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ABSTRACT 

The modified Lemke-Howson algorithm is a constructive procedure which enables 
us to compute equilibrium points of a bimatrix game. The algorithm as described by 
one of the authors is based on the original version invented by Lemke and Howson. 
However, it differs from this version with respect to several features. It works directly 
with the matrices defining the bimatrix game A and B. It has an easy and very direct 

geometrical interpretation; hence for small games we can follow the development of 
the algorithm geometrically. Finally, instead of being bilinear, the algorithm behaves 
rather like a piecewise linear program. This presentation closes a gap: although the 

algorithm has been described geometrically (and with a flow diagram), there has been 
no constructive procedure that can be implemented on a computer. This is provided 
by the present paper. We give all necessary proofs and computations in order to 

establish the following facts: There are two tableaus accompanying the proceeding of 
the algorithm. As the algorithm changes, moving alternatingly in the simplices of 
mixed strategies, so does the computational procedure alternatingly dealing with the 
two different tableaus. Each tableau contains six regions, depending on the various 
sequences of transitions the procedure has to perform. While this all is in marked 
difference to linear programming, there is also consolation: The well-known rectangle 
rule of linear programming can be modified easily (that is, there is a family of 

rectangle rules) so that changing the tableau alternatingly amounts to applying the 
appropriate rectangle rule. Thus, there is also close similarity to the familiar LP 

procedure. Thus, a complete description of the modified LH algorithm is provided 
that can immediately be implemented on any computer. In particular, we supply an 
APL program that, e.g., can be run on an IBM@ PC. 
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1. INTRODUCTION 

Let I={l,..., m} and J = {l, , n}. A bimatrix gume (in mixed strategies) 
is a quadruple 

r=(X,Y,A,B) (1.1) 

such that A = (uijji E I, .j l , and B = (b,j)i t [, j t, are m X n matrices and 

i I 
,n 

X= XER”’ X=(X1,...,X,,,)>O, C Xi=l 1 

iGI 1 (1.2) 

Y= yER” y=(yl )..., y,,)>O, e y,j=l 

i I I (1.3) 
.i t I 

are the (mixed) strategies of players 1 and 2. If player 1 chooses x E X and 
player 2 chooses y E Y, then puyofi are defined by 

xAy = c c xiaijyj 
iEl jEJ 

for player I, and xBy for player 2. 
-- 

A pair (x, y> E X X Y is said to be an equilibrium point if 

- - 
xAy 2 xAY (rEXI 

and 

- - 
xBy > ZBy (Y EY); 

thus, in equilibrium, no player has an incentive to deviate, for his payoff 
cannot be improved upon. If I is a zero-sum game (i.e., B = - A), then an 
equilibrium consists of a pair of optimal strategies and vice versa. 

The Lemke-Howson algorithm, as devised in [7], is a procedure that (for 
nondegenerate games) yields an equilibrium point within finitely many steps. 
The procedure works by transforming the bimatrix game into a bilinear 
program, whereafter the algorithm, starting with an unbounded edge, pro- 
ceeds by moving along a certain system of polyhedral edges of dimension 1 
to search for an equilibrium point. An implementation of this version of the 
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LH algorithm, in the sense that the geometrical behavior of the algorithm is 
represented by a sequence of tableaus, to be computed consecutively and 
leading to a numerical evaluation of an equilibrium point, has been presented 
by Parthasarathy and Raghavan [S]; however, a formal proof (and an estab- 
lished computer program) for a neatly working version of the algorithm on a 
modem computer is lacking. 

The Lpi algorithm also yields some insight into the structure of equilibria. 
It shows that the number of equilibrium points (for nondegenerate games) is 
odd. It is also known that not every equilibrium point can necessarily be 
reached in any case; even if the initial “unbounded edge” can be changed, 
there are equilibria not to be reached by the LH algorithm (for further 
discussion we refer to Aggarval [I], Bastian [Z], Eaves [5], Lemke [6], 
Parthasarathy and Raghavan [8], Shapley [9] and Todd [12, 131). 

An alternative version of the algorithm (the modi$ed LH algorithm) has 
been presented by Rosenmiiller [ll, Chapter I, Section 11. This version 
works directly with the matrices, with A and B constituting the bimatrix 
game. The algorithm is not bilinear but rather piecewise linear: it works 
effectively in the simplices X and Y, alternately performing steps in each of 
them. There is a flow diagram established in [ll], which, however, requires 
the computation of solutions of certain linear equations after each step and 
hence is not in the spirit of traditional linear programming. In practice the 
procedure suggested by the flow diagram is rather slow, and the capacity of 
most computers is not sufficient, even for small problems. 

As the procedure is not a standard optimization problem, it is not clear 
exactly how to define a sequence of tableaus corresponding to the geometri- 
cal movement of the LH algorithm as presented in [ll]. This is the goal of 
the present paper. We suggest the correct parametrization of edges of certain 
subpolyhedra of the simplices of mixed strategies X and Y. Using this 
parametrization, we define a pair of tableaus (corresponding to the alternat- 
ing behavior of the modified LH algorithm) such that alternately executing 
the rectangle rule in each of the tableaus actually yields an equilibrium point. 
The procedure can thus be implemented on a computer, and for the sake of 
completeness we include an APL version of such a program. 

