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Let A be a finite set of m alternatives, let N be a finite set of n players, and let RN be a profile of linear orders on A
of the players. Let uN be a profile of utility functions for RN . We define the nontransferable utility (NTU) game VuN that
corresponds to simple majority voting, and investigate its Aumann-Davis-Maschler and Mas-Colell bargaining sets. The first
bargaining set is nonempty for m≤ 3, and it may be empty for m≥ 4. However, in a simple probabilistic model, for fixed m,
the probability that the Aumann-Davis-Maschler bargaining set is nonempty tends to one if n tends to infinity. The Mas-Colell
bargaining set is nonempty for m≤ 5, and it may be empty for m≥ 6. Furthermore, it may be empty even if we insist that n
be odd, provided that m is sufficiently large. Nevertheless, we show that the Mas-Colell bargaining set of any simple majority
voting game derived from the k-fold replication of RN is nonempty, provided that k ≥ n+ 2.
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1. Introduction. Mas-Colell [15] has introduced a bargaining set that is also defined for finite games.
Although the existence problem was settled for certain classes of games, it remained notoriously open for
the important class of finite superadditive NTU games. In Peleg and Sudhölter [17] this fundamental question
was answered in the negative, by showing that there exists a four-person NTU majority voting game with
10 alternatives, whose Mas-Colell bargaining set is empty. We note that majority voting games are superadditive.
That example has led naturally to the following two questions:

(i) What is the minimum number of alternatives for which there exists an NTU majority voting game with
an empty Mas-Colell bargaining set?
(ii) Is it possible to find an NTU majority voting game with an odd number of players, whose Mas-Colell

bargaining set is empty?
We have investigated the foregoing two problems. In the following paragraphs we present our solutions and

comment on their importance.
In Theorem 5.1 we prove that for all NTU majority voting games with at most five alternatives, the Mas-Colell

bargaining set is nonempty. Furthermore, Example 5.1 provides a four-person NTU majority voting game with
six alternatives and an empty Mas-Colell bargaining set. Thus, we have a complete solution to the first question.
Let A be a set of m alternatives, m ∈ 	3
4
5�, and let N be a set of (an odd number of) voters. To choose one

alternative out of A by the majority rule we need to construct a binary voting tree (see Banks [7]). This is an
ad hoc procedure. If we focus on a particular binary voting tree, then the final outcome may be sensitive to the
chosen agenda. In contrast, the Mas-Colell bargaining set indicates for each profile of linear orders the choice
of at least one compromise alternative. Furthermore, it is neutral with respect to the alternatives and works for
an even number of voters as well. Because choice problems with at most five alternatives are quite frequent,
Theorem 5.1 may be quite useful.
We now turn to the second question, whether or not there is an NTU majority voting game with an odd

number of players and an empty Mas-Colell bargaining set. Unfortunately, it is shown in §6 that the answer is
positive. However, the very sophisticated proof is innovative and may be helpful in future investigations of NTU
games.
A few remarks are in order about the modelling of a social choice problem as an NTU game. Whereas in

the social choice setting preferences over the set A of alternatives are ordinal, we represent them by a cardinal
utility function in order to pass to utility space, the natural realm of NTU games. This by itself is innocuous. For
everything considered in this paper, the numbers that appear in a payoff vector of the NTU game do not matter
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in themselves; only the ordinal comparisons between them and the utility values of the alternatives matter. In
this sense, our analysis is purely ordinal. What may seem more problematic is our assumption of free disposal
of utility. That is, a payoff vector is considered feasible in the NTU game that is associated with the social
choice problem not only if it corresponds, via the utility representation, to some alternative in A, but also if it is
obtained from such a vector by arbitrarily reducing some of its entries. This is necessary in order to satisfy the
comprehensiveness property of NTU games, and is in fact common practice in applications of NTU games (see,
e.g., Scarf [18], Aumann [4]). Indeed, our positive results depend significantly on this feature: In many instances
where we point out a payoff vector in the bargaining set, this vector entails the choice of an alternative in A,
accompanied by a reduction of the utilities of some (but not all, as we insist on weak Pareto optimality) of the
players.1
2 To interpret such outcomes in the social choice context, one can think of voters who contribute to the
electoral campaign of a candidate in order to secure his election. Our results indicate that such contributions are
often essential to the stability (in the sense of the bargaining set) of the outcome. Note that most legal systems
allow campaign contributions, but do not allow the transfer of payments to voters. This lends support to both
the free disposal of utility and the nontransferability of utility that are inherent in the NTU model.
We now comment on the relevance of bargaining sets to our model. A feasible payoff vector x is in the

core if no coalition has a profitable deviation from (objection against) x. An objection y against x is justified,
roughly, if there is no objection to y also taking into consideration payoffs at x. The payoff vector x is in the
Mas-Colell [15] bargaining set if there exist no justified objections against it. Thus, the Mas-Colell bargaining
set focuses on credibility of objections, and it is a natural extension of the core. It was introduced as a variant
of the more classical Aumann-Davis-Maschler bargaining set, which is defined similarly (with different notions
of objections and counterobjections3). It is natural to study the analogues of the questions above also for the
Aumann-Davis-Maschler bargaining set, and indeed we do so in this paper (the answers turn out to be easier).
There are several other variants of the definition of the bargaining set that we do not study here. We briefly
mention two of them. Asscher [2] presented an ordinal bargaining set for NTU games. However, an element of
the Asscher bargaining set allows the existence of justified objections. (Its definition uses the transitive closure
of the binary relation “Player i has a justified objection against Player j .”) Finally, the consistent bargaining set
of Dutta et al. [9] is a subset of the Mas-Colell bargaining set. Therefore, it cannot yield wider existence results.
Furthermore, it may be empty even for transferable utility (TU) games.
The starting point of many studies in social choice theory is the voting paradox, which arises when every

alternative is dominated by some other alternative according to a majority of voters. This phenomenon is equiva-
lent, in terms of the NTU majority voting game, to the emptiness of the core. As explained above, the bargaining
sets represent a weaker notion of stability than the core, because they take into account only justified objections.
Thus, our study of the bargaining sets of majority voting games determines the extent to which focusing on
credible objections restores the existence of stable outcomes to the social choice problem, albeit in a weaker
sense. Our negative results, such as the construction of an NTU majority voting game with six or more alterna-
tives, which has an empty Mas-Colell bargaining set, may be viewed as showing the robustness of the voting
paradox to this weakening of the stability requirements. Note that in this context the assumption of free disposal
of utility discussed above only makes our negative results stronger: The robustness of the voting paradox is still
exhibited when the outcome space is enlarged by allowing free disposal of utility.
We shall now review our results.
In §2 we derive the exact form of the cooperative NTU games that correspond to simple majority voting.4

We start with a game in strategic form and use the standard procedure of Aumann and Peleg [6] to derive our
NTU game. We also recall the definitions of the Aumann-Davis-Maschler and Mas-Colell bargaining sets of
cooperative NTU games.

1 See a discussion of this in a concrete example in §3.
2 In extreme cases, the utilities are reduced down to the minimal utility level (over A) of the players. This admittedly weakens the positive
value of the existence results. Still, on the positive side, we draw attention to Theorem 7.2, which shows that typically (in a suitable
probabilistic sense), when there are many players, a positive fraction of the players may receive their maximal utility level in the Mas-Colell
bargaining set.
3 We refer the reader to Mas-Colell [15] and Vohra [21] for a comparison of the two definitions, and to Holzman [14] for a comparison
of the resulting bargaining sets. We note that the result of that paper, giving conditions under which the Mas-Colell bargaining set must
contain the Aumann-Davis-Maschler bargaining set, does not apply to our model, because the nonlevelness condition is violated.
4 Similar derivations may be carried out for other voting rules. Here we concentrate on the most natural voting rule, simple majority. We
refer the reader to an earlier version of this manuscript (available as Discussion Paper http://ratio.huji.ac.il/dp/dp376.pdf #376, Center for
the Study of Rationality, The Hebrew University of Jerusalem) for a treatment of plurality voting and approval voting.
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The voting paradox with three voters and three alternatives is analyzed in §3 with respect to these two
bargaining sets. It turns out that both bargaining sets are nonempty.
Section 4 addresses the existence question for the Aumann-Davis-Maschler bargaining set of a simple majority

voting game. We show that it is nonempty when there are at most three alternatives, but may be empty when
there are four or more alternatives even if there are just three voters.
Section 5 is devoted to the solution of the first question. The boundary between existence and nonexistence

turns out to be somewhat higher in the case of the Mas-Colell bargaining set: As indicated above, we prove
existence for up to five alternatives, and give examples of emptiness for six or more alternatives.
In these examples, there is an even number of voters. The second question is addressed in §6. By an elaborate

construction using huge numbers of voters and alternatives, it is shown that there exists an NTU majority voting
game with an odd number of voters and an empty Mas-Colell bargaining set.
We conclude in §7 with existence results for two models in which there are many voters, whose preferences

are drawn in a specified way. In one of them, a simple probabilistic model, we show that both bargaining sets
are nonempty, with probability tending to one as the number of voters tends to infinity. In the other, a replication
model, we prove that the Mas-Colell bargaining set is nonempty for any k-fold replication with k sufficiently
large, whereas the Aumann-Davis-Maschler bargaining set may be empty for any k.

