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Directed and Weighted Majority Games 

I. KROHN AND P. SUDHOLTER 

Institute of Mathematical Economics, University of Bielefeld, Postfach 100131, 33501 Bielefeld, 
Germany 

Abstract: In this paper we deal with several classes of simple games; the first class is the one of 
ordered simple games (i.e. they admit of a complete desirability relation). The second class consists 
of all zero-sum games in the first one. 

First of all we introduce a "natural" partial order on both classes respectively and prove that 
this order relation admits a rank function. Also the first class turns out to be a rank symmetric 
lattice. These order relations induce fast algorithms to generate both classes of ordered games. 

Next we focus on the class of weighted majority games with n persons, which can be mapped 
onto the class of weighted majority zero-sum games with n + 1 persons. 

To this end, we use in addition methods of linear programming, styling them for the special 
structure of ordered games. Thus, finally, we obtain algorithms, by combining LP-methods and 
the partial order relation structure. These fast algorithms serve to test any ordered game for the 
Weighted majority property. They provide a (frequently minimal) representation in case the answer 
to the test is affirmative. 

0 Introduction 

In  this paper  we consider four subclasses of  simple games. A simple game is a 
cooperat ive mult iperson game in which each coalit ion either wins, i.e. is all 
powerful ("obtains a fixed positive payoff"), or  loses, i.e. is completely ineffec- 
tive ("obtains no payoff"). Frequent ly  it is possible to specify the winning co- 
alitions of  a simple game by assigning nonnegative weights to the players such 
that  the aggregated weight of  each winning coalit ion exceeds a positive level or 
coincides with it, whereas the weight of each losing coalit ion is less than this 
level. The vector which consists of  both, the level and the weights of  the play- 
ers, is known  as a representat ion of  the game, which is in this case a weighted 
majori ty  game. The set of  these games is the first of  the considered subclasses. 
Fo r  the explicit definitions we refer to Section i. 

The terms "simple" and "weighted majority" were introduced by v. Neumann  
and Morgenstern  (1944). Both  simple and weighted majori ty games appear  in 
many  applications of  game theory (see e.g. Shapley (1962)). 
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Up to now no direct procedure of generating the class of weighted majority 
n-person games is known. An indirect method consists of checking the repre- 
sentability of each simple n-person game. It is well-known - see Maschler and 
Peleg (1966) - that weighted majority games have a complete desirability rela- 
tion, i.e. are (up to a permutation of the set of players) directed games. Thus 
only directed games have to be tested as soon as a procedure to generate them 
is known. The second class of considered simple games is the one of directed 
games. The remaining two subsets consist of all zero-sum games in the classes 
just mentioned. 

In Section 1 we introduce our basic notation and recall explicitely the strong 
relationship between n-person weighted majority games and n +  1-person 
weighted majority zero-sum games. Therefore it is sufficient to consider di- 
rected zero-sum games in order to test representability. 

In Section 2 it turns out that both, the class of directed games and the one of 
directed zero-sum games with a fixed number of players, are ranked partially 
ordered sets in a natural way. This fact leads to the important consequence 
that the maximal number of shift minimal coalitions of a directed game can be 
computed recursively with respect to the number of players - Proposition 2.3. 
Moreover the structure of these partially ordered sets allows to construct algo- 
rithms which generate these games. 

Section 3 presents these generating procedures. The main result of this sec- 
tion is Proposition 3.4 applied to directed zero-sum games. 

Section 4 shows methods to compute a representation of a directed game if 
this game is a weighted majority game. These algorithms can be used to test an 
arbitrary directed game for the weighted majority property. They are based on 
the Simplex Method and can easily be rewritten in such a way that the even- 
tual representation is an integer one, as shown in the Concluding Remarks of 
this section. Moreover it turns out that the knowledge of the completeness of 
the desirability relation generically reduces the sizes of the considered tableaux 
- compared with methods not using the completeness of this relation - and 
thus the number of necessary pivot steps. To be more precise, Lemma 4.5, 
which is the main theoretical result of Section 4, can be applied to replace the 
incidence matrix by the shift minimal matrix with a few additional rows in the 
directed case. 

Finally some illustrating examples and figures are given in the Appendix. 
Particularly the two tables, obtained with the help of a computer, demonstrate 
the efficiency of the algorithms presented in the main part of this paper. 

1 Basic Notat ion and Preliminary Results 

Duing this paper let n be a natural number, t2 = f2n = { 1 . . . . .  n} be the set of 
players, and ~(I2) = {SIS - 12} the set of coalitions. If v: #(I2) ~ {0, 1} is a map- 
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ping - the characteristic function - then (f2, ~(12), v) is called simple n-person 
game. Note that we do not assume, as usual, v(~) = 0 for symmetry reasons 
(see Section 2). Since the nature of 12 and of ~(12) is determined by the charac- 
teristic function, we call v a simple game as well. A coalition S is often identi- 
fied with the indicator function ls, considered as n-vector. A coalition S is 
winning, if v(S) --- !, and losing otherwise. The set of winning coalitions is ab- 
breviated by W~. 

In a monotone simple game all subcoalitions of the losing coalitions are los- 
ing. If each proper subcoalition of a winning coalition is losing, this coalition is 
a minimal winning coalition. It should be noted that a monotone simple game 
is completely determined by the set of its minimal winning coalitions, denoted 
by W m or Wfl, if the dependence of the game is to be stressed. 

For each coalition S let D(S) = ~ 2 n-~ denote the corresponding number in 

the decimal system. Also, let g = (St . . . . .  Sn) be the n-vector defined by ~ = 
IS n 12jl. That is, S counts the number of players in S having indices less or 
equal to j, for all j ~ t2 = t2~. 

From now on all considered simple games are assumed to be monotone. 
The matrix with n columns 

I := I(v):= (ls)s~ wV 

is called incidence matrix of v. Denote by Ij. the j-th row of I. We assume that 
the rows o f / a r e  ordered by means of D(.), i.e., D(Ij.) > D(Ik.) whenever j < k. 

Two simple n-person games v and v' are equivalent, if there is a permutation 
of f2 such that v o n = v'. For most of our purposes it suffices to focus our 

interest on equivalence classes. Therefore, we will choose a canonical represen- 
tative of each class. The formal notation is given as follows. For any subsystem 
W c_ ~(12) of coalitions, consider the numbers (2 n - D(S))s~ wwhich completely 
determine W. The binary expansion 

B(W) = s~re 22~-0~s) 

can be attached to W; actually B(.) induces the "natural" lexicographic order 
on subsystems of ~(I2). This motivates 

Definition 1.1: The equivalence class of a simple game v (with respect to per -~ 
mutations of the set of players) is denoted Iv]. The game v c is defined to be the 
representative of i-v], such that 

B(W~o) = min{B(W~,)lv' ~ [v]} 
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is satisfied. Thus the canonical  representative v ~ of I-v] is the first in the natural  
lexicographical ordering of the sets W~, (v' ~ Iv]), considered as subsets of ~(I2). 

Let v be a simple game. The relation _ c_ ~-~2, defined by i ~ j ,  if v({i} w S) _< 
v({j} w S), for all coalitions S satisfying {i,j} c~ S = ~ ,  is called desirability re- 
lation of v (see Maschler and Peleg (1966)). For  a more general definition of 
desirability with respect to coalitions we refer to Einy (1985). 