Let Ai., A .j denote the ith row and jth column of the matrix A respec- 
tively. Introduce the convex polyhedra 

}, (iE1) 

(1.4) 
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as well as 

K,= (-) Ki Tel, T#0, 
iET 

(1.5) 
L,= n Lj R cl, R#0. 

jER 

Here, Ki denotes the mixed strategies of player 2 against which the (pure) 
-- 

strategy i E I of player 1 is the best reply. It is not hard to see that (x, y) is 
an equilibrium point of I if and only if 

Thus, in equilibrium, the positive coordinates of X and the polyhedra Ki 
containing ij correspond to each other (in fact uniquely if nondegeneracy 
prevails)-this is of course an analogue to the familiar “optimality condition” 
of LP theory. We are thus motivated to introduce polyhedra 

H ,,“=K,n(YEYIYj=o(jEU)), 

(1.6) 
G ,,,=~,n{~~x~~~=o(i~v)}. 

The game is called non&generate if 

dim H, U =n-ITI-IUI, dimG,v=m-IRI-IV] 

for HTU#OZGR,” (1.7) 

(cf. Definition 1.11, Section 1, Chapter 1 of [9]). We shall assume that the 
game we are dealing with is nondegenerute. 

In this case we have the following characterization of equilibrium points: 

-- 
Let (x, y) E X X Y, and put T = (i IXi > 0) z Z and 
R = { j 1 ijj > 0) c J. Then (5,3c) is un equilibrium point 
ifund only if ITJ = IRI and {(5,X)}= H,.,,, x G,,,<. 

(1.8) 

For the details, see [ll], and in particular Corollary 1.13 in Section 1 of 
Chapter 1. 
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The statement formalized in (1.8) can be interpreted geometrically as 
follows: the simplices X and Y of mixed strategies are decomposed by the 
polyhedra L, (j E J) and Ki (i E Z) respectively. Among the subfaces of 
such polyhedra we distinguish vertices H,,“, IT I+ IUI = n, and edges H,,“, 
ITI + 1~1 = n - 1 (for some Ki c Y; the situation is analogously described in 
X). A vertex H,,” = (ij} has “labels” assigned to it by the polyhedra it is 
adjacent to (i.e., labels i E T with & E Ki) and by the positive coordinates of 
g (i.e., ij > 0 for j E UC>. If (-,-> r y is an equilibrium point, then the labels of 
{X] = G,,, and {iJ = H, u correspond to each other in a unique way. 

EXAMPLE 1.1. Consider the matrices 

and 

-4 
-1 

5 3 ) 

7 111 
\ J 4 -9 -19)’ 

then the sketch in Figure 1 illustrates the decomposition of X into polyhedra 
L,, L,, L,, L, and the decomposition of Y into polyhedra K,, K,. An equilib- 
rium point is given by 

“=(f,$ {?} = G ~3~0 = 51,3),(1,2)C’ 

u = ($A&7q, (id =H (1,21, (2.4) = q,,2),(,,3p 

where the indices (“labels”) are matched in the appropriate way: X has 
positive coordinates 1, 2 and ij E K, n K,; analogously Q1 > 0, y3 > 0, while 
X E L, n L,. 

The modified LH algorithm is explained in detail in Chapter 1, Section 1 
of Rosenmiiller [ll]; see also [lo] for the n-person game version (Wilson [14] 
describes the “multilinear” n-person version of the “original” LH algorithm). 
We would like to assume the reader is slightly familiar with the presentation 
in [ll]. 

For our present purpose we shall describe the modified LH algorithm 
with the aid of Example 1.1 as follows: Use e” to denote the ith unit vector. 
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L4 L3 Ll L* 

I I , 
I I I X 

e1 T T T e2 

( W) ($2) (i.2) 

e4 

e* e2 

FIG. 1. 

The algorithm starts with a vertex, say 

in Y. As e4 E K,, we move to simplex X and choose 

{e”} = G W,(l) 

as the first vertex in X. Now, e2 E L, means that, in Y, we should admit 
positive 2nd coordinatks, i.e. move “towards”’ e2 E Y. That is, we delete 
index 2 from the labels describing (e”) E Y, thus moving along the edge 
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the endpoint of which is 

37 

yl=(o&o,$), 

defining a vertex 

Here the new label i = 1 has appeared; thus in X, we leave e2 along the 
edge 

arriving at ZC’ = (f, :), where 

Hence the next edge in Y is Ht,,,),t,), which leads to y2 = (&,O,O, $). We 
have 

The next steps are along the edge Gl,),a towards x2 = <$, $1, {x2]= Gt13J,a, 
and along Ht1,2),t2) towards y “=<$,O,$,O>. Now {y31=H~,,2J,tZ4), and all 
labels match in the required manner, as we have explained above. Thus we 
have reached the equilibrium point. 