2. Preliminaries. Let N = 	1
 � � � 
 n�, n ≥ 2, be a set of voters, also called players, and let A =
	a1
 � � � 
 am�, m ≥ 2, be a set of m alternatives. For S ⊆ N we denote by �S the set of all real functions on S.
Therefore, �S is the �S�-dimensional Euclidean space. (Here and in the sequel, if D is a finite set, then �D�
denotes the cardinality of D.) If x
 y ∈ �S , then we write x ≥ y if xi ≥ yi for all i ∈ S. Moreover, we write x > y
if x ≥ y and x �= y, and we write x 	 y if xi > yi for all i ∈ S. Denote �S

+ = 	x ∈ �S � x ≥ 0�. A set C ⊆ �S is
comprehensive if x ∈ C, y ∈ �S , and y ≤ x implies that y ∈ C. An NTU game with the player set N is a pair
�N 
V � where V is a function that associates with every coalition S (that is, S ⊆N and S �= 
) a set V �S�⊆ �S ,
V �S� �= 
, such that

(i) V �S� is closed and comprehensive;
(ii) V �S�∩ �x+�S

+� is bounded for every x ∈ �S .
We shall now assume that each i ∈ N has a linear order Ri on A. Thus, for every i ∈ N , Ri is a complete,

transitive, and antisymmetric binary relation on A. Moreover, let ui, i ∈N , be a utility function that represents Ri.
We shall always assume that

min
�∈A

ui���= 0 for all i ∈N� (1)

Let uN = �ui�i∈N be a utility profile that satisfies (1). We consider the strategic game in which every player
votes for some alternative in A. If a strict majority of voters agrees on � ∈A, then the outcome is �, and every
voter i gets utility ui���. Otherwise, if no majority forms, a deadlock results and every voter gets utility zero.
These rules associate with every strategy profile ��i�i∈N ∈ AN and every player k ∈ N a utility (or payoff) that
we denote by vk���i�i∈N �. We shall now recall the notion of �-effectiveness (see Aumann and Peleg [6] and
Aumann [3]). Every coalition S, 
 �= S ⊆N , may adopt any strategy profile ��i�i∈S ∈AS by a binding agreement
and, hence, S may guarantee x ∈ �S , that is, S is �-effective5 for x, if there exists a ��i�i∈S ∈ AS such that,
for every strategy profile ��j�j∈N\S ∈ AN\S , xk ≤ vk���i�i∈S
 ��j�j∈N\S� for each k ∈ S. Let VuN �S� = 	x ∈ �S �
S is �-effective for x�. The NTU game �N 
VuN � associated with choice by simple majority voting is called the
simple majority voting game (see Aumann [4]). Let S be a coalition and i ∈ S. If �S� ≤ n/2 and if all members
of N\S select i’s worst alternative, then S cannot guarantee any positive payoff to player i, because it is not
possible to reach a majority for any but i’s worst alternative. If �S� > n/2 and if each member of S selects the
same alternative � ∈A, then S guarantees ui��� to any i ∈ S. Thus,

VuN �S�= 	x ∈ �S � x ≤ 0� if S ⊆N
 1≤ �S� ≤ n

2
� (2)

VuN �S�= 	x ∈ �S � ∃� ∈A such that x ≤ uS���� if S ⊆N
 �S�> n

2

 (3)

where uS��� = �ui����i∈S . It should be noted that there also exists the notion of �-effectiveness: A coalition
S is �-effective for x ∈ �S if, for each strategy profile of N\S, there exists a strategy profile of S such that
k’s payoff is at least xk for all k ∈ S. A careful inspection of the foregoing reasoning shows that �-effectiveness
again leads to the same NTU game �N 
VuN � in our case.

5 The symbol � does not refer to an element � ∈A.
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Notation 2.1. In the sequel, let L = L�A� denote the set of linear orders on A. For R ∈ L and for k ∈
	1
 � � � 
m�, let tk�R� denote the kth alternative in the order R. If R

N ∈ LN and �
� ∈A, � �= �, then � dominates
� (abbreviated ��RN �) if �	i ∈N � � Ri ���>n/2. We shall say that an alternative � ∈A is a weak Condorcet
winner (with respect to RN ) if � ��RN � for all � ∈A. Also, if RN ∈ LN , then denote

�RN = 	�ui�i∈N � ui is a representation of Ri satisfying (1) ∀i ∈N��

Let �N 
V � be an NTU game. The pair �N 
V � is zero normalized if V �	i��= −�	i�
+ for all i ∈N . Also, �N 
V �

is superadditive if for every pair of disjoint coalitions S
T , V �S� × V �T � ⊆ V �S ∪ T �. It should be remarked
that the NTU games defined by (2) and (3) are zero normalized and superadditive.
Now we shall recall the definitions of two bargaining sets introduced by Davis and Maschler [8] and by

Mas-Colell [15], following the general approach delineated by Aumann and Maschler [5]. Let �N 
V � be a
zero-normalized NTU game and x ∈ �N . We say that x is

• individually rational if x ≥ 0;
• Pareto optimal (in V �N�) if x ∈ V �N� and if y ∈ V �N� and y ≥ x imply x = y;
• weakly Pareto optimal (in V �N�) if x ∈ V �N� and if for every y ∈ V �N� there exists i ∈N such that xi ≥ yi;
• a preimputation if x is weakly Pareto optimal in V �N�;
• an imputation if x is an individually rational preimputation.

We also use the natural analogue of the Pareto optimality notion with respect to V �S�, where 
 �= S ⊆N .
A pair �P
 y� is an objection at x if 
 �= P ⊆N , y is Pareto optimal in V �P�, and y > xP . An objection �P
 y�

is strong if y 	 xP . The pair �Q
 z� is a weak counterobjection to the objection �P
 y� if Q ⊆ N , Q �= 

 P , if
z ∈ V �Q�, and if z≥ �yP∩Q
xQ\P �. A weak counterobjection �Q
 z� is a counterobjection to the objection �P
 y�
if z > �yP∩Q
xQ\P �. A strong objection �P
 y� is justified in the sense of the bargaining set if there exist players
k ∈ P and l ∈ N\P such that there does not exist any weak counterobjection �Q
 z� to �P
 y� satisfying l ∈ Q
and k � Q. The bargaining set of �N 
V �, ��N 
V �, is the set of all imputations x that do not have strong
justified objections at x in the sense of the bargaining set (see Davis and Maschler [8]). An objection �P
 y�
is justified in the sense of the Mas-Colell bargaining set if there does not exist any counterobjection to �P
 y�.
The Mas-Colell bargaining set of �N 
V �, ���N 
V �, is the set of all imputations x that do not have a justified
objection at x in the sense of the Mas-Colell bargaining set (see Mas-Colell [15]).
Remark 2.1. We recall that x ∈ �N is in the core of the NTU game �N 
V �, ��N 
V �, if x ∈ V �N� and for

any coalition S and any y ∈ V �S� there exists i ∈ S such that xi ≥ yi.
(i) Note that ��N 
V �⊆ ��N 
V �� Indeed, x ∈ ��N 
V � is weakly Pareto optimal, individually rational, and

it has no strong objection.
(ii) The Mas-Colell bargaining set need not contain the core (see the following example). Still, the Mas-

Colell bargaining set of a simple majority voting game must contain a core element if the core is nonempty. To
see this, let RN ∈ L�A�N , uN ∈ �RN

, and V = VuN . Note that ��N 
V � �= 
 if and only if A has a weak Condorcet
winner with respect to RN , and in this case also ��N 
V �∩���N 
V � �= 
. Indeed, if � is a weak Condorcet
winner, then uN ��� ∈ ��N 
V � ∩ ���N 
V �, because uN ��� has no objection in this case. Also, if A has no
weak Condorcet winner and x ∈ �N

+ satisfies x ≤ uN ��� for some � ∈ A, then there exists % ∈ A, % �RN �. Let
S = 	i ∈ N � %Ri�� and observe that �S� > n/2 implies that y = uS�%� ∈ V �S�. Because yi > xi for all i ∈ S, it
follows that x � ��N 
V �.
(iii) We conclude that if a simple majority voting game has a nonempty core, then its Aumann-Davis-Maschler

bargaining set and its Mas-Colell bargaining set are nonempty as well.
Example 2.1. Let n= 4 and let RN be given by Table 1.
Then x = �min	ui�b�
 ui�a���i∈N ∈ ��N 
V � because there is no strong objection at x. However, x �

���N 
V � because �N 
uN �a�� is a justified objection in the sense of the Mas-Colell bargaining set at x.
Remark 2.2. The original definition of Mas-Colell considered preimputations, not just imputations. In

restricting our attention to imputations, we follow Vohra [21]. In any case, all our results about existence and
nonexistence are valid for both variants of the definition.