The simple game v is called an ordered game if its desirability relation is 
complete and a directed game if addit ionally 1 >- 2 > - ' "  _~ n is valid. Concern-  
ing this nota t ion we also refer to Os tmann  (1987, 1989) and Sudh61ter (1989). 

Two players i a n d j  are interchangeable or of the same type, iff i >- j  a n d j  >- i, 
which is abbreviated by i ,,~ j. Besides we recall that  i is a null player or dummy, 
if v(S w {i}) = v(S) for all S e ~(f2). 

Lemma 1.2: Let v be an ordered game. Then  v ~ is the unique directed game in 
the equivalence class [v] of v. 

Proof." The fact that  [v] contains a unique directed game is a straightforward 
consequence of the definitions. 

It remains to show: if v is directed, then v c = v. 
Consider  the game v c. We show for all 1 < k < n - 1 that i >-j  for all i ~ Ok, 

j ~ f2 , \O k. Assume on the cont rary  that  there is a k and i ~ Ok, j ~ Ok, such that  
i-<j, j ~ i. Let n be the transposit ion o n  g2 defined by n(i) =j.  Then D(S) > 
D(n(S)) (i ~ S ~_ t2), thus 

B(Woo) = ~ 22"-v(s)> ~ 2 z"-D~s) = B(W~oo~) , 
S e Wvc S e W~co~ 

a contradiction,  q.e.d. 

A weighted majority game v is a simple game having a representation (2; m), 
i.e. a level 2 ~ N o and a vector of weights m ~ N~ such that  

1 O ,  i fm(S)>_2 
v(S)= , if r e ( S ) < 2  

Here, we use m(S) := ~ mi (S ~ ~(t2)) and call m(S) the weight of coalit ion S. 
i e S  

A representat ion is called minimal, if it is minimal w.r.t, the weight of the 
grand coalit ion t2. Each weighted majori ty game is ordered; thus it is directed, 
iff i t  has a representat ion satisfying ml > m2 > "'" >- m,. Note  that  mi > m s im- 
plies i >-j. For  these definitions and assertions we refer to Maschler and Peleg 
(1966). 
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A simple game is a constant-sum game (we use the expression zero-sum game 
synonymously for historical reasons), if either S or f2\S is winning (and not 
both are winning) and is a superadditive game, if at most S or f2\S is winning 
for each coalition S. The dual game v* is defined by v*(S) = 1, iff v(f2\S) = 0 
(see e.g. Shapley (1962)). The game v is dual superadditive iff v* is superadditive. 
Note that both the classes of weighted majority games and of directed games 
are closed under duality. To verify the first assertion, observe that if (2; m) rep- 
resents a weighted majority game and 2 is chosen minimally, then (re(t2)+ 
1 - 2; m) represents v*. Moreover, v* = v, iff v is a zero-sum game. , 

Note that each weighted majority game is dual superadditive or superaddi- 
tive. Finally observe that * is an involution, i.e. v** - v. Using Lemma 1.2 and 
some of the preceding assertions we obtain that Iv] = [v*] enforces v to be a 
zero-sum game in the case of directed games. This is no longer true in general, 
if v is only monotonous (see e.g. Dubey an Shapley (1978)). 

In the rest of this section we show that a list of all (n + 1),person zero-sum 
weighted majority games is, in some sense, sufficient and necessary in order to 
generate a list of all n-person weighted majority games. This fact is suggested, 
e.g., by Wolsey (1976). First we need some notation. 

Definition 1.3: Let v be a directed superadditive n-person game. Define ~ to be 
the n + 1-person game, given by 

z3(S)=J ' I ,  i f ( S E W v ) o r ( n +  l ~ S a n d S \ { n +  l }~W~,)  

to , otherwise 

Then v ~ := Oc is called the zero-sum extension of v. 
For  a more general definition we refer to e.g. Einy and Lehrer (1989). The 

next two lemmata are used to formulate the proclaimed result explicitely. 

Lemma 1.4: Let v be a superadditive directed n-person game. Then 

(i) v ~ is a monotone simple n +  1-person zero-sum game, not necessarily 
ordered. 

(ii) v is a weighted majority game, if and only if v ~ is a weighted majority 
game. In this case both of the following assertions are valid: 

(a) If (2; m) represents v and 

i o = max{0} u {ilm i > 22 - m(s - 1} , 

then 
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(2; ml,  . . . .  m/o, 22 - re(t2) - 1, mio+l . . . . .  ran) 

is a representat ion of v ~ 
(b) If (2; mt . . . . .  mn § represents v ~ then 

:(2; ml,  . . . ,  m i, mj+ 2 . . . . .  mn+l) 

represents v for some j ~ {0, 1 . . . . .  n}, 

The first part  of  assertion (i) is a straightforward consequence of the defini- 
t ion of v ~ Einy (1985) gave an  example of a zero-sum extension of a directed 
game not  being ordered, and Aumann,  Peleg and Rabinowitz (1965) showed 
assertion (ii). Therefore the proof  of this lemma is skipped. 

There is a converse  Statement to Lemma 1.4 in the case of a weighted major-  
ity game, which is formulated in Proposi t ion 1.7 with the help of 

Definition 1.5: Let v be a directed (n + 1)-person zero-sum game. Consider  the 
nonvoid  sets T1, . . . ,  Tttv~---t2,+~ which are uniquely determined by the re- 
quirements: 

t(v) 

(a) U Tk = ~C2n+l' 
k=l 

(b) i , j  ~ Tk implies i a n d j  are of the same type for all 1 < k < t(v), 
(c) i ~ Tk,j ~ Tk+ 1 impliesj  ___ i , j  ~ i for all 1 < k < t(v). 

Then the sets Tk are the types of the game. Let ?(v) be the number  of non 
dummy types, i.e. t'(v) = t(v), if n + 1 is not  a dummy,  and ?(v) = t(v) - 1 other-  
wise. For  each k s t2t~v) we define the k-th underlying game of v to be an n- 
person game, denoted v tk) via 

vtk~(s) = v({i  ~ t2,+l[(i < io and i ~ S) or (i > io and i - 1 ~ S)}) , 

S e t2, where i0 ~ Tk is chosen arbitrarily. This game v tk~ is well defined, because 
all players of Tk are of the same type. 

It should be noted that  the k-th underlying game of v is the game which 
arises from v as follows. At first an arbi t rary player of the k-th type Tk has to 
be dropped.  Then  only the winning coalitions, which do not  contain this play- 
er, are considered to be the winning coalitions of the new game. 

Lemma 1.6: If v is a directed (n + 1)-person zero-sum game and k, k ~ I2tt,), 
then 
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(i) /)(k) is a superadditive directed game, 
( i i)  u (k) : t ~(~) if and only if k = k, 

(iii) (v~k)) ~ = v, 
(iv), if v tk) is a zero-sum game then k = t(v) > ?(v), i.e. player n + 1 is a dummy 

ofv. 

A proof is skipped, as all necessary arguments are straightforward and al- 
most trivial. Using the last two lemmata we obtain our proclaimed result. 

Proposition 1.7: The set of directed superadditive n-person weighted majority 
games is the set of all underlying games of the directed (n + 1)-person zero- 
sum weighted majority games. 

In Proposition 1.7 only superadditive n-person games are considered. The 
missing assertion concerning dual  superadditive n-person weighted majority 
games follows especially from Lemma 1.6 (iv) by looking at dual games and is 
therefore not stated in detail. We only formulate the exact result concerning 
the cardinalities of these sets of games in Corollary 1.8. 