The main purpose of this paper is to develop the computational procedure 
that accompanies the geometrical picture we have just studied. To this end 
we shall explain what kind of “movement along an edge” we should adopt for 
the rigorous mathematical representation. In other words, we shall define the 
canonical parametrization of edges, depending, however, on what kind of 
movement along an edge we have in mind. For (working in Y), according to 
whether we leave a polyhedron K~ (i.e. delete a label i E H,,“) or whether 
we leave a subface of Y (i.e. delete an index j E H,,“), there are two ways of 
departing from a vertex in order to move along an edge. Similarly, there are 
two ways of arriving at a vertex after having traveled along an edge. This 
yields different types of journey, and the canonical parametrization of this 
journey along an edge must be chosen accordingly. The appropriate choice is 
then reflected by the appropriate definition of the two tableaus correspond- 
ing to a pair of edges, each one located in a simplex X or Y respectively. 
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The development of our presentation is as follows. In the rest of Section 1 
we shall again treat the four ways of traveling along an edge (the detailed 
discussion has been performed already in [lo]). We shall then extensively 
discuss the case which is most typical for the modified LH algorithm. The 
other three cases will not be treated in detail. Hence, Section 2 is devoted to 
developing the canonical parametrization for case la of Figure 2 and to 
explaining the introductory data of the tableau corresponding to a vertex. In 
Section 3 we define the tableau (actually a pair of tableaus) and introduce the 
well-known rectangle procedure (which, though in structure resembling the 
one used in linear programming procedures, is quite different in its detailed 
appearance). We th en prove that the rectangle rule, applied to the tableaus, 
accomplishes the journey between two edges; again the proof is presented in 
detail for just one particular case, whereas the other cases are treated 
superficially. Section 4 then collects the pieces: we present a detailed 
instruction for using the algorithm. That is, given the matrices A and B, it is 
explained how to set up the initial tableaus and perform the necessary steps 
in order to reach a final tableau. This eventually yields a pair of vectors 
constituting an equilibrium point of the game r = (X, Y, A, Et). Finally, in 
Section 5, for the sake of completeness, we include a computer program that 
actually performs the necessary computations. The program has been written 
in APL and was run on the IBM 6150 RT computer (IBM 6150 is a trademark 
of International Business Machines Cooper&ions). However, it can be imple- 
mented on any personal computer endowed with APL. 

Let us finish this section by introducing the necessary notational conven- 
tions. 

The matrices A and B are fixed throughout our presentation. In order to 
avoid indices (coordinates) m + 1, n + 1, we put 

I={l,..., m,Ei)=ZU{O}, 

J=(l)‘..) n,*} =JU( *}, 

and similarly, for T 5 I, u c J, 

T=Tu{O}, U=UU{*}. 

Next, vectors r E [w” are also repeated as functions x : I* R. Thus we 
denote the restriction of x onto T c 1 by xr; this is of course to be identified 
with the vector xr = (x~)~ E r E IWT. For convenience we write 

X_T := XTC = XI-T, 
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so that for z = (xi,. . ., x,,~, A) E R’ we have e.g. 

z-,:1-T+R 

Frequently singletons {i} c Z and their elements are identified; thus 

for x E R”‘. In this context, “ + ” is used for “ U ” in the case of a disjoint 
union, e.g., 

T+i=TU{i} (for iPTcZ), 

T+U-i,=(TU{O})-{i,) (for i,ETCZ), 

etc. 
The disjoint union of subsets of I, say, is accomplished by the formation of 

a direct sum of functions (vectors) defined on these subsets. For example, if 
T’, T” c I, T’ I-’ T” = 0, and z’ : T’ -+ R, 2” : T” + R, then z = Z’CBZ” denotes 
the function on T = T’ + T” ( = T’ U T”) defined by 

z:T’+T”+R, 

q=.z; (JET’), q=&‘(i~T”), 

or (in less precise notation) the vector 

2 = (z’,z”). 

An analogous notation is employed for matrices. For example, the matrix 
A can be seen as a mapping A : Z X J + R, and for T c I, U c J we denote by 
AT the restriction on T X U, which is represented by the matrix 

Similarly 

A;‘= T(+---,i 
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We write A, := A$; however, the i’th row of A is Ai. and the j’th column is 
A. j; thus 

A,.=A&=A/, 

but Ai is avoided. 
Next let e = (1,. . . , 1) (used for e E IF!“’ and e E Rn). Write 

I -l\ 

i?l= 
A 

-1 
\1 . . . 1 o/ 

and 

I l\ 

‘23= 
B 

i 
-1 . . . -1 0, 

Thus, %:IXJ+[w, and if ~,,ETcIGI and UCJCJ, then it is seen that 

is represented by 

I1 

I 
I 
I 

* 

----ids 
:-- y;;;III[/----+j 

-1 

I -1 
____________ 

1 . . . . . . 1 I... _..I 1 . . . 1 01 
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2. THE CANONICAL PARAMETRIZATION 

Let us focus our interest on the motion which the modified LH algorithm 
performs in Y. Basically, there are four types of transitions that occur when 
the algorithmic procedure leaves a vertex, moves along an edge, and reaches 
the next vertex-geometrically speaking. These transitions can be classified 
according to whether a subface of Y is being left (reached) or a polyhedron 
Ki is being left (reached) upon departure (arrival). 

Again, the details are explained in [9, Chapter 1, Section I]; hence, for our 
present purpose we merely illustrate the four types of transitions for the case 

that A and B are n X 3, n > 3, matrices; see Figure 2. Here, H, o = (ij} c Y 
denotes the departure vertex, while the arrival vertex varies accordingly; e.g., 

in case la we have HP c = (Q} = HT_i +i “, etc. 
Let us start out wit6 an extensive dL&ssion of case la. We shall define a 

certain version of a parametrization of the edge H,_i,,u joining Q and 0, 

called the canonical one. This will suggest (at least partially) the form of the 
corresponding tableau and the way the tableau changes when the algorithm 
switches from g to 9. 

To this end, let us now fix an extreme point or vertex 

such that ITI > 2 and ITI+ IUI = n; put 

h := Ai,c (i E T) 

and define, for some fixed i, E T, 

L;C’i”:=(p=(y,V) EW” xlq%;T!iop=o). 

Then we have 

LEMMA 2.1. 