Table 1. Preference profile of a four-person voting problem.

R1 R2 R3 R4

a a c c

b b b b

c c a a
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Table 2. Preference profile of the 3× 3 voting paradox.

R1 R2 R3

a c b

b a c

c b a

Remark 2.3. For a given RN ∈ LN , the particular choice of a representation uN ∈ �RN
is essentially imma-

terial: Different representations lead to NTU games that are derived from each other by ordinal transformations,
and so are their bargaining sets.

3. The 3× 3 voting paradox. In this section we shall compute the bargaining sets of the voting paradox
of three voters and three alternatives and interpret the results.
Let A= 	a
 b
 c�, let n= 3, and let RN ∈ LN be given by Table 2.
For i ∈N , let ui be a utility representation of Ri satisfying (1) and let V = VuN (see (2) and (3)).
We claim that ��N 
V �= 	0�. Indeed, it is straightforward to verify that 0 ∈ ��N 
V �. To show the opposite

inclusion, let x ∈ ��N 
V �. Then there exists � ∈ A such that x ≤ uN ���. Without loss of generality, we may
assume that �= a. Assume, on the contrary, that x > 0. If x1 > 0, then �	2
3�
u	2
3��c�� is a justified objection
of 3 against 1 at x in the sense of the bargaining set. If x1 = 0 and, hence, x2 > 0, then �	1
3�
u	1
3��b�� is a
justified objection of 1 against 2.
To compute the Mas-Colell bargaining set, we define x = �u1�b�
u2�a�
0� and claim that x ∈ ���N 
V �.

Indeed, let �P
 y� be an objection at x. Then �P � ≥ 2. Because y is Pareto optimal in V �P�, y ∈ 	uP ��� � � ∈A�.
If y = uP �a�, then �P
 y� is countered by �	2
3�
u	2
3��c��. If y = uP �b�, then y > xP implies that P = 	1
3�.
In this case �P
 y� is countered by �	1
2�
u	1
2��a��. Finally, if y = uP �c�, then y > xP implies that P = 	2
3�
and that �P
 y� is countered by �	1
3�
u	1
3��b��.
In order to show that every x̂ ∈ �N satisfying 0 ≤ x̂ ≤ x is an element of ���N 
V �, it should be noted that

each objection at x̂ is also an objection at x if x̂1 > 0 and x̂2 > 0. If x̂1 = 0 and x̂2 > 0, then the additional objec-
tions are of the form �P
uP �c�� for some P ⊆ N and these objections can be countered by �	1
3�
u	1
3��b��.
Similarly, if x̂1 > 0 and x̂2 = 0, then the additional objections can be countered by �	1
2�
u	1
2��a��. Finally,
if x̂ = 0, then each additional objection can be countered by one of the foregoing pairs �	1
3�
u	1
3��b�� or
�	1
2�
u	1
2��a��.
Similarly, for y = �u1�b�
0
 u3�c�� and z = �0
 u2�a�
u3�c�� we have that every ŷ ∈ �N satisfying 0 ≤ ŷ ≤ y

and every ẑ ∈ �N satisfying 0≤ ẑ≤ z is in ���N 
V �.
We shall now show that there are no other elements in ���N 
V �. Indeed, any remaining individually rational

�x ∈ V �N� must have a coordinate that is higher than the utility of that voter’s second-best alternative. Say,
without loss of generality, that �x1 > u1�b�. Then �	2
3�
u	2
3��c�� is a justified objection in the sense of the
Mas-Colell bargaining set at �x. We conclude that ���N 
V � is the intersection of �N

+ and the comprehensive
hull of 	x
 y
 z�.
Discussion: The singleton ��N 
V � tells us that in order to achieve (coalitional) stability the players have to

give up any profit above their individually protected levels of utility. There is no hint how an alternative of A will
be chosen. The message of ���N 
V � is much more detailed. For example, the element x = �u1�b�
u2�a�
0�
tells us that the alternative a may be chosen provided player 1 disposes of u1�a�−u1�b� utiles. Thus, we also see
here that lower utility levels guarantee stability. Actually, x implies that there is an agreement between players 1
and 2, the alternative a is chosen as a result of the agreement, and the utility of 1 is reduced (because of the
agreement) from u1�a� to u1�b�. Note that cooperative game theory does not specify the details of agreements
that support stable payoff vectors.
In this example (and indeed in many other examples), the Mas-Colell bargaining set is much larger than the

Aumann-Davis-Maschler one. However, it is interesting to note that ���N 
V � need not contain ��N 
V � in
general, as can be concluded from Remark 2.1 and Example 2.1. Nevertheless, it can be shown that when the
number of alternatives is three and there is no weak Condorcet winner, then in the associated NTU game �N 
V �
we have ��N 
V �⊆ ���N 
V �.6

6 We refer the reader to the discussion paper mentioned in Footnote 4, where this fact is derived from a detailed (though incomplete)
description of the bargaining sets of simple majority voting games in the case of three alternatives.
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Table 3. Preference profile of a 4-alternative voting problem.

R1 R2 R3

a c b

b a c

d d d

c b a

4. The bargaining set. Throughout this section, let RN ∈ L�A�N , � = �RN , uN ∈ �RN
(see Notation 2.1),

V = VuN (see (2) and (3)).

Theorem 4.1. If �A� ≤ 3, then ��N 
V � �= 
.

Proof. If there exists a weak Condorcet winner � ∈ A, then uN ��� ∈ ��N 
V �. Therefore, we may assume
that �A� = 3 and for every � ∈A there exists � ∈A such that �� �. We claim that for any � ∈A there exists i ∈N
such that t3�R

i� = �. Indeed, if � ∈ 	t1�R
i�
 t2�R

i�� for all i ∈ N and if � � �, then �	i ∈ N � � = t1�R
i��� > n/2

and � is a Condorcet winner that was excluded. We conclude that 0 ∈ �N is weakly Pareto optimal. As any
objection �P
 y� at 0 has the weak counterobjection �	l�
0� for any l ∈N\P , we conclude that 0 ∈ ��N 
V �. �

Example 4.1. Let A= 	a
 b
 c
d�, let n= 3, and let RN be given by Table 3.
We claim that ��N 
V �= 
. Let x be an imputation of �N 
V �. In order to show that x � ��N 
V �, we may

assume without loss of generality that x1 ≥ u1�d�. We distinguish the following possibilities:
(i) x ≤ uN �a� or x ≤ uN �d�. Then �	2
3�
u	2
3��c�� is a justified objection (in the sense of the bargaining

set) of 3 against 1.
(ii) x ≤ uN �b�. If x3 < u3�c�, then we may use the same justified strong objection as in the first possibility.

If x3 ≥ u3�c�, then �	1
2�
u	1
2��a�� is a justified objection of 2 against 3.
Example 4.1 shows the tension between (weak) Pareto optimality and stability may result in an empty bar-

gaining set.
Example 4.1 may be generalized to any number m ≥ 4 of alternatives. Indeed, let A = 	a
 b
 c
d1
 � � � 
 dk�,

where k =m− 3, and define RN by
R1 = �a
 b
d1
 � � � 
 dk
 c�


R2 = �c
a
d1
 � � � 
 dk
 b�


R3 = �b
 c
d1
 � � � 
 dk
 a�


and note that ��N 
V � = 
. More interestingly, Example 4.1 can be generalized to yield an empty bargaining
set for simple majority voting games on four alternatives with infinitely many numbers of voters.
Example 4.2 (Example 4.1 Generalized). Let

R1 = �a
 b
d
 c�
 R2 = �a
 c
d
 b�
 R3 = �b
a
d
 c�


R4 = �b
 c
d
a�
 R5 = �c
a
d
b�
 R6 = �c
 b
d
a�


and let k ∈ �. Let N = 	1
 � � � 
6k− 3� and let RN ∈ LN satisfy

�	j ∈N �Rj =Ri�� =


k
 if i = 1
4
5


k− 1
 if i = 2
3
6�

Then ��N 
V �= 
. Indeed, k = 1 coincides with Example 4.1. The reader may check, e.g., the case k = 2 (see
Table 4) by repeating the arguments of Example 4.1.

Table 4. Preference profile for k = 2.

R1 R2 R3 R4 R5 R6 R7 R8 R9

a a b b c c a c b

b c a c a b b a c

d d d d d d d d d

c b c a b a c b a
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5. The Mas-Colell bargaining set. We shall show that �� is nonempty for any simple majority voting
game on less than six alternatives. Also, we shall show that there is a simple majority voting game on six
alternatives whose Mas-Colell bargaining set is empty. We shall always assume that RN ∈ L�A�N , � = �RN ,
uN ∈ �RN

, and V = VuN . We start with the following simple lemma.