Let Z.  and Z~ denote the set of directed n-person zero-sum games and those 
having a representation respectively. That is, 

Z.  = {vlv is a directed n-person zero sum-game} and 

Z', = {v ~ Z ,  Iv is a weighted majority game} . 

Moreover let R. be the set of directed n-person weighted majority games. 
From the fact that R. can be partitioned into its superadditive games and dual 
superadditive non zero-sum games, formally written 

R,  = {v ~ R. lv  superadditive} u {v E R,  Iv* ~ R.,  v* superadditive, v* r Z~} , 

we obtain the following result, concerning the cardina!ity of R.. 

Corollary 1.8: 

(i) IR, c~ {vlv is superadditive}l = ~ t(v) = IR. n {vl is dual superadditive}[ 
vez~+~ 

(ii) [Z,~I= ~ t ( v ) - ? ( v )  
vEZ~+I 

(iii) IR, I = ~ t(v) + ?(v) = 2 "  ~ t(v) - IZ;I. 
veZ~+ t VEZn§ l 

In the next section it turns out that the classes of directed games and of 
directed zero-sum games together with certain natural relations form partially 
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ordered sets; the first being additionally a lattice. This gives some insight into 
the structure of these classes of games. Moreover the partial order relations 
will enable us to formulate algorithms which generate both, the directed n- 
person and the directed n-person zero-sum games. These procedures are pre- 
sented in Section 3. 

2 The Partially Ordered Sets 

This section is organized as follows. At first it is recalled that each directed 
game is completely determined by a subset of its minimal winning coalitions, 
the shift minimal coalitions (see Ostmann (1987)). Moreover the definition of 
the span of a coalition - Definition 2.1 - induces a relation on the set of coali- 
tions. The arising partially ordered set is isomorphic to the well-known lattice 
of "partitions". 

In what follows it turns out that the directed games can be considered as the 
filters of this lattice. These filters ordered by inclusion form again a lattice. 
Finally a relation on the directed zero-sum games is defined very similarly, 
such that this class again is a partially ordered set. 

At first some notation is needed. 

Definition 2.1: The span of a coalition S is the set (S)  = { T _  f2lT > S}. More- 
over, define the span of a subset A _ ~(12) by (A)  = U <s>. 

S e A  

It is known (see e.g. Ostmann (1987)) that v is a directed game, iff (W~) = 
Vr Moreover, in this case there is a unique minimal subset (i.e. minimal w.r.t. 
inclusion) W~ ~ ___ W~ such that  (W~) = W~, The elements of W~ are the shift 
minimal coalitions of v, which are automatically minimal winning coalitions. 
The directed game v is completely determined by W~. The corresponding sub- 
matrix of the incidence matrix is the shift minimal matrix of v, abbreviated 

i s := IS(v) = (is)sEw ~ �9 

For this notation we again refer to Ostmann (1987). 

Definition 2.2: Two coalitions S, T e ~(I2) are defined to satisfy S _  T, if 
_< T; and S -<" T if S # T, S -< T and additionally S < R < T implies R 

{S, T}. The relations ~ and -<. are called order relation and cover relation 
respectively. 
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Fig. I 

With  this no ta t ion  (~(I2), ~ )  is a part ial ly ordered set and  the order  relation 
is the reflexive and transit ive closure of  the cover  relation. This  part ial ly or- 
dered set can be il lustrated by its Hasse  diagram, i.e. by the directed graph,  
whose vertex set is ~(12) and whose edge set consists of  all pairs  (S, T) with 
S ~(. T. In  Fig. 1 1 s and 1 r are jo ined by an edge and 1 r lies above  I s, iff  
S .<. T ( n  = 4), 

The  part ial ly ordered set (~(Q), _ )  is i somorphic  to the famous  part ial ly 
ordered set o f "pa r t i t ions"  (M(n), <), where 

M(n) = {a = (al . . . . .  a ,)  e ~ [ [ 0  = a l  = a2 = " "  = ah < ah+l < " "  < an < n 

for some h E {0} u 12,} 

The  i somorph i sm is obviously induced by the bijective m a p p i n g  on the 
cor responding  vertex sets 

~(I2) ~ M(n) , S ~ (0 . . . . .  0, n + 1 - il, n + 1 - i2, . . .  , n J r  1 - ilsl) , 

where 

il > " "  > ils I and S = {il , . . . , i lSl} �9 
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This partially ordered set (M(n), <)  was introduced by Euler (1750) and it 
/ k 

can easily be seen that it has a unique rank function (given by a ~ s ai} 
k i = 1  / 

with maximal rank (n  + 1~ Here a rank function r of a partially ordered set \ 2 ,/" 
(P, _ )  is a mapping from P to N w {0} with r(~) = 0 for some minimal element 

~ P such that x -<. y(x, y ~ P) implies r(y) = r(x) + 1. 
Moreover it is a lattice, i.e., to each two elements a, b there is a unique 

minimal element covering both and a unique maximal element covered by both 
a and b (which can be seen in ~(f2) by observing that R = max(min){S, T}, 
where/~j = max(min) {~, ~} (S, T ~ ~(f2)) componentwise). 

Finally (M(n), <) is rank symmetric (which is seen in (g~(12), _ )  using the 
mapping S ~-~ I2\S for all S ~ ~(f2)). Here a partially ordered set (P, _ )  with 
rank function r is rank symmetric, if r(P) = max{r(x)lx ~ P} exists and the car- 
dinalities of the k-th and the (r(P) - k)-th level of P (where the k-th level of P is 
the set {x ~ Plr(x) = k}) coincide for 0 < k < r(e). 

Let ~ denote the cardinality of the k-th level of (M(n), <), i.e. 

A subset of pairwise comparable elements of a partially ordered set is a chain. 
A subset containing no chain of cardinality k + 1 is a k-family. Stanley (1980) 
proved that (M(n), < ) h a s  the strong Sperner property. That is, the maximal 
cardinality of a k-family is the largest sum of cardinalities of k levels, formally 
written 

max{IFllF is a k:family of (M(n), <)} 

k n + l  
= max ~r,.10 < i~ < ... < ik < 

. i  - -  - -  2 

Moreover he showed that (M(n), _<) is rank unimodal. That means ~ _< "" _< 
N 

~;, -> ~k'+l >- "'" >- ~(n§ for some k. For another proof of the strong Sperner 

property and the raffk unimodality, only using methods of linear algebra, we 
refer to Proctor (1982a, b), These proofs - besides - show a famous conjecture 
of Erdrs and Moser (1965). For the notations we refer t o  Engel and Gronau 
(1985). Now it is clear by the preceding definitions that the directed n-person 
games are exactly the filters of (~(g2), _) ,  i.e. if v is directed, then W~ is a filter 
and vice vesa. Here a filter of a partially ordered set (P, _ )  is a subset F _ P 
such that x ~ F and y ~ P with x ~ y implies y E F. Moreover each filter is 
spanned by its minimal elements, which are exactly the shift minimal coalitions 
of the corresponding game. 
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Fig. 2 

Here it should be noted that the filter ~(~2) must not be excluded, because 
we allow the empty coalition to be a winning one (see Section 1). 