(1) LGfiO is a linear subspace of Iwvu X[w with dimension 1. 
(2) %t.p#O for all p=(y,v)~ L,yiO with y#O. 

PROOF. Follows immediately, since the game is nondegenerate. 
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2 a) 

T.U -+ T+i,. U-j, 

T,U - T.U-j,+l, 

FIG. 2. 
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DEFINITION 2.2. For i, E T let 

pi0 = (.yio, $0) E L;_U~ 
0 

be defined by the requirement that 

fl;“$o = 1 (2.1) 

hold true. 

Let us observe that the quantities of generic types p = (y, v), as consid- 
ered so far, can be naturally extended to vectors of W” X R by adding zero 
coordinates for all i E U. More precisely, 

is likewise a linear subspace of 88” X 'R with dimension 1, and $oBOU is a 
distinctive element of this subspace. Accordingly, 

is an affine subspace of R” X R with distinctive elements (Q,i) and (Ij,h)+ 
(jZ’o@O,). In view of Definition 2.2, we have obviously 

0 

a,(g) = ; ERT, i) 1 

0 

0 

91,((,,~)+($“@OU))= i +i0 ERT. 

0 

_l_ 

(2.2) 

(2.3) 

If we consider the projection of R” X R onto R”, then the situation may be 
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Direction of 
parametrisation 
(i.e., increasing 

I 
.*-. 

ez 

0) 

positive, bthant 

(with U = 0 
hence no w @ 0, notation ” 

necessary) 

FIG 3 

viewed in Figure 3-assuming that A and B have three columns. Also, 
Figure 3 represents the case in which ij has positive coordinates-hence 
U=M. 

DEFINITION 2.3. The canonical parametrization of (y, 1) + (L,!,o@ 0,) 
is the mapping 

(2.4) 
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We write (ye, A’) := (g, h> - IV(~?QCB 0,) for 0 E R. (Actually, an additional 
index i, would be appropriate, but will be omitted for the sake of not 
overburdening our notation.) 

THEOREM 2.4. Let 6 + (ye, he) be the canonical parametrization de- 
scribed in Definition 2.3. 

(1) There is e”ll> 0 such that 

(2) C”o is explicitly computed by 

et0 = min i E TC ij’o > ALUyiO 
’ 

(3) For i E T - i, and i’ E T” + i,, 0 < 8 < gio, we have 

(4) y@O =: 6 is the second vertex (apart from ij) adjacent to the edge 

HT-I,,U. 

Note that in statement (2) the minimizer decides whether case la or case 

lb is prevailing. That is, if the arg min is some i, E T” and 

then we are dealing with case la, etc. 

PROOF OF TrrEoflEM 2.4. In view of our previous construction, the affine 
one-dimensional subspace of 
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which is parametrized by 

e-+tf (e-q, 

contains the edge HT_i,,U. In particular, for 0 = 0 we have y” = $j E H,,.. In 
view of the defining property (2.1) of j?o = (7’0, PO) we have clearly 

Aio.(‘YiwOu) = Vi0 + 1. 

Also, exploring the - sign in the canonical representation, we come up with 

Ai0. ye = A+ [ Ij - f?(+‘@Oo)] 

= h - e[ Ai,,(paO”)] 

= i - e(iPo + 1) 

=h”-e<P=Ai.yo (2.5) 

whenever 8 > 0 and i E T - i,. This implies 

Ye e Kio (e>o). 

Hence, for sufficiently small 8 > 0 it turns out that ye E HT_i,,U and 

ye@ HT... By a compactness argument, statements (11, (31, and (4) of our 
theorem follow at once; it remains to show (2). 

Now, clearly ye E HT_i,.U for all 8 that satisfy 

ya 2 0, Ai.ye<Ae (ieTC), (2.6) 

and 8’0 is the smallest 8 that violates one of the conditions (2.61, i.e., the 
smallest 0 violating either 

ijj - e$o > 0 (2.7) 

for some j with j E U”, j$jilD > 0, or 

A~. [ ij - e( p + o,)] < ii - 820, (W 



Implementing the Modijied LH Algorithm 47 

i.e., 

for some i E T” with Fio > Ai”y”u. Obviously, the 8 we are looking for is 
the one given by (2). n 

So far our presentation has just been dealing with the departure vertex, 
which in cases Ia and lb is obtained by sacrificing a condition ij E Ki,, i.e., 
by leaving KiO. Now, let us turn to the arrival, that is, as we want to treat 
case la, the entrance into some new Ki,. In other words, let us consider the 

situation in which there is i, E T” satisfying 

(2.9) 

This means that the vertex adjacent to Hr_-iO,U (apart from q) is 

{P} = HT-io+il,U. 

Let us write Q := ye”. 
Suppose now that, for i, E T - i, + i,, we want to perform the same 

procedure as previously, yielding the canonical parametrization of 

HT-io+i,--io,U’ In this way we obtain the vector 

which, given 9, is defined by a requirement analogous to (2.11, i.e., by 

l?q/p = 1. (2.10) 

Define a quantity 

q := - $JJy”--io. 
‘I lJ (2.11) 

Then it turns out that this quantity may be used to establish a direct relation 
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between jIiio and fiio as follows: 

COROLLARY 2.5. 

GO+il-i 

Let i, E T” satisfy (2.91, and suppose that fi”o E 

0 is given via (10). Then [using (2.1111 we have 

for 2^,#i, (2.12) 

and 

(2.13) 

PROOF. By definition of $0 we have 

0 
a--U,--i,= : 

T--t,P [I E [wT-io; 

0 

hence 

0 0 

0 0 
a;~i,+i,~io= %;“$o -i, = -Et”; *iI EIWT-io+il. (2.14) 

0 0 

0 0 _ _ _ _ 

As (14) reads also 
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it is seen that - jZio/C$ satisfies the defining properties of @-which 
proves (2.13). 