Lemma 5.1. Assume that there is no weak Condorcet winner. If x ∈ �N
+ satisfies xi ≤ ui�tm−1�R

i�� for all
i ∈N and if x is weakly Pareto optimal in V �N�, then x ∈ ���N 
V �.

Proof. If �S
 y� is an objection at x, then �S� > n/2 and there exists � ∈ A such that uS��� = y. Choose
� ∈ A such that � � �. Then there exists T ⊆ N , �T � > n/2 such that uT ��� 	 uT ���. Thus, �T 
uT ���� is a
counterobjection. �

Theorem 5.1. If �A� ≤ 5, then ���N 
V � �= 
.

Proof. If �A� ≤ 3, the proof that we gave for � (Theorem 4.1) also works for ��. In order to prove the
theorem for m= 4, we may assume that there is no weak Condorcet winner. Then, for each � ∈A,

there exists i ∈N such that � ∈ 	t3�R
i�
 t4�R

i��� (4)

Indeed, if for some � ∈ A, � ∈ 	t1�R
i�
 t2�R

i�� for all i ∈ N , then � � � implies that � is a Condorcet winner
that was excluded. For � ∈ A, define x� = �min	ui���
ui�t3�R

i����i∈N � By Lemma 5.1, x� ∈ ���N 
V �, if x�
is weakly Pareto optimal. Hence, in order to complete the proof for m = 4, it suffices to show that there exists
� ∈ A such that x� is weakly Pareto optimal. Two possibilities may occur: If there exists � ∈ A such that
� �= t4�R

i� for all i ∈N , then by (4), x� is weakly Pareto optimal. Otherwise, any x� is weakly Pareto optimal.
Now, let m= 5, let A= 	a1
 � � � 
 a5�, and assume that ���N 
V �= 
. Then, for each � ∈A
(i) there exists � ∈A such that �� �;
(ii) uN ��� is Pareto optimal (because �� is nonempty when we restrict our attention to the game corre-

sponding to the restriction of uN to A\	��).
For � ∈ A, denote l��� = max	k ∈ 	1
 � � � 
5� � ∃i ∈ N* tk�R

i� = ��. Let lmin = min�∈A l���. We distinguish
cases:
(1) lmin ≥ 4: Then there exists a weakly Pareto optimal x ∈ V �N� such that xi ≤ ui�t4�R

i�� for all i ∈ N ,
which is impossible by Lemma 5.1.
(2) lmin ≤ 2: Let �
� ∈A such that l���= lmin and �� �. Then � is a Condorcet winner, which is impossible

by (i).
(3) lmin = 3: Let B = 	� ∈ A � l��� = 3�. If �B� = 3, then any � ∈ A\B violates (ii). If �B� = 2, let us say

B = 	�
��, then we may assume without loss of generality that � �� �. Let % ∈A such that % � �. Then, none of
the remaining , ∈ A\�	%�∪B� dominates any of the elements �
�
%. By (i) we conclude that % � � � � � %.
Then �min	ui���
ui�����i∈N ∈ ���N 
V �.
Now we turn to the case �B� = 1; let us say B = 	a3�. Let Ŝ = 	i ∈ N � t3�Ri� = a3�. For any k ∈ Ŝ there

exists xk ∈ �N such that xk is weakly Pareto optimal, xkk = uk�a3�, and xik ≤ ui�t4�R
i�� for all i ∈ N\	k�. As

xk � ���N 
V �, there exists a justified objection �S
uS���� for some S ⊆ N , �S� > n/2, and some � ∈ A.
Let � ∈ A such that � � �. Then there exists T ⊆ N , �T � > n/2, such that uS∩T ��� 	 uS∩T ��� and uT \S��� ≥
�ui�t4�R

i���i∈T \S . Because �T 
uT ���� is not a counterobjection, we conclude that k ∈ T , t4�R
k� = �, and

t5�R
k�= �. We conclude that for any k ∈ Ŝ the alternative t5�R

k� is only dominated by t4�R
k�. If n is odd,

we may now easily finish the proof by the observation that � dominates all other alternatives except �, and
therefore �min	ui���
ui�����i∈N ∈ ���N 
V �. Hence, we may assume from now on that n is an even number.
As a3 �� �, 	i ∈ N � ui��� > ui�a3��∩ 	i ∈ N � ui��� > ui���� �= 
. Thus, there exists j ∈ Ŝ such that t1�R

j� = �
and t2�R

j�= �. So far, we have for any k ∈ Ŝ, where �= t5�R
k�
�= t4�R

k�:

� is only dominated by �� (5)

there exists j ∈ Ŝ such that t1�R
j�= �
 t2�R

j�= �� (6)

�	i ∈N � ui��� > ui�a3��� ≥ n

2
� (7)

Now, let k
 j ∈ Ŝ have the foregoing properties—let us say k = 1 and j = 2. We also may assume that t4�R
1�= a4,

t5�R
1�= a5, t4�R

2�= a1, t5�R
2�= a2 (hence, R

2 = �a4
 a5
 a3
 a1
 a2�). Therefore, for any k ∈ Ŝ, we have

	t4�R
k�
 t5�R

k��= 	a4
 a5� ⇒ t4�R
k�= a4 (8)

t5�R
k�= a5 ⇒ t4�R

k�= a4 (9)
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	t4�R
k�
 t5�R

k��= 	a1
 a2� ⇒ t4�R
k�= a1 (10)

t5�R
k�= a2 ⇒ t4�R

k�= a1� (11)

We are now going to show that there exists k ∈ Ŝ such that t5�R
k� � 	a5
 a2�. Assume the contrary. Then

	i ∈N � ui�a5� > ui�a3��∩ 	i ∈N � ui�a2� > ui�a3��= 
 and, by (7), a5 �� a3 and a2 �� a3. Hence, by (i), a1 � a3
or a4 � a3. However, note that by our assumption ui�a1� > ui�a3� implies u

i�a1� > ui�a5� for all i ∈N . Thus, if
a1 � a3, then a1 � a5, which contradicts (5). Similarly, a4 � a3 can be excluded.
Hence, we may assume without loss of generality that there exists k ∈ Ŝ such that t5�R

k� = a1. We now
claim that there exists j ∈ Ŝ such that t5�R

j� = a4. By (5) and the fact that a1 � a2, t4�R
k� ∈ 	a4
 a5�. If

t4�R
k�= a4, then by (6) there exists j ∈ Ŝ such that 	t4�R

j�
 t5�R
j��= 	a2
 a5�. By (9), a5 �= t5�R

j�, and by (11),
a2 �= t5�R

j�. Hence, this possibility is ruled out. We conclude that t4�R
k� = a5. By (6) there exists j ∈ Ŝ such

that 	t4�R
j�
 t5�R

j��= 	a2
 a4�. By (11), t5�R
j�= a4. Therefore, our claim has been shown.

So far we have deduced that there exist kj ∈ Ŝ, j = 1
2
4
5, such that t5�R
kj �= aj . By (7), �	i ∈N � ui�aj� >

ui�a3��� ≥ n/2 for all j = 1
2
4
5� We conclude that a3 = t3�R
i� for all i ∈ N and �	i ∈ N � ui�aj� > ui�a3��� =

n/2 for all j = 1
2
4
5� Therefore, a3 is not dominated by any alternative, which contradicts (i). �

We shall now present an example of a simple majority voting game on six alternatives, whose Mas-Colell
bargaining set is empty.
Example 5.1. Let n= 4, A= 	a1
 � � � 
 a4
 b
 c�, and let R

N ∈ LN be given by Table 5.
We claim that ���N 
V �= 
. Note that the proof below is similar to the proof of the emptiness of an exten-

sion of the Mas-Colell bargaining set of a game derived from a four-person voting problem on 10 alternatives
(see Peleg and Sudhölter [17, §3]).
Proof of the Claim. Assume that there exists x ∈ ���N 
V �. Let � ∈A such that x ≤ uN ���. Let

S1 = 	1
2
3�
 S2 = 	1
2
4�
 S3 = 	1
3
4�
 S4 = 	2
3
4��

We distinguish the following possibilities:
(i) x ≤ uN �a1�. In this case, �S4
 u

S4�a4�� is an objection at x. Because there must be a counterobjection
to this, we conclude that �S3
 u

S3�a3�� is a counterobjection, and therefore also an objection at x. Hence,
x1 ≤ u1�a3�. To this objection, too, there must be a counterobjection. We conclude that �S2
 u

S2�a2�� is a
counterobjection. Hence, x2 ≤ u2�a2�, and therefore x � uN �b� and the desired contradiction has been obtained
in this case.