With the help of these results the maximal cardinality of the set of shift 
minimal coalitions of a directed n-person game can be given. It is well-known 

n 

that ~,+1 = ~ + ~ ' - . -1  holds true. Thus especially the number ~[(.~1)/2] can 

easily be computed recursively. Using the Sperner property, the rank unimod- 
ality and symmetry of the lattice (M(n), <_), we easily obtain the following 
interesting result. 

Proposition 2.3: max {I W~l I v is a directed n-person game} = ctn[(2)n +1 /2]" 

NOW we come back to the directed games, considered as filters of (~(t2), -<) 
or (M(n), <_). These filters are ordered by inclusion and it easily turns out that 
({ W~lv is a directed n-person game}, _~) again is a ranked partially ordered set 
with rank function r, defined by r(Wv) = 2" - I Wvl, and total rank 2 n. The case 
n = 4 is illustrated in Fig. 2, where IS(v) is written instead of W~. In order to 
distinguish these partially ordered sets from the sets (~(s'2), __), we sketch the 
corresponding Hasse diagrams in such a way that the larger elements are on 
the right hand side of the smaller elements (not as above in the sketches of the 
Hasse Diagrams of the sets (~(t2), _)). 

This partially ordered set is a lattice,: since (W~ u W~,)= Wou W~, and 
(W~ n W~,) = W~ c~ W~, for each pair of directed games (v, v'). Moreover the 
rank symmetry is easily checked by applying the mapping v ~ v* and ob- 
serving that the restriction on the k-th level is bijective on the 2" - k-th level. 
Additionally we conjecture that it is rank unimodal, although the linear alge- 
bra methods used by Proctor (1982a, b) cannot solve this problem. The set of 
filters ordered by inclusion is indeed uniquely modular but there is no edge 
labeling for general n as it exist in the lattice (M(n), <_), sketched in Fig. 4 of 
the Appendix for n = 4, 5, 6. 

In the end of this section it is shown that the set of directed n-person zero- 
sum games Z ,  ordered with respect to a certain relation form a partially or- 
dered set. At first we define the relation on Zn, where n > 2 is assumed for the 
rest of this section. 

Definition 2.4: For games vl, v2 e Z,  define vl _ "02, iff Wv~l, C. Wv~I). (For the defi- 
nition of these underlying games v~ 1) see Definition 1.5.) Moreover, let Tm"X(v) 
be the lexicographically maximal losing coalition of v for each directed game v. 
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Besides, notice that there is a canonical bijection:from W~,~ to W~ c~ { S _  
I2l 1 r S}, given by S ~ 1 + S. It should be remarked that (Zn, ~ )  is a ranked 
partially ordered set, where the rank function Zn ~ No is given by v ~ t W~,>I. 
Let the i-th level of this partially ordered set be denoted by Z~,i, i.e. 

Z~,i = ( v ~ Z ~ l i =  IW~,,[} �9 

Fig. 3 sketches the corresponding Hasse diagram in the case n = 5 and 
shows that (Zn,'<) is no lattice in general, since e.g. (0 0 1 1 1) and 
(0 1 1 0 0) have no supremum. 

It is clear that Z~.o contains the unique game v characterized by W~ s = {{1}}. 
Moreover Z~,i vanishes for i > 2 ~-2, because the mapping from {S _ OI 1 r S} 
to' {S ___ 1"211 e S}, S ~ S u {1} is injective and the monotonicity of each mem- 
ber v of Z,  implies that I Wv,)l < I W,\W~,,[, but IW~l = 2 "-1 by definition. 

Remark 2.5: Note that Zn,~ % ~ for 0 < i < rn := max{/e  [~olZn,i v ~ ~ } .  
Indeed, Z .... is nonempty by definition. Let v be an element of Zn,~+l (i < rn) 

and S be the lexicographically minimal winning coalition of v, thus 1 ~ S and S 
is shift minimal (winning). Moreover W~\(S} characterizes a directed game v' 
with 2 n-1 - 1 winning coalitions. Obviously the coalition I2\S is the lexico- 
graphically maximal losing coalition of v'. Therefore Wv, u {I2\S} characterizes 
a zero-sum game g ~ Z,.i, i.e: W~ = ~ u {Tmax(v)}\{Q\Tmax(v)}. 

3 Generating Procedures 

First of all we present the theoretical foundations of two algorithms. The first 
algorithm is constructed with the aim to generate a subgraph of the lattice of 
directed n-person games. The second one generates a subgraph of the partially 
ordered set of directed n-person zero-sum games. Both subgraphs contain all 
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vertices of the corresponding partially ordered sets and, additionally, are trees. 
The necessary assertionS concerning directed games and directed zero-sum 
games are formulated simultaneously because of the similarity of both gener- 
ating methods. 

Finally, we show that both algorithms can easily be extended to procedures 
which generate the remaining edges in addition. 

In this section we assume n _> 3 for all assertions concerning zero-sum games 
and start with 

Definition 3.1: 

(i) Let D. denote the set of directed n-person games and D.,~ denote the i-th 
level of this set, i.e., 

D,,, = (v ~ D, Ir(v) = i} 

for 0 _< i < 2" (See Section 2 for the definition of the rank function r). 
(ii) Let v be a directed n-person game. Then 

W~ = {S e W~ ~] T ~ Wv for each T with D(T)  > D(S)} 

is the set of large coalitions of v. 

With the help of the next lemma we define two mappings (see Definition 
3,3). By applying these mappings to a game of the corresponding partially or- 
dered set we obtain an edge or a set of edges respectively. 

Lemma 3.2: Let v and v ~ be a game in D. j  and Z,,i for some 0 < j  < 2" and 
0 < i < r, respectively. 

(i) If i > 0 < j then the games ~ and ~o characterized by 

PV~ = W v u {Tmax(v)} and W~o = (Wvo\{~\Tmax(v~ u {T""'(v~ 

are elements of D. ,-1 and Z.  i-1 respectively. 
(ii) I fS e W~ or S ~ I~o respectively then ~ e D.,j+ 1 and ~o ~ Z.,i+l where ~ and 

~o are the games characterized by 

= Wv\{S} and W~o = (Wvo\{S}) u {g2\S} 

respectively. 
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Proof." All assertions concerning v are straightforward consequences of the cor- 
responding definitions Therefore, only the zero-sum case has to be considered. 

(i) Observing that D(Tmax(v~ > 2 n-1 assertion (i) is directly implied by Re- 
mark 2.5. 

(ii) In order to verify (ii) it suffices to show that ~o is directed, since this game 
clearly has the zero-sum property. 

Assume on the contrary that ~ is not directed and put T := f2\S, thus 
(T)k(W~o\{S} w {T}) ~ ~ .  Take a coalition T 1 of this nonvoid subset of 
all coalitions, then T _< ~1, T t ~ W~, thus 12~T ~ <_ f2kT = ~{ and g2kT ~ 
W~o. Therefore T 1 must coincide with S, because S is shift minimal. 

If lTI = 1, then I2\{1} is no winning coalition, since (I2\{1}) s S # I2\{1} 
(note that 1 ~ S holds true because S is a large coalition) and ({1}) ~ S # 
{1}, since n > 3 holds true. Thus {1} is no winning coalition. The union of 
these last two coalitions is I2, a contradiction to the zero-sum property of 
v. Therefore define: 

tl = min T and t 2 = min T \ { t l }  . 