Similarly, consider now the case zlo + i,. We have 

0 0 

0 0 
a-“. T_l,+i,_i,,ILi” = ~~“~‘(~ = -“i; ci, E f@r-k+i,-t,,. (2.15) 

0 0 

0 _ __o_ 

Next, the canonical parametrization at ij with respect to z10 (which is an 
element of 2’) yields the quantity $0, which is uniquely defined by the 
requirement that it satisfy 

Thus 

(2.16) 

+ i, E [Wr-i,+il-io. (2.17) 

Multiplying (2.15) with the appropriate factor and subtracting the result from 
(2.17), we come up with 

(2.18) 
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Moreover, using (2.16) and Definition 2.2, we find 
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(2.19) 

Concluding, we realize that (2.18) and (2.19) show ~“0 -(~~/c;;)$o to 

satisfy the conditions defining p’o uniquely; this indeed verifies (2.12). n 

COROLLARY 2.6. For i, E T” let 

Then, for j, E UC, 

,. - ei, _, 
Yj,= Yj, - 3 Y 

‘0 
jl 

11 

and 

(2.20) 

(2.21) 

(2.22) 

PROOF. Indeed, since 

zzp = _ ,;u,-k~ = pi0 _ Ay,‘yi0, 

we can use (2.9) and (2.4) in order to obtain 

e,, 
tj = lj - $o(y”W”) = ij - ,!,(~%O”). 

11 

Let us pause for some reflection. The development as presented so far 
describes the transition from the vertex Ij to the adjacent vertex ~j [assuming 
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we consider case la, that is, (T, V) + (T - i, + i,, U)]. Equations (2.12) and 
(2.13) may reasonably be interpreted as an analogue to the well-known 
rectangle rule of linear programming. 

Indeed, in order to compute 9 by means of ij we need certain quantities 
7.’ , C: , O. . Moreover, in order to compute the next adjacent vertex, we have 
to start with 0 and use the corresponding quantities, say 9.’ , 2: , and 6. 
Hence, we have to find a computational rule for the transition of these 
quantities. To this end, we focus on Corollary 2.5, which indeed presents a 
version of the rectangle rule for a transformation of p to p. This transforma- 
tion in turn depends on the quantities c: as indicated by the result of 
Corollary 2.5. This means that we have to establish the rectangle rule for the 
quantities c and 0 as well. It seems advisable to combine all necessary 
quantities in what is usually called the tableau assigned to the vertex c. This 

---- 
tableau should at least contain quantities y, y, c, 0. 

There is, however, a further obstacle: So far we have only discussed case 
la. There are four other cases, which conceivably would yield additional 
quantities to be represented in our tableau to be constructed. At this point, 
therefore, we prefer to present the tableau without further motivation. 
Rather, the quantities that will appear will be justified by further computa- 
tion and transformational arguments following in the next sections. 

3. THE TABLEAU 

The peculiar pattern of the LH algorithm as presented in Section 1 asks 
for a slightly more complicated version of the tableau attached to a certain 
vertex (iJ = H,,,. It should be noted that we still are discussing the situation 
in Y only. There is obviously a similar tableau attached to any vertex in the 
corresponding simplex X. 

The tableau to be presented below contains six different regions, four of 
them corresponding to the defining subsets T and U and their complements 
respectively. According to what kind of transition (corresponding to cases Ia 
to 2b) is necessary, the rectangle rule will switch the coefficients, depending 
on the positions in the various regions of the tableau. Ideally, in order to 
compute the transition formula (that is, to verify the rectangle rule), we 
would have to consider the behavior of each of the coefficients in the six 
regions depending on four possible cases of transition; that is, we would have 
to perform 24 computational procedures. To proceed with this task explicitly 
would put some strain on the reader and is not actually necessary in all 
instances. We will hence concentrate on a few dominant computational 
procedures and leave the remaining ones to the reader. 
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DEFINITION 3.1. Let H,,” = (g} & Y be a vertex in Y. The toldeau 

corresponding to v is the mapping 

defined by r&s, r) = TsF,,(s E T” X U’, T E T X U X { *}), where ‘r’ is the 
m X (n + 1) matrix 

T” 

U” 

(3.1) 

The entries of the matrix are defined as follows. The last column contains 

o= -‘il_,.(ij,h)= -A_,y+Ae_, (3.2) 

(see Corollary 2.6) and the vector g-c (i.e. the positive coordinates of q). 

Next, 7.’ is obtained via p +J = (,io,yi(~) E I$-” (i,, E T) and the requirement 

that 

(3.3) 

(cf. Lemma 2.1 and Definition 2.2). S imilarly, C: is obtained by inspecting 

(2.10, that is, 

Ci” = _ a-u-i,, E [WI-’ 
-TP (3.4) 
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Finally, the quantities 6: and 8.’ have not been motivated as yet; the 
formal definition is given as follows. For j, E U, vectors 8jo E RJ-” and 
,~~=($A,,~JI,)E~J-U are defined by the requirement that 

(2li0 = 3-u-h 
T TP (3.5) 

hold true. By nondegeneracy, pjo is indeed well defined (this is in fact the 
normal paradigm of changing the base in the LP case). Accordingly, for 
j,, E u we define the vector Zju E II&‘-~ by 

zj0 = ~j”~ - a;,Upio. (3.6) 

REMAHK 3.2. There is no harm in visualizing ‘PV by r. However, with 
respect to a matrix the ordering of rows and columns sometimes is impor- 
tant. Thus, in a rigorous representation, TV is actually an equivalence class of 
matrices, to be obtained by permuting rows and columns of T (including the 
row and column indices). 