(ii) The possibilities x ≤ uN ��� for � ∈ 	a2
 a3
 a4� may be treated similarly.
(iii) x ≤ uN �b�. Then, �S1
 u

S1�c�� is an objection at x. There are several possibilities for a counterobjection
to this. Each of them involves player 4 and one of the alternatives a1, a4, or c. We conclude that, in any
case, x4 ≤ u4�a4�. Hence, �S4
 u

S4�a4�� is an objection at x. Now we conclude that �S3
 u
S3�a3�� must be a

counterobjection and, hence, an objection at x. We continue by concluding that �S2
 u
S2�a2�� must be an objection

and that, hence, �S1
 u
S1�a1�� is a counterobjection. Therefore, x � uN �b� and the desired contradiction has been

obtained.
(iv) x ≤ uN �c�. We consecutively deduce that �S4
 u

S4�a4��
 � � � 
 �S1
 u
S1�a1�� are objections. The desired

contradiction is again obtained by the observation that x � uN �b�. �

Example 5.1 may be generalized to any number m ≥ 6 of alternatives. Also, it may be generalized to any
even number n≥ 4 of voters: If Ri =Ri for i = 1
 � � � 
4
 if

R5 = �a2
 a1
 c
 b
a3
 a4�
 R6 = �a4
 a3
 c
 b
a1
 a2�


Table 5. Preference profile leading to an empty ��.

R1 R2 R3 R4

a1 a4 a3 a2
a2 a1 a4 a3
c c c b

b b b a4
a3 a2 a1 c

a4 a3 a2 a1
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if n= 4+ 2k for some k ∈ �, if �RN ∈ LN such that

�	j ∈N � �Rj =Ri�� =


k
 if i = 5
6


1
 if i = 1
2
3
4


and if �V = VuN for some uN ∈ � �RN
, then ���N 
 �V �= 
.

6. The Mas-Colell bargaining set for an odd number of voters. The examples that we just gave for
emptiness of the Mas-Colell bargaining set have an even number of voters. The most natural setting for simple
majority rule is when the number of voters is odd. It is therefore desirable to study the existence question for
�� in the class of simple majority voting games with an odd number of voters. Attempts to construct small
explicit counterexamples, similar to those above, seem to fail. We take a different approach that leads to the
construction of a profile of preferences with an odd number of voters, whose associated simple majority voting
game has an empty Mas-Colell bargaining set.
Throughout this section we shall always assume that A is a finite set of m ≥ 2 alternatives and that N =

	1
 � � � 
 n� for some odd n ∈ �. Recall that T = �A
�� is a tournament on A if � is an irreflexive, asymmetric,
and complete relation on A (that is, �
� ∈A
� �= � implies that exactly one of �� �, �� � holds).
As our construction is complex and is done in several steps, we first give an outline. One can associate with

every profile of linear orders RN a tournament T = �A
��, where � = �RN is the domination relation. For a
profile RN , we can look at any given choice ��= ��i�i∈N of an alternative for each voter (we call this a position)
and ask if the corresponding vector of utility levels has no justified objection in the sense of the Mas-Colell
bargaining set. The first idea of the construction is to work with profiles RN that are tight, in the sense that
the contest between any two alternatives is decided by a one-vote difference. Under this assumption, the above
condition on a position �� (there being no justified objection) has a relatively simple expression in terms of the
profile RN and the tournament T ; we call such �� nonenhancing.
As a first step we show that tightness does not restrict in any way the tournaments that can be realized. Recall

that McGarvey [16] proved that every tournament may be obtained as the domination relation �RN of some
profile of preferences RN . Our Lemma 6.1 strengthens this result by insisting that RN be tight.7

The second idea of the construction is to force the Mas-Colell bargaining set to be empty by inserting above
every would-be element of it, i.e., every nonenhancing position ��, a new alternative ��∗ that will render �� (or
more precisely, the corresponding payoff vector) nonweakly Pareto optimal. Of course, there is a danger that
by doing this we introduce new candidates for belonging to ��. It turns out that we can avoid this if in
the original profile (before the new alternatives are inserted) the following holds true: For every nonenhancing
position ��= ��i�i∈N and every alternative �, a majority of voters i ∈N prefer � to �i.
Most of the work is devoted to constructing the original profile so as to guarantee this property. First, we

choose the tournament. Lemma 6.2 asserts that we can choose it so that every alternative beats exactly half of
the other alternatives, and it never happens that all the alternatives that beat a given alternative are in turn beaten
by (or equal to) another alternative. Its proof uses a known construction of quadratic residue tournaments.8

Lemma 6.4 asserts, essentially, that if the tournament is chosen as in Lemma 6.2, and if every linear order
appears in the profile approximately n/m! times, then the profile has the desired property. The proof of Lemma
6.4 is based on some calculations of the relative frequency of linear orders that display certain patterns, which
we carry out in advance of the lemma. These calculations, and the lemma itself, are conveniently expressed in
terms of the uniform probability measure on L�A�, but the method of proof is not probabilistic.
Finally, we have to construct the profile so that it will satisfy the premises of Lemma 6.4. It needs to have

a prescribed associated tournament, and at the same time be approximately uniform in terms of the number of
appearances of each linear order. We achieve this by building the profile in two parts with disjoint sets of voters.
The first part, produced by Lemma 6.1, realizes the prescribed tournament. The second part is uniform (and
hence does not affect the tournament), and is chosen large enough so that the overall profile is sufficiently close
to being uniform.
We proceed with the details.

7 Incidentally, the smallest number of voters n that is needed for McGarvey’s theorem (as a function of m) has been studied in the literature.
McGarvey’s original proof (which also permitted us to prescribe ties between pairs of alternatives) required n=m�m− 1�, and subsequent
research (see Stearns [20] and Erdős and Moser [10]) has shown that n = O�m/logm� suffices and is the right order of magnitude. Our
proof requires n= 2m− 3.
8 Quadratic residue tournaments have been used in the combinatorial literature as examples of explicitly constructed tournaments that display
randomlike properties. See, e.g., Graham and Spencer [12] and Alon and Spencer [1].
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Table 6. Sketch of a profile RN .

R1 · · · R�n0+1�/2 R�n0+3�/2 · · · Rn0 Rn0+1 Rn

�0 · · · �0 t1�R
�n0+3�/2
0 � · · · t1�R

n0
0 � t1�R0� tm−1�R0�

t1�R
1
0� � � � t1�R

�n0+1�/2
0 � t2�R

�n0+3�/2
0 � · · · t2�R

n0
0 � t2�R0� tm−2�R0�

�
�
�

� � �
�
�
�

�
�
�

� � �
�
�
�

�
�
�

�
�
�

tk0−1�R
1
0� � � � tk0−1�R

�n0+1�/2
0 � tk0 �R

�n0+3�/2
0 � · · · tk0 �R

n0
0 � tk0 �R0� tm−k0

�R0�

tk0 �R
1
0� � � � tk0 �R

�n0+1�/2
0 � tk0+1�R

�n0+3�/2
0 � · · · tk0+1�R

n0
0 � tk0+1�R0� �0

tk0+1�R
1
0� � � � tk0+1�R

�n0+1�/2
0 � tk0+2�R

�n0+3�/2
0 � · · · tk0+2�R

n0
0 � tk0+2�R0� tm−k0−1�R0�

�
�
�

� � �
�
�
�

�
�
�

� � �
�
�
�

�
�
�

�
�
�

tm−2�R
1
0� � � � tm−2�R

�n0+1�/2
0 � tm−1�R

�n0+3�/2
0 � · · · tm−1�R

n0
0 � tm−1�R0� t2�R0�

tm−1�R
1
0� � � � tm−1�R

�n0+1�/2
0 � �0 · · · �0 �0 t1�R0�

Lemma 6.1. For every tournament T = �A
�� there exists a finite set N of voters and a preference profile
RN ∈ L�A�N such that n is odd and for all �
� ∈A,

�� � ⇒ �	i ∈N � � Ri ��� = n+ 1
2

� (12)

Proof. We argue by induction on m= �A�. If m= 2, then � is a linear order and the statement is true (with
n = 1 and R1 = �). If m> 2, then select �0 ∈ A, define A0 = A\	�0� and let �0 be the restriction of � to A0.
By the inductive hypothesis there is a set N0 with an odd number of elements and R

N0
0 ∈ L�A0�

N0 such that

�
� ∈A0
 ��0 � ⇒ �	i ∈N0 � � Ri
0 ��� = n0 + 1

2
�

Let n= n0 +2, B = 	� ∈A0 � �0 � ��, and let R0 ∈ L�A0� such that, for all � ∈ B and all � ∈A0\B, � R0 �. Put
k0 = �A0\B�. Moreover, let R∗

0 be the reverse linear order of R0. Now, define R
i ∈ L�A� for all i ∈N as follows