If t 2 = t I + 1, then 

( T )  ~ T 2 := T u  {1}\{tl} ~ T 3 := T u  {1}\{t2} ~ ( T )  

and clearly S covers both of these coalitions, i.e. S ~ ( T  2 ) (3 (T3) ,  which 
contradicts the shift minimality of S. In the remaining case, i.e. t2 > tl + 1, 
T 3 can be substituted by T u {t2 - 1}\{t2} and the same arguments lead 
to a contradiction, q.e.d. 

The assertions of this lemma concerning the directed game v can be reformu- 
lated as follows. The games v and ~ are joined by an edge. Moreover, v and ~, 
for each ~, are connected by an edge in the lattice of directed games. Clearly, 
an analogon is true in case of the directed zero-sum game v ~ This motivates 
the following 

Definition 3.3: 

(i) Let ~po: Z,\Zn, o -~ Zn and r D, kD,,o --, D~ be defined by q~(v) = ~ and rp(v ~ 
= ~ according to Lemma 3.2. 

(ii) If S ~ W~ or S ~ W~o (v a Dn, v ~ e Z,), then let Vs and Vs ~ be the games ~ and 
~o of Lemma 3.2, part (ii), respectively and define p: D, ~ ~(D,) and pO: 
Z~ ~ ~(Z~) by p(v) = {vslS ~ WJ} and p~176 = {v~ ~ WJo}. 
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Combining the last definitions we obtain the following important result. 

Proposition 3.4: 

(i) ~p(p(v)) = {v} and ~p~176176 = {v ~ for all v s D. and v ~ ~ Z.  with p(v) 
and p~176 ~ ~ .  

(ii) p(q~(v)) ~ v and p~176176 ~ v ~ for all v ~ D.\D.,o and v ~ ~ Z.\Z. ,o.  
(iii) Ip(v)[ = I WJl and ]p~176 = I WJol for all v ~ D. and v ~ ~ Z..  
(iv) D.j+I= U p(v)andZ. , i+l= ~ p ~ 1 7 6  

D E Drl,j ~0 EZn, 1 

Now the arising algorithm s to generate all directed n-person games and all 
those zero-sum games can be formulated. We restrict ourselves to the zero-sum 
case since the other one is completely analogous. 

Starting with the unique game of Z.,o and applying pO yields Z.. x. If Z..f is 
constructed and i < r., then Z.a+l is obtained by applying pO to each element 
of Z.,i. 

It should be remarked that this algorithm can be modified in such a way that 
the arising procedure computes all edges of the partially ordered set (Z., _<_): 

If v~ Z.  and v' ~ p~ then v and v' are joined by an edge. Here only the 
edges from v ~ Z..i to Vs ~ Z.,i+x(S ~ W~) are considered, thus this procedure 
generates a tree. 

But there is a canonical extension rio of po, which considers all shift minimal 
coalitions S of v with D(S) > 2 "-1 instead of the large coalitions only, and we 
obtain that v _~ v'and v, v' are joined by an edge, iff v' e fi~ The proof is an 
analogon to the one of Lemma 3.2. The 6-person case is sketched in Fig. 5 of 
the Appendix. 

Compared to the algorithm which generates a tree this method clearly is 
much more slowly, since all edges of the partially ordered set are generated. It 
has an analogon in the case of directed games - induced  by ~ which considers 
all shift minimal coalitions of each game. 

Remark 3.5: There is another algorithm generating all directed n-person games. 
This procedure successively constructs the games with respect to their lexico- 
graphical position, does not reveal the order structure of the class of games, 
and is thus of less theoretical interest. Moreover, it has no analogon in the 
zero-sum case. Therefore we skip a detailed description of this method, though 
it is faster than the one mentioned above. 

All methods have been implemented on a computer. For examples we refer 
to the Appendix. 

The last section gives an answer to the question how the games of Z,  can be 
tested for representability. 
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4 Testing of Directed Zero-Sum Games for Representability 

It is the aim of this section to compute one element of the least core of a given 
directed zero-sum game using the Simplex Method. Peleg (1968) proved that in 
the weighted majority case each element of the least core corresponds to a 
representation of the game, thus this procedure yields the desired test of repre- 
sentability. For further connections between representations of weighted ma- 
jority games (homogeneous games), the least core, and other solution concepts 
see Peleg and Rosenmiiller (1992), Peleg, Rosenm/Jller and Sudh61ter (1994), 
and Rosenm~iller and Sudh61ter (1994). 

At first we demonstrate that the least core of each monotone simple zero- 
sum game coincides with the set of equilibria of a certain non-cooperative 
matrix game (see Corollary 4.3). Then we show that this matrix being the 
incidence matrix can be substituted by the shift minimal matrix with a few 
additional rows in the directed case (see Lemma 4.5). Finally two algorithms 
are formulated explicitly. Both methods compute an extreme point of the least 
core of an arbitrary directed zero-sum game. 

We start recalling some definitions and properties concerning weighted ma- 
jority zero-sum games. 

If (2; m) is a representation of an n-person weighted majority zero-sum game, 
re(T) < m(f2)/2 < m(S) for all coalitions T ~ W~, S ~ W~. For the sake of brevity 
we will drop the level 2 in this case, i.e. (2; m) is identified with m = (ml, . . . ,  ran). .) Moreover ~ = )' " ' "  m-~) is called a normalized representation of v. Con- 

versely, a payo f f  vector r~ = (r~ 1 . . . . .  mn), i.e. ~(~)  = 1, mi > 0 (i e ~), is a nor- 
malized representation of a weighted majority zero-sum game, if there is no 

1 
coalition S with r~(S) = ~. 

In what follows we use an approach similar to the first step of the algorithm 
computing the nucleolus considered by Wolsey (1976) (we also refer to 
Kopelowitz (1967)), to compute a payoff vector for each directed zero-sum 
game, which is a representation in the case of a weighted majority game. For 
the definition of the nucleolus Schmeidler (1966) is referred to. 

Defini t ion 4.1: If v ~ Z,,  then define 

Xv := (x ~ Rn[x >_ 0, x(~2) = 1 and 

x(S) >_ max{min{y(T)[T e W~}[y _> 0, y(~2) = 1} for all S ~ W~} , 

qv := m i n { x ( S ) [ S  e W~ m} for each x E X~ , 

Xo := {x ~ X~lx~ >_ "'" >_ x,,} . 
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Note that the set X, remains unchanged, if W~ is substituted by Wo '~ at all 
places, and that this set is the least core in the sense of Maschler, Peleg and 
Shapley (1979). Observe that X~ and X, are convex polyhedrons, containing 
the nucleolus of v and being subsets of the set of normalized representations of 
v in the weighted majority case. Indeed, Peleg (1968) only showed that the 
nucleolus is a normalized representation in this case. But his proof remains 
valid for each element of the least core. 

We want to compute an extreme point of X, or Xv using the equilibrium con- 
cept of a non-cooperative matrix game which is characterized, roughly speak- 
ing, by W~ or W~ s respectively. 

Now we come to the detailed description of the matrix games�9 Let Fv be the 
matrix game characterized by the transpose matrix of the incidence matrix of 
the directed n-person zero-sum game v, namely A := I(v) t (i.e. the sets of strate- 
gies Y and X for player II and player I, respectively, are the sets of payoff 
k- and n-vectors, where k is the number of minimal winning coalitions of v. A 
tupel of strategies (x, y) ~ X x Y leads to the payoff xAy for player I and to 
- x A y  for player II). Moreover 2 e X is an optimal strategy for player I, iff 

E Xo. For this property we refer to e.g. Rosenmiiller (1981), Section 1. The 
second matrix game F* is characterized by the matrix 

A* := E k , ,  - l ( v )  , where Ek, n = I 1 ... 11 

1 . . .  1 

is a k x n matrix. We conclude that ~ is an optimal strategy for player II w.r.t. 
F*, iff~ ~ X~. Let en denote the n-vector (1 . . . . .  1). 