Given the definition of the tableau for H, u = {tj), let us turn to the 
rectangle rule, which is a mapping of transforming general tableaus. 

Fix U c J and T 2 1. Let r be a mapping [the (T, U) tubZeau] 

and let 

i, ET, i, E I - T. 

Let 

f := T - i, + i,, 

and let + denote a mapping [(f, U)-tableau] 

~:(fCUUC) x(f UU) -R. 

Tke rectangle rule [for (i,, i,>] is a mapping that sends CT, U) tableaus into 
(T, U> tableaus, say 

as indicated by the familiar diagram shown in Figure 4. 
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-r 

TC 

UC 

il 

T U * 

iO 

TV 

92 
loTi 

T=T 

UC 

1 I 

-- -l-l- -- 

aI -----_-- 

I I 
n_If --. 

- -_ 

I I 
I I 

:’ : . . . , . . . . . . . . * 6 
I I 
I 1 

ri U * 

il 

I I 
I I 

-- ;_;; - _I_ - -p- - A- - - 

__l_+--_-~--___- 

I I 
1 I 

I 

121 
. . . . . . . . . . , . ..;_ g 

I 1 
, I 

FIG. 4 

Of course, application of this kind of rectangle rule will correspond in case 
la to a transfer 

If we have to deal with a transfer 

(corresponding to case lb), then there is a corresponding L%‘iO,j,. Here, 
~2’~~ j,T = T is a mapping as indicated via Figure 5. 

The ordering of rows and columns is, of course, arbitrary-which is why a 
tableau perhaps is better thought of as a mapping. The fact that we have four 
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TC 

UC 

T U 

iO 
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- __ - __ 
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LIY 1.. . . . . . . . . 
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1 I 

6; if? 

------- J-L___: 

_------ ;:;____i -,I:. 

-C 
T 

-C 
U 

FIG 5. 

kinds of transitions (and hence four kinds of tableaus) 
account repeatedly while implementing the algorithm. 

THEOREM 3.3. Let H,,” = {ij} c Y be a vertex in Y, and let i, ET, 
IT 12 2. Suppose 9 is the vertex adjacent to HT_iO,U other than ij, and assume 

that 19) = Hr_i,,+i,,U. Then the corresponding tableaus satisfy 

r@ = &q&TV. (3.7) 

must be taken into 

PROOF. We have to compute the transition for six types of entries in ‘I’, 
and TV. Let us first concentrate on the UC X T block of TV. The transitions 
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should be 
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Y 
y+-- 

CY 
for j, E UC, ia, 

s+s-pY 
cr 

for jlEUC, i,ET--i,. 

The entries of ‘I’, are 

Thus, the rectangle rule requires 

1 1 
(ye--7, 

ff “i”p 

As for row jr, consult Corollary 2.5. Clearly, (2.13) tells us that - y/a is 
indeed the (j,,i,> entry of ‘I’@, while (2.12) indicates that 6 - by/(-u is the 
(jr, iO) entry of T’@ (in the U’ x T block). 

The remaining computations, though sometimes tedious, are a mere 
formality. By virtue of our considerations in Section 2 we know that the 
tableau entries of TV determine $. Now, as the entries of some Y’. are 
defined formally by (3.1)-(3.6), we just have to verify the rectangle rule via 
the definitions (3.1)-(3.6). To this end, fix SO E f, z^r E ?‘. Also, denote the 
entries of ?‘O with a A, e.g., fi,b, etc. The same notation has been employed 
in Section 2. 

First of all, let us take the U” X U block, i.e., consider p = (6, a). As p”jo 
(for j, E U = U) is defined via 

a;u-j0 = gi-0 
TP T, (3.8) 

we compute 
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The coordinates i E ? of (3.9) are given by 

57 

that is, the coordinates are those of the right hand side of (3.8). Thus, the 
factor in parenthesis in (3.9) must be the left hand side of (3.8)-this takes 
care of the $:-entries in the UC X U block. 

Next, the G.-entries, i.e. the U“ X { *} block, are obviously taken care of by 
Corollary 2.6, i.e., by (2.20). 

We proceed with the E:-entries in the T” x T block, using the fact that 
the rectangle rule has already been established for Jo versus $. Hence, using 
the definition as provided in (3.4), we proceed as follows: First, for all z^” f i,, 

c^$ = - qJ$, 
11 [by (3.4)1 

[by Corollary 2.5, i.e., by (2.12)] 

&I - 

=I- 
Cl0 
“& 

II c$ 11 for 2^, f i” [by (3.4)] ) 
‘I 

c:^:I 

c;; 
for i, = i, [by (3.3)]. 

(3.10) 
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Similarly, for Z0 = i,, 

I 
#zfo 

‘1 -- 

“;p 
for 

= 
1 

--7 
Et; 

for 

I. KROHN ET AL. 

i, + i, [by (3.4)], 

(3.11) 

i, = i, [by (3.3)]. 