(see Table 6).
If i ≤ �n0 + 1�/2, then let Ri be the linear order that coincides with Ri

0 on A0 and ranks �0 first, that is,
t1�R

i� = �0 and tk+1�R
i� = tk�R

i
0� for k = 1
 � � � 
m− 1. If �n0 + 1�/2< i ≤ n0, then let Ri be the linear order

that coincides with Ri
0 on A0 and ranks �0 last, that is, tk�R

i� = tk�R
i
0� for k = 1
 � � � 
m− 1 and tm�R

i� = �0.
Also, let Rn0+1 be the order that coincides with R0 on A0 and ranks �0 last, that is, tk�R

n0+1� = tk�R0� for
k = 1
 � � � 
m− 1 and tm�R

n0+1�= �0. Finally, let R
n be the ranking that coincides with R∗

0 on A0 and ranks �0

between the elements of A0\B and the members of B, that is, ti�R
n�= ti�R

∗
0� for i = 1
 � � � 
 k0, tk0+1�R

n�= �0,
and tj+1�R

n�= tj �R
∗
0� for j = k0 + 1
 � � � 
m− 1. The pair �N 
RN � satisfies the desired properties. �

Notation 6.1. Let �A
�� be a tournament and � ∈A. Denote

A+
����=A+���= 	� ∈A � �� ��
 A−

����=A−���= 	� ∈A � �� ���

Lemma 6.2. There exist infinitely many positive integers m such that there exists a tournament T = �A
��
with �A� =m that satisfies the following properties:

�A+���� = �A−���� = m− 1
2

for all � ∈A� (13)

A−��� �=A+��� for all �
 � ∈A� (14)

For all � ∈A and � ∈A−��� there exists % ∈A−���\	�� such that % � �� (15)

Proof. The set Q = 	p ∈ � � p is a prime such that p ≡ 3 mod 4� is infinite. Let p ∈ Q, p > 3. Let �p =
	0
 � � � 
 p − 1� denote the field of residue classes modulo p. Recall that an element t ∈ �p\	0� is called a
quadratic residue modulo p if there exists a ∈ �p such that a2 ≡ t mod p (for the basic properties of quadratic
residues that we use below, see, e.g., Hardy and Wright [13, Chapter VI]). Let A= �p and let � on A be defined
by � � � iff �
� ∈ A and �−� is a quadratic residue modulo p. It suffices to prove that �A
�� satisfies the
desired properties.
The fact that �A
�� is a tournament that satisfies property (13) is an immediate consequence of the following

claim.
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Claim 1. The set of quadratic residues mod p contains exactly one element of every set 	t
p− t� for every
t ∈A\	0�.
Assume the contrary. Because there are �p− 1�/2 quadratic residues mod p, there exists t ∈A\	0� such that

t and p− t are both quadratic residues. Therefore, there are a
b ∈A such that a2 ≡ t mod p and b2 ≡ −t mod p.
Thus, a2 ≡ −b2 mod p. Let c ∈ A be the inverse of b, that is, bc ≡ 1 mod p. Then �ac�2 ≡ −1 mod p. We
conclude that �ac�p−1 ≡ �−1��p−1�/2 mod p. Because p ≡ 3 mod 4, �p − 1�/2 is odd and, hence, �ac�p−1 ≡
−1 mod p. On the other hand, by Fermat’s theorem, �ac�p−1 ≡ 1 mod p and the desired contradiction has been
obtained.
The following claim enables us to show that (14) and (15) are satisfied.

Claim 2. The prime p divides the sum of all quadratic residues mod p.

If s denotes this sum, then because every quadratic residue is the square of two residues modulo p,
2s ≡ ∑

a∈�p
a2 mod p. Because �p is a field and p �= 2,

4
∑
a∈�p

a2 = ∑
a∈�p

�2a�2 ≡ ∑
a∈�p

a2 mod p�

We conclude that 3s ≡ 0 mod p. As p > 3, s ≡ 0 mod p.
In order to show (14) we assume, on the contrary, that A−���=A+���. By Claim 2,

∑
%∈A−���

�% −��= ∑
%∈A−���

% − p− 1
2

�≡ 0 mod p

and ∑
%∈A+���

��−%�= p− 1
2

�− ∑
%∈A+���

% ≡ 0 mod p�

By the assumption, ��p− 1�/2���−��≡ 0 mod p, which is impossible.
In order to show (15) we assume, on the contrary, that there exists � ∈ A−��� such that � � % for all

% ∈A−���\	��. Hence, A−���\	��=A+���\	��. Claim 2 yields

∑
%∈A−���\	��

�% −��= ∑
%∈A−���\	��

% − p− 3
2

�≡ ��−�� mod p

and ∑
%∈A+���\	��

��−%�= p− 3
2

�− ∑
%∈A+���\	��

% ≡ ��−�� mod p�

By the assumption, ��p+ 1�/2���−��≡ 0 mod p, which is impossible. �

For any set A of m alternatives, let probA be the uniform probability measure on L�A�, that is, probA* 2
L�A� →�

is defined by probA�T �= �T �/m! for all T ⊆ L�A�.
Remark 6.1. Let �
% ∈A, � �= %, and let Z ⊆A\	�
%�. Then

probA�	R ∈ L�A� � ∃1 ∈Z such that � R 1 and % R 1��= �Z�/��Z� + 2�� (16)

Indeed, we may assume that A = Z ∪ 	�
%�. Let z = �Z�. There are �m − 1�! elements R of L�A� such that
tm�R�= �. A similar statement is valid for %. We conclude that

�	R ∈ L�A� � tm�R� ∈Z�� =m! − 2�m− 1�! = �m− 2��m− 1�! = z�m− 1�!
and, hence, (16) is true.

Lemma 6.3. Let t ∈ � such that t ≥ 0 and 2t + 1 ≤ m. Let �
�r
%r ∈ A, r = 1
 � � � 
 t, be 2t + 1 distinct
elements and define for any r = 0
 � � � 
 t,

cr = probA�	R ∈ L�A� � ∃k ∈ 	1
 � � � 
 r� such that � R %k R �k���

Then c0 = 0, and

cr = 1
2r + 1

(
2r − 1
2r

+ 2rcr−1

)
for all r = 1
 � � � 
 t� (17)
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Proof. Clearly c0 = 0. Let r ∈ 	1
 � � � 
 t�. We may assume that m= 2r +1. There are ��2r −1�/2r ��m−1�!
preferences R ∈ L�A� with the properties that t1�R�= � and that %k R �k for some k = 1
 � � � 
 r . Also, for every
k = 1
 � � � 
 r , there are �m − 1�cr−1�m − 2�! preferences R ∈ L�A� such that t1�R� = �k and � R %l R �l for
some l ∈ 	1
 � � � 
 r�\	k�, because the rank of %k is any element of 2
 � � � 
m. The same number of preferences
occurs if %k is ranked first. We conclude that there are

dr = 2r − 1
2r

�m− 1�! + 2rcr−1�m− 1�!
preferences R ∈ L�A� such that � R %k R �k for some k = 	1
 � � � 
 r�. Equation (17) follows, because
cr = dr/m!. �

Remark 6.2. Let c0 = 0. Successive computation of c1
 � � � 
 c6 via (17) yields that c6 >
1
2 .

Lemma 6.4. For any tournament T = �A
�� with m≥ 453 that satisfies (13)–(15), the following holds true:
For every � ∈A and every mapping h* A−���→A such that h���� � for all � ∈A−���,

probA�	R ∈ L�A� � ∃� ∈A−��� such that � R h��� R ��� >
1
2
� (18)

Proof. Two cases may be distinguished.
Case 1. There exists % ∈ A such that �h−1�%�� ≥ 23. By Lemma 6.2 there exists � ∈ A−��� such that

% � 	�
h����. Let Z = h−1�%�. Let

L1 = 	R ∈ L�A� � ∃1 ∈Z such that � R % R 1� and L2 = 	R ∈ L�A� � % R � R h��� R ���

Then L1 ∩ L2 = 
. As Z ⊆ A−��� and as � ∈ A−���, it suffices to show that probA�L1� + probA�L2� > 1/2.
Now, probA�L2�= 1/4! and, by Remark 6.1,

probA�L1�= 1
2

�Z�
�Z� + 2

= 1
2

− 1
�Z� + 2

≥ 1
2

− 1
25

>
1
2

− 1
4! 


where �Z� ≥ 23 implies the weak inequality.
Case 2. For all % ∈ A, �h−1�%�� ≤ 22. In this case, we may choose pairwise distinct alternatives

�1
 %1
�2
 %2
 � � � 
�6
 %6 so that �k ∈A−��� and %k = h��k� for k = 1
 � � � 
6. Such a choice may be achieved
inductively, by selecting