An arbitrary k x n matrix B is defined to have property (P), if each entry of 
B is nonnegative and B has no all-zero column�9 If F is the matrix game charac- 
terized by B, then the following lemma is well-known (see Brickmann (1989) 
and again Rosenmiiller (1981)). 

Lemma 4.2: Let B be a k x n matrix with property (P). Then the following 
holds: max{y(12)ly _> 0 and By < ek}  and min{xff2k)]x > 0 and xB > en} exist. 
If y and ~ is a maximizer and minimizer respectively, then (2, y)/y(g2) is an 
optimal pair of strategies for F. Conversely, if (~, y) is an optimal pair of 
strategies for F, then there are such vectors ~ or y such that ~ = ~/~(g2k) and 
y = y/y(t~). 

The maximization problem of Lemma 4.2 is the dual of the minimization 
problem, thus ~(t2k) = y(f2). 

The matrix A (transpose of l(v)) trivially has property (P), since no minimal 
winning coalition is empty. Moreover A* (consisting of all maximal losing co- 
alitions) has property (P), as long as {v} # Zn.o is valid. It is sufficient to test 
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the elements of Zn\Zn, o for representability, because the only remaining game 
is trivially a weighted majority game ((1, 0 . . . . .  0) is a (normalized) representa- 
tion). Therefore v is assumed to be an element of Zn\Zn, 0 from now on. 

Corollary 4.3: Let v be a game of Zn\Z. ,o  and k = [ Vr The following asser- 
tions are equivalent: 

(i) v is a weighted majority game. 
(ii) max{yff2k)10 < y is a k-vector and y . l ( v )  < e,} < 2. 

(iii) max{x(Dn)lO < x is an n-vector, (Ek,n -- l(v))" x < e~} > 2. 

The maximization problems (ii), (iii) of Corollary 4,3 can be solved by 
the Simplex Method. The resulting algorithms start with very simple initial 
tableaux consisting of either I(v) t, e, (as last column) and -ek  (as last row) 
or Ek,n -- I(v), ek (as last column) and - e .  (as last row), where k denotes the 
cardinality of W m (see Brickmann (1989)). 

These algorithms work even in the case that the game started with is not 
directed (but still monotone). We proceed by constructing generically faster 
and quite similar algorithms, which can only be applied to directed zero-sum 
games. It is our aim to substitute the incidence matrix by the shift minimal 
matrix and a few additional rows. 

Definition 4.4: For each v ~ Zn define the (n + k - 1) x n matrices (k = I W~Sl) 

"[(v) = 

i ( v )  = 

P(v) 

1 - 1  0 . . .  0 0 0 

0 1 - 1  .. .  0 0 0 

0 0 1 .. .  0 0 0 

0 0 0 - 1  0 0 

0 0 0 . . .  1 - 1  0 

0 0 0 .. .  0 1 - 1  

Ek, . -- P(V) 

--1 1 0 . . .  0 0 0 

0 --1 1 . . .  0 0 0 

0 0 --1 ... 0 0 0 

0 0 0 ... 1 0 0 

0 0 0 ... --1 1 0 

0 0 0 ... 0 - 1  1 
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Now the direct analogon of Corol lary 4.3 is the following 

Lemma 4.5: Let v ~ Zn\Zn,  o and k = [W~Sl. Then  the following assertions are 
equivalent. 

(i) v is a weighted majori ty game. 
(ii) max{y(I2k) lY ~ R k+~-~, y > 0 and y. '[(v) < e~} < 2. 

(iii) max{x(I2n)lx e Rn, x > 0 and [ ( v ) ' x  < (ek, 0 , . . . ,  0)} > 2. 

n - 1  times 

Proof." Put  k = I W~l. In view of Corol lary 4.3 it suffices to show that  

(1) 60 := max{y(f2r,)10 _< y e R r' and y . l ( v )  <_ en} = max{y(f2k)10 <_ Y ~ R k+n-1 
and y" I(v) <_ en} =: t~l 
and 

(2) ~o := max{x(I2)10 < x ~ R" and (Er,.,, - I ( v ) ) ' x  < e~} = max{x(t2)10 < x 
R n and [(v)" x < (ek, 0 . . . . .  0)} =: 71. 

ad (2): Fo r  each x ~ Rn define 

i(x) := max{ /~  {0} u ~nlxx ~ ""  ~ x, ~ max{xjli  < j  < n}} . 

Take  ~ ~ R n such that  

(ct) ~ > O, (E~.n - l(v))" ~ < e~ and ~(t2) = 70 

is valid and i(~) is maximal. Now xl  > "'" > Xn is to be verified. As- 
sume, on the contrary,  i(~) < n, let us say Xio = max{~ili > i(~)}, thus 
io > i(~) + 1. Therefore i(x) > i(~), where 

X --~ (21  . . . . .  Xi(~), Xi  o, Xi(~)+2 . . . . .  "Xio-I '  "~i(x-')+l, "~io +1 . . . .  , Xn) " 

Moreover  there is a maximal  losing coalit ion T, i.e. f 2 \ T  ~ W m, with 
x ( T )  > 1 (because of the maximali ty of i(~)). Thus i o ~ T, i(~) + 1 e T. 
Therefore  T '  = T u {io}\{i(x) + 1} is a losing coalition, which satisfies 
~(T ' )  = x ( T )  > 1, a contradiction.  These arguments directly imply 71 > 

70.  
Conversely take x e {x e ~nlx > 0 and [ ( v ) . x  < (ek, 0 . . . . .  0)}, thus 

(fl) xl  > x2 > "'" > xn by the definition of [(v) . 
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If S is a minimal winning coalition of v, then there is a shift minimal 
coalition S' such that S' < S. Let T be a row of Er,,. - l(v). Then S = 
t2 \T is a minimal winning coalition, showing that T' = I2\S' is a row 
in Ek, n -- IS(v) and T' > T. Thus x(T)  < x(T ' )  < 1 (by (fl)), implying 

70 >71. 

ad (1): Look at the dual problems: 
Let x ~ R", x > 0, I(v)x < er, and x(I2) = 6o. Then analog arguments as 

in ad (2) show that w.l.o.g, xl > " "  > x,, meaning "[(v)x < (ek, 0 , . . . ,  0), 
thus 61 > 6o by looking at the dual problems. 

Conversely take x e ~", x > 0 and 7(v) .x  < ek. Then l (v)x < e~, 
because of the fact xl > "'" > x,, thus 60 > 61. q.e.d. 

Clearly the extreme points of Xo and X,  are the normalized extreme points 
of the sets of maximizers of the problem (iii) of Corollary 4.3 and Lemma 4.5 
respectively. In view of the proof of the last lemma we obtain the following 

Corollary 4.6: Xv = {x e Xolx l  > "'" > x . }  = {x s R"ixl  > " "  > x .  and there is 
an ~ ~ Xv and a permutation Tc of s such that x = ~ o n} r ~ .  