Obviously, (3.10) and (3.11) establish the rectangle rule for the T” x T block. 
As for the d 1 in the T” X V block, we have by (3.3.6) 

(3.12) 

using (3.61, (3.4), (3.31, and (3.5). 
Finally, the e. in the Tc X { * ) bl oc k s are transformed by using (3.2); thus, 

for ;I Zi,, 

[by Corollary 2.61 

=$_o,,Ffp [by(3.4)], q (3.13) 
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and for i, = i,, 

oi, =- %,.( is) + -gc”p 
‘I 

0 [by Corollary 2.61 

Gil 
=- 

Et” [by (3.3)1. n (3.14) 
‘I 

The further development is rather straightforward. There are four kinds of 
possible transitions H,>_, -+ H~,o when passing from one vertex to an adja- 
cent one via some edge. To each of these transitions, there corresponds a 
rectangle rule-we have explicitly indicated two of them. Now we have 

THEOREM 3.4. LRt H,,, = {$ and Hf,e = {Q} be adjacent vertices. Sup- 
pose 7’V is the tableau corresponding to ij. Then rQ is obtained by the 

rectangle rule (i.e., the one corresponding to H,>” + Hf,c). 

PROOF. We shall discuss briefly all four cases la-2b. Now, la has 
already been dealt with. For lb, we return to the presentation exhibited in 
Sections 2.4 and 2.5; here we have to replace (2.9) by 

(3.15) 

thus assuming that a transition 

H T,U * HT-io,U+j, 

takes place. Again we compute Q = yei”. 
In doing so, we realize that the quantities of the tableau ry are sufficient 

in order to perform all necessary computations. Hence, it suffices to again 
check the rectangle rule (LZ~,,~ , that is) for case lb. This amounts to juggling 
the quantities specified by (3.2)-(3.6). As the details are to be perceived by 
close analogy to the treatment of la, we shall not offer a further discussion. 
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As to cases 2a,b, we abbreviate the discussion-in principle we have to 
introduce another canonical parametrization. Consider the vertex 

{ij} =H T,I!' 

and let I= Ai. g (i E I”). Pick j, E U; it follows from nondegeneracy that 

L$-“= {p = (s,a> E ~-(U-jO)x[W(~,(“-jo)(6,a) = 0) (3.16) 

is a linear subspace of KU X [w of dimension 1. 
Again in view of the nondegeneracy, it is clear that Equation (3.16), i.e. 

a’0 = a-u-h, 
T T p-J, 

defines the vector pjo uniquely, and the mapping 

(3.17) 

defines the canonical parametrization of the affine subspace 

(y,l)+(L@-“@o ) u-j” 

Of course, the projection 

e .+ Ye = 4 - e( h30,-jo) 

also parametrizes an affine subspace of R”; this latter one contains HT,U_jo 
(and H, “>. Thus, the analogue of Theorem 2.4 is as follows: 

There is 8jo > 0 such that 

H T,U-jo 
= {ye10 < e < $0). (3.18) 
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Sit1 is explicitly computed by 

(3.19) 

From this vantage point the reader now views the scene that has so 

extensively been described in case 1. \il’e will leave him there to his own 

efforts-if necessary. n 

In this section, our final task is to consider briefly the initiul tableau. This 

turns out to be a nice and simple shape. 

TI~EOKEM 3.5. Let j, E] and ij = e ‘I=(0 ,..., O,l,O ,..., 0)EY. Suppose 

i,, E I is such that 

‘;,rJ, 
= maxa,,,. 

it1 

Then (ejl} = H,, “, with T = {i,,} and U = J - { j,l, is a Gertex in Y, and the 

corresponding tubleuu is given by T, ,,, which is indicated by the following 

matrix : 

T” 

UC 

T u 

i0 j * 

-1 . 

1 -i . . . . . . . . . . . . . . . (g . . . . . . . . Gi 

. 

. . 
-i 

jl 
0 I............; . . . . I.....; 

(3.20) 
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Here 

e, = aioj, - aij, (i ETA) 

I. KROHN ET AL. 

(3.21) 

and 

ii;’ = Uij - aij, + aioj, - aioj (i=TC, ~EU). (3.22) 

PROOF. Clearly, (e’l) = H,, U is a vertex. Note that 

holds true. All we have to do is verify the entries of the matrix using 
(3.2)-(3.6). In view of (3.2) we have 

ei = i - Ai.& = aioj, - aij,, 

which shows (3.21). Next, exploit (3.5) in order to obtain 

= [ “i;i, -Alel[ ‘;j 

=[ -:’ a,~j,][“;~] 

The first coordinate of $ is @‘,, which equals 1. 
Next, (3.6) leads to 

and thus (3.22). 



Zmplementing the Modijied LH Algorithm 63 

The remaining computations, easy as they are, will not be carried out 

explicitly. n 

4. IMPLEMENTING THE ALGORITHM 

Suppose that, starting out from some vertex {jj} = H,,u, we have left K,(, 

(i,, E T); hence a transition takes places along the edge HT_-io,U and case la 

or lb will prevail. From Theorem 2.4 and the following presentation we 

know that this depends essentially on the minimizing argument that yields 

r?‘o in Section 2.4.2. Clearly, the quantities competing for this minimizer are 

basically available in the tableau r-,. For, in solving the definition presented 

by (4.2) and (4.4) below according to Section 2.4.2, it turns out that we have 

to look for the minimizer that yields the expression 

Verbally, this means that we take the quotients of column * and column i, of 

Tl/ coordinatewise and look for the minimizing row. According as this yields 

some ilET” or some jiEUC, we end up with Ia or lb. Note that the 

quotient minimizing row is unique by nondegeneracy. 