�k ∈A−���\
k−1⋃
i=1

4	%i�∪h−1�	�i
 %i��5 (19)

and letting %k = h��k�. By the assumption of this case, the set appearing in square brackets in (19) has at most
45 elements, and therefore the union in (19) has at most 225 elements. Because we are assuming that m≥ 453,
we have �A−���� = �m− 1�/2≥ 226, and therefore the choice indicated in (19) is feasible. Now the probability
in question is at least

probA�	R ∈ L�A� � ∃k ∈ 	1
 � � � 
6� such that � R %k R �k���

The proof is complete by Lemma 6.3 and Remark 6.2. �

Now we are able to construct simple majority voting games with an odd number of players, whose Mas-Colell
bargaining sets are empty. Let T = �A
�� be a tournament with m ≥ 453 that satisfies (13)–(15). Lemma 6.2
guarantees the existence of T . Let N0, n0 odd, and Q

N0
0 ∈ L�A�N0 be such that (12) is satisfied (for N = N0 and

RN = Q
N0
0 ). Lemma 6.1 guarantees the existence of N0 and Q

N0
0 . Let N be obtained from N0 by adding k ·m!

new voters and let QN be obtained from Q
N0
0 by assigning each preference of L�A� to k of the new voters. Note

that (12) remains valid for RN = QN . Moreover, we assume that k is sufficiently large such that the following
condition is satisfied. The empirical distribution of preferences in QN is close enough to the uniform distribution
that the conclusion of Lemma 6.4 holds true when probA is replaced by this empirical distribution—that is, by
the probability measure prob on L�A� that is determined by prob�	R��= �	i ∈N �R=Qi��/n for all R ∈ L�A�.
Lemma 6.4 guarantees the existence of k.
A vector ��= ��i�i∈N , �i ∈A for all i ∈N , is a position. Let �� be a position and � ∈A. We say that �� enhances

� (at QN ) if for every % ∈ A such that % � � there exists i ∈ N such that �i Q
i % Qi � and �i �= %. Note that

the set of positions is partially ordered. Indeed, let �� and �� be positions. Then define ��≥ �� iff �i Q
i �i for all

i ∈N . Note that if ��≥ �� and �� enhances an alternative %, then �� enhances % as well.
We call a position �� nonenhancing (at QN ) if it does not enhance any � ∈ A. If, in addition, every position

�� ≥ ��, �� �= ��, enhances some % ∈ A, then we call �� maximal nonenhancing (MNE). Note that for any nonen-
hancing position �� there exists an MNE position �� such that ��≥ ��.
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Lemma 6.5. If �� is a nonenhancing position and if � ∈A, then �	i ∈N � �i Q
i ���<n/2.

Proof. Let S=	i∈N ��iQ
i �� and �∈A−���. Because �� does not enhance �, there exists h���∈A such

that h����� and, for all i∈N , if �iQ
i h���Qi �, then �i =h���. As h��� �=�, 	i∈N ��Qi h���Qi ��⊆N\S.

Therefore, h* A−���→A is a function as in Lemma 6.4 and 	i∈N �∃�∈A−��� such that �Qi h���Qi ��⊆
N\S. By Lemma 6.4 and construction, �N\S�>n/2
 and the proof is complete. �

Construction (cont.): Let A∗ = 	 ��∗ � �� is an MNE position of QN� be a set whose cardinality is the number of
MNE positions, of alternatives such that A∩A∗ = 
. For every voter i ∈N , let Ri ∈ L�A∪A∗� be a preference
that arises from Qi by inserting every alternative in A∗ into Qi in such a way that

��∗ Ri � ⇔ �i Q
i � for all � ∈A and all ��∗ ∈A∗� (20)

In other words, the new alternative that corresponds to the position �� is inserted just above ��. The internal
order between new alternatives that are inserted in the same slot is immaterial. Note that, by Lemma 6.5, in the
tournament associated with RN , �RN (see Notation 2.1), every � ∈A beats any ��∗ ∈A∗, i.e.,

��RN ��∗ for all � ∈A
 ��∗ ∈A∗� (21)

Let uN ∈ �RN
and V = VuN .

Proposition 6.1. ���N 
V �= 
.

Proof. Assume, on the contrary, that there is some x ∈ ���N 
V �. Let y ∈ �N be defined by yi =
min	ui��� � � ∈ A∪A∗
 ui��� ≥ xi� for all i ∈ N . Then y ∈ ���N 
V � as well. Moreover, there is a position ��
of RN such that yi = ui��i� for all i ∈N . As y ∈ ���N 
V �
 the position �� has the following properties:

∃� ∈A∪A∗ such that � Ri �i ∀ i ∈N� (22)

� ∃� ∈A∪A∗ such that � Ri �i and � �= �i ∀ i ∈N� (23)

� ∃� ∈A such that �	i ∈N � � Ri �i
� �= �i��>n/2 and �� enhances � at RN � (24)

Indeed, (22) and (23) are true, because y ∈ V �N�, and y is weakly Pareto optimal. In order to show (24), let
� ∈ A satisfy �S� >n/2, where S = 	i ∈ N � � Ri �i
� �= �i�. Then �S
uS���� is an objection against y. Hence,
there exist % ∈A\	�� and T ⊆N , �T �>n/2 such that ui�%�≥max	yi
 ui���� for all i ∈ T (note that % must be
in A, rather than A∗, due to (21)). By Lemma 6.1, T = 	i ∈N � % Ri �� and �T � = �n+1�/2. Hence, �� does not
enhance �.

Claim 1. The position �� does not enhance any � ∈A.

In view of (24) we may assume that �	i ∈ N � �i R
i ��� > n/2. Let � ∈ A ∪ A∗ satisfy (22). Then �	i ∈ N �

� Ri ��� > n/2. Therefore, either � = � or � �RN �. If � = �, then �i R
i % Ri � for some i ∈ N implies that

�i = %. If � �RN �, then � ∈ A by (21), and �i R
i � Ri � for some i ∈ N implies �i = �. Therefore, in both

cases �� does not enhance �.

Claim 2. There exists a position �� satisfying �i ∈A and �i R
i �i for all i ∈N such that �� does not enhance

any member of A (that is, �� is nonenhancing at QN ).

Let i ∈ N and let ,i = t1�Q
i� (that is, i’s best alternative in A). We now show that ,i R

i �i. Assume, on the
contrary, �i R

i ,i, �i �= ,i. Let %i be i’s lowest alternative in A, that is, %i = tm�Q
i�. If , ∈ A ∪ A∗ satisfies

, �RN %i, then , ∈ A by (21). Moreover, �i R
i , Ri %i and �i �= ,. Hence, �� enhances %i and a contradiction

to Claim 1 is established. Let �i be i’s lowest alternative in A weakly above �i, that is, �i ∈ A, �i R
i �i, and

�′
i R

i �i implies �
′
i Q

i �i for all �
′
i ∈A. By construction, because �� does not enhance any � ∈A, neither does ��.

Claim 2 has been shown.
Select any MNE position �� at QN that satisfies the conditions of Claim 2. By (20), ��∗ Ri �i and ��∗ �= �i for

all i ∈N . Combined with the fact that �i R
i �i holds for all i ∈N , this contradicts (23). �
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7. Two models with many voters. We here present two models in which special assumptions about the
distribution of preferences in the population of voters lead to existence results when there are many voters.
The first model is probabilistic. Let A be a fixed set of m alternatives, and let L= L�A�. We assume that each

R ∈ L appears with positive probability pR > 0 in the population of potential voters, where
∑

R∈L pR = 1. Now
let ��i�i∈� be a sequence of independent and identically distributed random variables such that Pr��i =R�= pR

for all i ∈ �, R ∈ L. Let �N = ��1
 � � � 
�n� be the corresponding random profile of preferences for n voters,
and let �N 
V ��N �� be the random simple majority voting game that is associated via some utility representation
uN
RN = �ui
R

i
�i∈N for each realization RN of �N .

We are going to prove that in this model the limiting probability, as n → !, that the bargaining set and the
Mas-Colell bargaining set are nonempty, equals one. We note that the analogous statement does not hold true for
the core. In the case of the core, the limiting probability in question is that of the existence of a weak Condorcet
winner. This has been studied quite a lot in the literature (see, e.g., Sen [19] and Gehrlein [11]). In the simplest
setup, where pR = 1/m! for every R ∈ L�A�, it is known that the limiting probability that there exists a weak
Condorcet winner is strictly less than one for every m≥ 3, and it tends to zero as m→ !. In the more general
setup that we consider here, it is even possible to choose pR > 0 so that this limiting probability will equal zero
(see Example 7.1 below).
Define, for j = 1
 � � � 
m


6j�p�= 6j =min
�∈A

∑
R∈L*�=tj �R�

pR�

Because pR > 0 for all R ∈ L, 6j > 0. Note that for any % < 1,

lim
n→!Pr

(
�N ∈

{
RN ∈ LN

∣∣∣min
�∈A

�	i ∈N � �= tj �R
i��� ≥ %6jn

})
= 1� (25)

Theorem 7.1. limn→! Pr���N 
V ��N �� �= 
�= limn→! Pr����N 
V ��N �� �= 
�= 1�

Proof. Call RN ∈ LN good if for all � ∈ A there exists i ∈ N such that � = tm�R
i�. If RN is good, then

0 ∈ ��N 
V �, where V = VuN
RN . Regarding ���N 
V � when RN is good, we distinguish two cases. If there is a
weak Condorcet winner �, then uN
RN

��� ∈ ���N 
V �. If no such � exists, then 0 ∈ ���N 
V �. Thus, we see
that in order to prove both parts of the theorem, it suffices to show that �N is good with probability tending to
one as n tends to infinity. This fact is implied by (25) applied to j =m. �

As shown in the next theorem, the probability that a positive fraction of voters may receive maximal utility
in the Mas-Colell bargaining set tends to one if n tends to infinity.