Now we formulate exlicitly the procedures: 

Algorithm I: Let v e Z,,  A = I(v) t, k = I W~I, 

First step: Start with the initial tableau (see Brickmann (1989)) 

n 

0 

n+l ... n+k n+k+l ... 2n+k-1 

A 

-i ... -i 0 ... 0 

1 
. , , , .  

C 

Second step: 

Third step: 

Apply the Simplex Method by choosing the pivot element accord- 
ing to e.g. Bland's Rule. If the entry p in the last row and column 
is not smaller than 2, then continue with the fourth step. If no 
optimum is reached, take this new tableau and continue with the 
second step. 
Define for each i ~ f2. 

~0, if i is not contained in the first row of the tableau 
m~ = [the last entry, of the column with first entry i, otherwise 
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and observe that (ml, . . . ,  m,)/p is a normalized representation of 
v. Now stop the algorithm. 

Fourth step: Conclude that v is no weighted majority game (by (ii) of Lemma 
4.5). 

Algorithm II: Let v ~ Z. \Z . ,  o and A* = i(v), where k = [ l/V~S[. 

(1) Start with the initial tableau 

0 

n+l 

n+k 
n+k+1 

~n+k-1 

i . . .  n 

W, 

A 

0 - I  . . .  - i  

(2) Apply the Simplex Method by choosing the pivot element according to 
Bland's Rule. If the entry p in the last row and column exceeds 2, continue 
with (4). If no optimum is reached, take this new tableau and continue with 
(2). 

(3) Conclude that v is no weighted majority game (by (iii) of Lemma 4.5) and 
stop this algorithm. 

(4) By (iii) of Lemma 4.5 v is a weighted majority game. 

This Algorithm II can be modified to 

Algorithm IIa: Let the steps (la) and (3a) be exactly the steps (1) and (3) from 
Algorithm II and introduce two further steps: 

(2a) Apply the Simplex Method and compute p as in (2). If no optimum is 
reached, take the new tableau and continue with (2a). If p > 2, continue 
with (4a). 

(4a) Define 

~ 0, if i is not contained in the first column 
mi = (the last entry in the row with first entry i, otherwise 

and conclude that (ml, ... , m,)/p is a normalized representation of v. 
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It should be remarked that both algorithms, slightly modified, can be used 
to compute an extreme point of Xv even in the case v being no weighted ma- 
jority game: Apply the Simplex method until an optimum is reached. Now 
define the vector m/p according to the third step or (4a) respectively and ob- 
serve that this vector is an extreme point of Xv in any case. 

Concluding Remarks: 

(1) Let v be an element of Zn or Zn\Z~, o respectively, which is a weighted 
majority game. 

Then each of the algorithms I or IIa generates a normalized representa- 
/ X 

( ~  . . . .  , ~ )  respectively. A representation (~1 . . . .  ,N~)e~l~ tion is 

obtained by the following procedure: 
~ = m~" q (i e 12), where q is the product of the pivot elements. Indeed 

the fact that ~ is a nonnegative integer can easily be verified by an induc- 
tive argument. 

(2) In each case the vector m = (ml, . . . ,  ran) together with p has the interesting 
property 

min{m(S)[S ~ W~} - m a x { m ( T ) l T  ~ I/V~} 

= { ~ - p ,  i fAlgor i thml i sused  

2 , if Algorithm IIa is used 

This fact is shown for Algorithm I by observing that min{m(S)lS ~ W~} = 
1 and re(O) = p, thus max{m(T)lTq~ W~} = p - 1 (v is a zero-sum game), 
and for Algorithm IIa analogously by interchanging the roles of S and T. 

Therefore roll2 - Pl is a minimal representation in the weighted majority 
case, if m,/12 - Pl ~ No is satisfied. Surprisingly it turns out that this vector 
is indeed an integer vector in many cases. In fact, the least core of each 
weighted majority zero-sum game with less than 9 persons is a singleton, 
consisting of the unique normalized minimal representation of v. In the 
9-person case the algorithms of the last section generate 319,124 directed 
zero-sum games, from which exactly 175,428 are weighted majority games. 
It can be verified that , ~  and Xv coincide and are singletons, consisting of 
the nucleolus, in the 9-person weighted majority zero-sum case with the 
exception of exactly 12 games. To be more precise all 9-person weighted 
majority zero-sum games have a unique minimal normalized representa- 
tion which coincides with the least core and thus with the nucleolus with 
the exception of 14 games listed in the Appendix (Table 2), which have 
exactly two minimal representations differing only on one type of players. 
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Moreover, in 12 of these cases both representations are exactly the extreme 
points of the least core and the nucleolus is the midpoint of these represen- 
tations. The sets Xv are the convex hulls of one of these representations 
and the nucleolus. In the remaining two cases no normalized minimal rep- 
resentation is contained in the least core though the set is a singleton. We 
discuss these games in what follows. 

Here is the first game vl: 
This game is represented by ~ = (15 13 10 8 6 4  4 2 1), but the normal- 

ized representation ~/63 cannot be an element of X,1 or X,1, since each of 
the preceding algorithms yields rh = (14.5 12.5 9.5 7.5 6 4 4 1.5 1.5)/61 thus 
rfi(S) > 31/61 > 32/63 = rfi(So)/63 for all S E Wvl and So = {1, 2, 6}. 

It remains to show that ~ is a minimal representation of v. Let m be a 
minimal representation. Then m 9 _> 1, since this game has no dummies. If 
m8 > 2 is presumed, then we can prove 7 lemmata which successively show 
that m 7 > 4, m 6 _> 4, m 5 > 6, m 4 >_ 8, m a > 10, m 2 _> 13, ml > 15. We only 
have to exclude w.l.o.g, that m8 = m9 - - - -  1. In this case each coalition S 
W. my, with {8, 9} n S  ~ ~ would satisfy re(S) = 2 := min{m(S) lS  ~ W~I }. Us- 
ing these coalitions we successively obtain m 7 = m6, m s = 2 m  7 - 1 = m 7 + 
1, thus m 7 = 2, m4 = 2 m 7 ,  m3  = 3 m 7  - 1, mx = m 2 + 1; therefore (m 3 . . . . .  

m 9 ) = ( 5  4 3 2 2 1 1). Since (1 1 1 0 0 0 0 0 0 ) i s  a 
minimal winning coalition, we additionally obtain 9 < 2m2 + 1 < 10, thus 
ml = 5, m2 = 4, 2 = 14, but then m({1, 2, 6)) = 11 < 14, a contradiction in 
view of the fact that this coalition is winning. 

The second game v2 is the one represented by (17 15 11 9 7 5 4 2 1), this 
representation being minimal (this can be verified analogously to the first 
game), and (16.5 14.5 10.5 8.5 7 5 4 1.5 1.5)/69 e X~2. We conclude again 
that no normalized minimal representation of v2 is in Xv2. 

An example of a game with two extreme points of the least core is the 
zero-sum extension of the game considered by Dubey and Shapley (1978): 
(13 7 6 6 4 4 4 3 2)/49 is a normalized minimal representation 
of this game but the last two weights can be exchanged. Both normalized 
representations are extreme points of Xo and the first is in X~ but X~ con- 
tains the midpoint of these representations as extreme point, too. 

