk∪{i} ∈ C(Tk ∪ {i}, v).
In order to verify the if direction, let i ∈ N . By Theorem 4.11 it suffices to show that there exists x ∈ C(N, v), xi = 0. Let

k = c(i). By (4.12), v(Tk ∪ {i}) = v(Tk) and there exists y ∈ C(Tk ∪ {i}, v). As v(Tk ∪ {i}) = v(Tk) + 0 = v(Tk) + v({i}), we
conclude that y(Tk) = v(Tk) and yi = 0. Let x ∈ RN be given by xTk∪{i} = y and x j = 1 for all j ∈ N \ (Tk ∪ {i}). By (4.13),
x(N) = v(N) so that x ∈ C(N, v). �

It should be noted that a minimum coloring game of a graph is balanced if there exists a coloring such that (4.12) is
valid for some k and some i. The foregoing theorem generalizes the following result of Bietenhader and Okamoto (2006,
Theorem 4.1).

Corollary 4.14. The minimum coloring game on a perfect graph G has a stable core if and only if every vertex of G belongs to a
maximum clique of G.

Proof. We may assume that γ (G) > 1. Let G = (N, E) be a perfect graph, let c be a minimal coloring of G , let v = vG , let
i ∈ N , let k = c(i), and let T = { j ∈ N | c( j) �= k}. If (N, v) has a stable core, then, by (4.12), ω(G T ) = γ (G T ) = γ (G) − 1 and
ω(G T ∪{i}) = γ (G T ∪{i}) = γ (G) = ω(G) so that i is in a maximum clique. If, on the other hand, i is in some maximum clique,
then γ (G) = ω(G T ∪{i}) so that (4.12) is satisfied for T = Tk and i. �

Note that Bietenhader and Okamoto (2006, p. 424) present a perfect graph (G1) with some vertex that does not belong
to a maximal clique, that is, the first condition of (4.12) is violated for some Tk and some i, so that the resulting minimum
coloring game does not have a stable core.

Example 4.15. Let G2 be the perfect graph that consists of two disjoint triangles that are connected via one edge and may
be found in Bietenhader and Okamoto (2006, p. 424). (For a characterization of extendable minimum coloring games on
perfect graphs see their Theorem 4.2.) So, G2 = (N, E), where

N = {1, . . . ,6} and E = {{1,2}, {1,3}, {2,3}, {4,5}, {4,6}, {5,6}, {1,4}}.
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Let v = vG2 and T = {1,4}. Then x(T ) � 1 for any x ∈ C(N, v). Note that (0,0,0,1,1,1) ∈ C(N, v) so that S = {1,2,4} is
exact. As (0,1,0) ∈ C(S, v), S is exact and not extendable. By Corollary 4.14, (N, v) has a stable core.

We present a graph that has a minimal coloring so that exclusively the second condition of (4.12) is violated for a unique
Tk and a unique i. Moreover, we present a minimum coloring game on a nonperfect graph that has a stable core.

Example 4.16. Let G = (N, E) be defined by N = {1, . . . ,7} and

E = {{1,2}, {2,3}, {3,4}, {4,5}, {1,5}} ∪ {{1,6}, {5,6}, {3,7}, {4,7}}.
Let v = vG , let S = {1, . . . ,5}, and note that G S is a pentagon so that γ (G S ) = 3 > 2 = ω(G S ). We conclude that G is not

perfect and it is well known that C(S, v) = ∅. Moreover, let c : N → R be defined by c(1) = c(4) = 1, c(3) = c(5) = 2, and
c(2) = c(6) = c(7) = 3. Thus, c is a minimal coloring of G and, with the notation of Theorem 4.13,

T1 = N \ {1,4}, T2 = N \ {3,5}, T3 = N \ {2,6,7}.
As S1 = {1,5,6} and S2 = {3,4,7} are cliques, we conclude that ω(G Tk∪{i}) = γ (G Tk∪{i}) = 3 = γ (G) and, hence, C(Tk ∪
{i}, v) �= ∅ for k = 1,2 and all i ∈ N \ Tk . Similarly, if i ∈ {6,7}, then ω(G T3∪{i}) = γ (G T3∪{i}) = 3 = γ (G) and C(Tk ∪{i}, v) �= ∅.
Finally, T3 ∪{2} = {1, . . . ,5} so that γ (G T3∪{2}) = 3 = γ (G) even in this case. Thus, C(T3 ∪{2}, v) = ∅ so that there is a unique
balancedness condition that is violated in (4.12).