Theorem 7.2. If 6∗ <61�p�, then

lim
n→!Pr��	i ∈N � xi = ui
R

i

�t1�R
i�� for some x ∈ ���N 
V ��N ���� ≥ 6∗n�= 1�

The following lemma is used in the proof of Theorem 7.2.

Lemma 7.1. Let �N 
V � be a zero-normalized superadditive NTU game, i ∈ N , and x ∈ �N
+ such that x is

weakly Pareto optimal in V �N� and xj = 0 for all j ∈ N\	i�. If ��N 
V � = 
 and ��N\	i�
V � = 
,9 then
x ∈ ���N 
V �.

Proof. Let �P
 y� be an objection such that P is maximal. By superadditivity, N\	i�⊆ P . If i ∈ P , then there
exists a counterobjection, because ��N 
V � = 
. If P = N\	i�, then there exists a counterobjection, because
��N\	i�
V �= 
. �

Proof of Theorem 7.2. By (25), by (ii) of Remark 2.1, and by Lemma 7.1, it suffices to prove that

lim
n→!Pr���N 
V ��N ��= 
 and ��N\	i�
V ��N �� �= 
 for some i ∈N�= 0� (26)

Let RN be a realization of �N and let uN = uN
RN
, V = VuN . Define a binary relation �RN = � on A as

follows. For �
� ∈A
� �= �, define

�� � ⇔ �	i ∈N � � Ri ��� = 1+ 4n/25�

9 Here the set N\	i� is identified with 	1
 � � � 
 n− 1� and �N\	i�
V � denotes the corresponding subgame.
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Claim: If ��N 
V � = 
 and ��N\	i�
V � �= 
 for some i ∈ N , then there exist �
� ∈ A
 � �= �, such that
�� �. Indeed, if ��N\	i�
V � �= 
, then there exists � ∈A such that uN\	i���� ∈ ��N\	i�
V �� Because uN ����
��N 
V �, there exists � ∈ A\	�� such that �	j ∈ N � � Rj ��� > n/2� However, �	j ∈ N\	i� � � Rj ��� ≤ n/2,
and therefore �� �.
Define qn

�
� = Pr��N ∈ 	RN ∈ LN � ��RN ���.
In order to prove (26), it suffices to prove that limn→! qn

�
� = 0. Let q = ∑
R∈L*�R� pR. With r = r�n� =

1+ 4n/25 we obtain qn
�
� = (

n

r

)
qr�1− q�n−r . We distinguish two cases. If n is even, then r = �n/2�+ 1 and

qn
�
� =

(
2r − 2

r

)
qr�1− q�r−2 ≤

(
2r
r

)
q2�q�1− q��r−2 ≤ �2r�!

r !r !22r−4
�

Using k! ≈ √
28k�k/e�k yields

�2r�!
r !r !22r−4

≈ 16√
8r

→r→! 0�

Similarly, we may approximate qn
�
� if n is odd. �

The next example shows that �� cannot be replaced by � in Theorem 7.2.
Example 7.1. Let A = 	a
 b
 c� and let p satisfy pRi > 1/4 for i = 1
2
3, where the Ri are defined by

Table 2. Then
lim
n→!Pr��

N ∈ 	RN � a�RN b �RN c �RN a��= 1


hence, the probability that the core is empty tends to one if n tends to infinity. Also, if �N 
V � is a realization
of �N 
V ��N �� such that ��N 
V � = 
, then x ∈ ��N 
V � implies xi < ui
R

i
�t1�R

i�� for all i ∈ N . Indeed, this
statement can be proved as follows: Let �N 
VuN �, u

N ∈ �RN
for some RN ∈ L�A�N , be a majority voting game

whose core is empty. Let i ∈ N and let x ∈ V �N�∩�N
+ satisfy xi = ui���, where � = t1�R

i�. Hence, x ≤ uN ���
and there exists � ∈A such that ��RN �. Let P = 	j ∈N � � Rj �� and let y = uP ���. Then �P
 y� is a justified
strong objection in the sense of � of any voter j ∈ P against i so that x � ��N 
V �.
The second model involves replication. Let A be a fixed set of m alternatives, and let L = L�A�. Let N =

	1
 � � � 
 n�, let RN ∈ LN , and let uN ∈ �RN
. In order to replicate the simple majority voting game �N 
VuN �, let

k ∈ � and denote
kN = 	�j
 i� � i ∈N
 j = 1
 � � � 
 k��

Furthermore, let R�j
 i� =Ri and u�j
 i� = ui for all i ∈N and j = 1
 � � � 
 k. Then �kN 
VukN � is the k-fold replication
of �N 
VuN �.

Theorem 7.3. If

k ≥
{

n+ 2
 if n is odd,

n/2+ 2
 if n is even,

then ���kN 
VukN � �= 
.

Proof. If � is a weak Condorcet winner with respect to RN , then ukN ��� ∈ ���kN 
VukN �. Hence, we may
assume that for every � ∈ A there exists ���� ∈ A such that ���� �RN �. Let �x ∈ �N

+ be any weakly Pareto
optimal element in VuN �N �. We define x ∈ �kN by x�1
 i� = �xi and x�j
 i� = 0 for all i ∈ N and j = 2
 � � � 
 k and
claim that x ∈ ���kN 
VukN �. Let �P
 y� be an objection at x. Then there exists � ∈A such that y = uP ���. Let
�= ���� and let T = 	i ∈N � � Ri ��. Then

�T � ≥


�n+ 1�/2
 if n is odd,

n/2+ 1
 if n is even�
(27)

Let Q = 	�j
 i� � i ∈ T 
 j = 2
 � � � 
 k� and define z ∈ �Q by z�j
 i� = ui��� for all i ∈ T and j = 2
 � � � 
 k. Then
�Q� = �k − 1��T � and z > �yP∩Q
xQ\P �. By (27), �Q� ≥ �kn + 1�/2. Therefore, �Q
 z� is a counterobjection
to �P
 y�. �

By means of an example, it may be shown that replication may not guarantee nonemptiness of the Aumann-
Davis-Maschler bargaining set. Indeed, let n= 4, A= 	a1
 � � � 
 a4
 a

∗
1
 � � � 
 a

∗
4
 b
 c�, let R

N be given by Table 7,
and let uN ∈ �RN

.
In Peleg and Sudhölter [17]10 it is shown that for any imputation there exists a strong objection that does

not have a weak counterobjection. The proof of Theorem 3.1 in that paper proceeds by contradiction, and it

10 Although in that paper the “=” in our (1) is replaced by “>,” the relevant proof of Theorem 3.1 is not affected by this change.
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Table 7. Preference profile on 10 alternatives.

R1 R2 R3 R4

a1 a4 a3 a2
a2 a1 a4 a3
a∗
2 a∗

1 a∗
4 a∗

3

a∗
1 c a∗

3 a∗
2

c a∗
4 c b

b b b a∗
4

a∗
3 a∗

2 a∗
1 a4

a3 a2 a1 c

a∗
4 a∗

3 a∗
2 a∗

1

a4 a3 a2 a1

may be modified in order to show that ��kN 
VukN � = 
 for every k. Assume that x ∈ ��kN 
VukN �. Then
xkN ≤ ukN ��� for some � ∈A. As in the proof of Theorem 3.1, we may distinguish 10 cases, because �A� = 10.
The justified objections may be replaced by their k-fold replications; e.g., with S4 = 	2
3
4�, �S4
 u

S4�a4�� is a
strong objection at any imputation x ≤ uN �a1�. The k-fold replication of this objection is a strong objection at
xkN ≤ ukN �a1� of any copy �j
4� of player 4 against any copy �l
1� of player 1 and the existence of a weak
counterobjection of �l
1� against �j
4� implies that x�l
1� ≤ u1�a3�. We may continue along the lines of the proof
of Theorem 3.1 and show that xkN � ukN �b� and all other cases lead to the same contradiction in a similar way.
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