(3) Applying each algorithm to the famous 12-person weighted majority zero- 
sum game introduced by Isbell (1959), which has two minimal representa- 
tions such that the affected players 1 and 9 are of different type, we obtain 
one of the normalized minimal representations, i.e. both are extreme points 

1 

of X v and X,. 
(4) Both Algorithms I and II (a) can be modified in such a way that the shift 

minimal and shift maximal coalitions (i.e. the complements of the shift min- 
imal coalitions) are identified with the types of these coalitions or profiles: 

S ~ a(S):= (al(S) . . . . .  a,(v)(S)) , 

where 
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aj(S) = IS c~ Tj] (1 <_j <_ t(v)) , 

Tj is defined according to Definition 1.5. Using the notation of Definition 
4.4 I'(v) and ](v) must be substituted by the (t(v) + k - 1) x t(v) matrices 

a(S) 

1 - t  . . .  0 

0 1 . . .  0 

0 0 . . .  - 1  

0 0 . . .  1 

0 

0 

0 

- -  1 S e l f ( v )  

and 

a(T)  

- 1  1 . . .  0 

0 - 1  ..�9 0 

0 0 . . .  1 

0 0 . . .  - 1  

0 

0 

0 

1 T e Ek,n - l~v I 

respectively . 

Note that it is very easy to compute the partition sets Tj (see Sudh61ter (1989), 
Section 4) and therefore this procedure will generically diminish the initial tab- 
leau and the Simplex steps�9 The disadvantage of the necessary computation of 
th Tj will thus be compensated especially if the number of players is large. 
These new algorithms yield an extreme point of the nonvoid convex subset 

{ x ~ X ~ l x  i = x j i f i ~ j }  o f X ~ ,  

which is a singleton in the 9-person case. 

Appendix 

Some figures and tables are sketched as illustrations of the presented algo- 
rithms. Fig. 4 sketches the lattice of directed n-person games (n = 4, 5, 6), con- 
sidered as filters of (~(I2n), __) which are ordered by inclusion (see Section 2). 
The results of Table 1 have been developed with the help of a computer as 
follows: 

The numbers of directed games (n = 1 . . . . .  8) are obtained using the corre- 
sponding generating algorithm of Section 3. The number of edges in the corre- 
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Fig. 4 

10 20 30 40 50 60 rank 

Table 1 

n 1 2 . 3  4 5 6 7 8 9 

number of directed games 
number of edges in directed lattice 
number of weighted majority games 
number of directed zero-sum games 
number of games in Z,~ 
number of homogeneous games 

3 5 10 27 119 1173 44315  16175190 ? 
2 4 10 36 224 3264 190162 110433364 ? 
3 5 10 27 119 1113 2 9 3 7 5  2730166 ? 
1 1 2 3 7 21 135 2470 319124 
1 1 2 3 7 21 135 2470 175428 
1 3 8 23 76 293 1307 6642 37882 

sponding lattice are the numbers of occuring shift minimal coalitions, since 
two directed games are joined by an edge, iff the larger one arises from the 
smaller one by dropping one shift minimal coalition in the corresponding fil- 
ter. Analogously, the numbers of directed n-person zero-sum games are com- 
puted using the corresponding algorithm of Section 3 for n - 1 . . . . .  9. Testing 
these games on representability (see e.g. Algorithm II of Section 4) yields the 
numbers of directed n-person weighted majority zero-sum games (see the sixth 
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Fig. 5 
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1 0 1 D 0 0  [ 0 1 0 0 D  

t 0 t a e a  

/ i 1 ~ o D .  / / 

/ ] O ~ I ( Q  Z / / / i i t Q t a /  / 
t * 0 0 ~ 0  t 0 o l o o  / * ] ~ I ~  
e t l l l 0  t * *  1]  / [ ] ~ 1 7 6 1 7 6  / 

/ /  . / [ ( 1 0 0 ~ 1  

0 H I~ / /// 

/ / /  

. . . . . . . . . . . .  " - 2 ;  
e 0 1 t ~ l  \ / i  / 

Table 2 

1 m 

2 - p ' 2 - p  

3O ; 17 9 
25 ; 13 7 
27 ; 14 9 
33 ; 17 12 
28 ; 13 9 
24 ; 11 9 
28 ; 13 11 
28 ; 13 11 
32 ; 15 13 
31 ; 14.5 12.5 9.5 7.5 6 4 4 1.5 1.5 
35 ; 16.5 14.5 10.5 8.5 7 5 4 1.5 1.5 
34 ; 16 14 11 9 6 4 4 1.5 1.5 
38 ; 18 16 12 10 7 5 4 1.5 1.5 
33 ; 13 11 10 8 6 6 4.5 4.5 2 

8 6.5 6.5 5 3 2 2 
6 6 4 4 4 2.5 2.5 
6.5 6.5 5 5 3 2 2 
8 8 6.5 6.5 3 2 2 
7 7 6 4 4 2.5 2.5 
6 6 4 4 4 1.5 1.5 
8 6 6 4 4 1.5 1.5 
7 7 5 5 4 1.5 1.5 
9 7 7 5 4 1.5 1.5 

a minimal representation 

30 ; 17 9 8 7 6 5 3 2 2 
25 ; 13 7 6 6 4 4 4 3 2 
27 ; 14 9 7 6 5 5 3 2 2 
33 ; 17 12 8 8 7 6 3 2 2 
28 ; 13 9 7 7 6 4 4 3 2 
24 ; 11 9 6 6 4 4 4 2 1 
28 ; 13 11 8 6 6 4 4 2 1 
28 ; 13 11 7 7 5 5 4 2 1 
32 ; 15 13 9 7 7 5 4 2 1 
32 ; 15 13 10 8 6 4 4 2 1 
36 ; 17 15 11 9 7 5 4 2 1 
34 ; 16 14 11 9 6 4 4 2 1 
38 ; 18 16 12 10 7 5 4 2 1 
33 ; 13 11 10 8 6 6 5 4 2 

row).  T h e  n u m b e r s  of  d i r e c t e d  n - p e r s o n  w e i g h t e d  m a j o r i t y  g a m e s  (see t he  f o u r t h  

row)  a r e  o b t a i n e d  b y  c o n s i d e r i n g  t he  t ypes  of  t he  c o r r e s p o n d i n g  z e r o - s u m  ex-  

t e n s i o n s  d u e  to  C o r o l l a r y  1.8. 

I n  o r d e r  to  i l l u s t r a t e  t he  e x t r a o r d i n a r y  g r o w t h  of  t h e  n u m b e r s  o f  g a m e s  o f  

t h e  j u s t  m e n t i o n e d  c lasses  we a d d i t i o n a l l y  s h o w  t h e  n u m b e r s  o f  h o m o g e n e o u s  

g a m e s ,  w h i c h  a re  eas i ly  c o m p u t e d  u s i n g  t h e  r e c u r s i v e  f o r m u l a e  of  S u d h 6 1 t e r  

(1989). F o r  f u r t h e r  r e su l t s  c o n c e r n i n g  h o m o g e n e i t y  see O s t m a n n  (1987a)  a n d  

R o s e n m f i l l e r  (1987). 
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Fig. 5 sketches the Hasse diagram of the directed 6-person zero-sum games. 
The tree, consisting of all vertices, i.e. the corresponding shift minimal matri- 
ces, and the "straight line" edges, is generated by the original algorithm pre- 
sented after Proposition 3.4. The additional edges result from the corresponding 
modified algorithm. 

Table 2 shows the 14 games mentioned in the Concluding Remarks (2) of 
Section 4. The left hand side representation is computed using Algorithm I and 
coincides, up to normalization, with the nucleolus. Rows 10 and 11 are the 
"pure" exceptions. 
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