If G ′ = (N, E ′) is the graph that differs from G only inasmuch as E ′ contains the additional edge {2,7}, then we may
define a minimal coloring c′ : N → R by c′(1) = c′(7) = 1, c′(3) = c′(5) = 2, and c′(2) = c′(4) = c′(6) = 3. Now there is the
additional maximal clique S3 = {2,3,7} so that (4.12) is valid. In fact, χ Si ∈ C(N, v) for i = 1,2,3 so that any singleton is
exact and Theorem 4.11 may be applied directly to show that the minimum coloring game on the nonperfect graph G ′ has
a stable core.

Acknowledgments

We are grateful to two anonymous referees of this journal for their remarks that helped to improve the writing of this
paper.

References

Azrieli, Y., Lehrer, E., 2007. Extendable cooperative games. J. Public Econ. Theory 9, 1069–1078.
Bietenhader, T., Okamoto, Y., 2006. Core stability of minimum coloring games. Math. Oper. Res. 31, 418–431.
Biswas, A.K., Parthasarathy, T., Potters, J.A.M., Voorneveld, M., 1999. Large cores and exactness. Games Econ. Behav. 28, 1–12.
Bondareva, O.N., 1963. Some applications of linear programming methods to the theory of cooperative games. Problemi Kibernet. 10, 119–139.
Deng, X., Ibaraki, T., Nagamochi, H., 1999. Algorithmic aspects of the core of combinatorial optimization games. Math. Oper. Res. 24, 751–766.
Fang, Q., Fleischer, R., Li, J., Sun, X., 2007. Algorithms for core stability, core largeness, exactness, and extendability of flow games. In: Computing and

Combinatorics. In: Lecture Notes in Comput. Sci., vol. 4598. Springer, Berlin/Heidelberg, pp. 440–447.
Ford Jr., L.R., Fulkerson, D.R., 1962. Flows in Networks. Princeton University Press, New Jersey.
Gillies, D.B., 1959. Solutions to general non-zero-sum games. In: Tucker, A.W., Luce, R.D. (Eds.), Contributions to the Theory of Games IV. In: Ann. Math.

Stud., vol. 40. Princeton University Press, Princeton, NJ, pp. 47–85.
Kalai, E., Zemel, E., 1982. On totally balanced games and games of flow. Math. Oper. Res. 7, 476–478.
Kern, W., Paulusma, D., 2003. Matching games: The least core and the nucleolus. Math. Oper. Res. 28, 294–308.
Kikuta, K., Shapley, L.S., 1986. Core-stability in n-person games. Mimeo.
Raghavan, T.E.S., Sudhölter, P., 2005. The modiclus and core stability. Int. J. Game Theory 33, 467–478.
Rosenmüller, J., 2000. Games Theory: Stochastics, Information, Strategies and Cooperation. Theory and Decision Library, Series C. Kluwer Academic Publish-

ers, Boston.
Schmeidler, D., 1972. Cores of exact games, I. J. Math. Anal. Appl. 40, 214–225.
Shapley, L.S., 1967. On balanced sets and cores. Naval Res. Logist. Quart. 14, 453–460.
Shapley, L.S., 1971. Cores of convex games. Int. J. Game Theory 1, 11–26.
Shapley, L.S., Shubik, M., 1972. The assignment game I: The core. Int. J. Game Theory 2, 111–130.
Sharkey, W.W., 1982. Cooperative games with large core. Int. J. Game Theory 11, 175–182.
Solymosi, T., Raghavan, T.E.S., 2001. Assignment games with stable core. Int. J. Game Theory 30, 177–185.
Sun, X., Fang, Q., 2007. Core stability of flow games. In: Discrete Geometry, Combinatorics and Graph Theory. In: Lecture Notes in Comput. Sci., vol. 4381.

Springer, Berlin/Heidelberg, pp. 189–199.
van Gellekom, J.R.G., Potters, J.A.M., Reijnierse, J.H., 1999. Prosperity properties of TU-games. Int. J. Game Theory 28, 211–227.
von Neumann, J., Morgenstern, O., 1953. Theory of Games and Economic Behavior, third ed. Princeton University Press, Princeton, NJ.