It is not hard to prove the generalization of this. 

TIIEOKEM 4.1. Let (ij} = H,,” be a oertex in Y with tableau TV. Denote 
the East column of TV by r. * [ = (0, y_c,)]. Let H,,,,, be an adjacent edge 

(so T’ = T - p or U”= U - p), and let r.P be the pth column of TV. Next, 
let (T be a row of TV (i.e. u ET’ or u E U’) such that 

7 CT* Td * - =min ~ 
T UP i I Tdp 

Trnrp > 0, u’ E {rows of rG} 
1 

. (4.1) 

Then the following hold true: 

(1) CT is uniquely determined. 

(2) (@I = Hf,fi with 2 = T’ + u or 6 = U’ + u (chosen appropriately) is 

the vertex other than i that is adjacent to H,!, I’g. 

(3) rQ = qJv. 

PROOF. Obvious. 
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Finally, we have to ponder the terminating 

consider the version of the LH algorithm discussed 

1, Theorem 1.141, which is based on the set 

I. KROHN ET AL. 

condition. To this end, 

in [ll, Chapter 1, Section 

Geometrically, this means that the starting vertex in Y is e” and that the first 

H% T u is some Hjo J_,,. Now, obviously the process terminates once either n is 

added to the indices in U so as to constitute H, u with n E U, or n is 
’ removed from R such that G, v satisfies n @ R. 

In any case, the algorithm terminates once the index n appears afresh the 

first time. If we complete the rectangle rule, then the equilibrium coordi- 

nates can be simply read from the tableau, as they are listed in the last row. 

Concluding, the implementing procedure for the modified LH algorithm 

is described as follows: Given matrices A and B, perform the following steps. 

Step INITIALIZE. 

1. Choose no E J arbitrarily. 

2. Choose i,, E I such that 

‘i0n0 = maxaino. 
i 

(4.2) 

3. Choose j,, E J such that 

‘z,, j,, = max ‘i,,.j. (4.3) 

If j,, = n,,, then STOP. Ceil], &> is a (pure) equilibrium point. Otherwise, set 

UP 

Step INITIAL TABLEAUS. Th e initial tableau arising from the matrix A is 

uniquely described by (3.20), (3.21), (3.22). This defines T, with 4 = e”o. 

The initial tableau arising from the matrix B is obtained by exchanging B7 
and A, J and I, n and m, etc. That is, we have 

I - i,, 

.i0 1 0 

J - _i,, 

4) 

-1 
. 

. 

-i . . . . . . . . . . . . . . . ii,. . . . . . . .$.i 
. ./ 

. . 

-i . 

0 1 1 1 . . . 1 

(4.4) 
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Here 

Gj = b.17;li,, - b,?;,, 

(4.5) 

und 

= b,, - bi,,j + bioj, - bijo. (4.6) 

Hncing thus estublished the initinl tableaus, COKTINUE with the algorithm. 

Step CONTINUE. Having obtained the information j,, form the B-tableau, 
determine i, (or j,) to be the minimizer of the (well-defined) quotients of 
column * and column j, in the A-tableau, i.e., 

Traditionally, (T is called the pivot. Apply the rectangle rule, say 9j,,i,, to the 
A-tableau. CONTINUE with the B-side. Generally, the information contained 
in an index p (the pivot) from the previous side determines a column in the 
tableau of the present side. The minimizer (T of the quotients of the last 
column and column p is the next pivot. It determines the rectangle rule .SZPm 
to be applied to the present tableau. Also, the pivot u is the information to 
be used at the next step with the tableau of the other side. As far as the pivot 
satisfies u # n,, E J, CONTINUE with this step; otherwise move to TERMINATE. 

Step TERMINATE. If the pivot satisfies u = no E J, the algorithm STOPS (after 
the last ZZPn, has been performed). The A-tableau as depicted in (3.1) 
contains the positive coordinates j E U” of q, i.e., the vector Q_L, = ijUr, in 
the U’ X { *} block. Correspondingly, the B-tableau contains some Xv< in the 
corresponding block. Augmenting these quantities by an appropriate string of 

-- 
zeros yields an equilibrium point (x, y). 

Flowcharts of the APL program are given in Figures 6-8. A listing is given 
in Table 1. 
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START 

Strategy Y using 
NO, X as best reply 
to Y and 1 as best 
reply to X. This 
vields IO.JO. 

Choose 
Vertex 

Strategies 

Inittab 

IN 
I 

I Construct 
1 :;I:ial T;leau;AB2 

Switch TAB1 

Switch TAB2 

FE. 6. Program LH. 
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START 

( 
I 

0 COL 0 
R 

TAB = 0 TAB 1 I) w 

I 

RETURN 
TAB 

I 
STOP 

67 

FIG. 7. Subprogram Inittab 
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Next row: 

START 

T = Reduce TAB Comment: T is the tableau 
without 1. row and 

1. column 

Find pivot element 
and its index in T 

t 

N R = HIN: ROW = I 

0 : I 

Rectangle: (i+EQ 
substitute in T: 

Comment : Apply Rectangle Rule 

T= 6 76 

I 6 

p lip 
7 8 I 

(.?+ [TA;;l ‘A”.]) 

I 
RETURN TAB,JO 

I 
STOP 

FK;. 8. Subproqam Switchtab. The subprogram is divided into two subprograms: (1) for 

given column (COL.) compute the row for the pivot element; (2) change the tableau. 
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