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Abstract The positive core is a nonempty extension of the core of transferable utility
games. If the core is nonempty, then it coincides with the core. It shares many proper-
ties with the core. Six well-known axioms that are employed in some axiomatizations
of the core, the prenucleolus, or the positive prekernel, and one new intuitive axiom,
characterize the positive core for any infinite universe of players. This new axiom
requires that the solution of a game, whenever it is nonempty, contains an element that
is invariant under any symmetry of the game.
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114 G. Orshan, P. Sudhölter

1 Introduction

The positive core is a set-valued solution of cooperative transferable utility games.
Its definition strongly relates to the definition of the prenucleolus. A preimputation
belongs to the prenucleolus of a game, if it lexicographically minimizes the excesses
of the coalitions. The definition of the positive core differs from the definition of the
prenucleolus only inasmuch as the excesses are replaced by their positive parts. Hence,
the prenucleolus is a subsolution of the positive core. On the other hand, if the core of
a game is nonempty, then the positive parts of all excesses at elements of the core are
zero, hence the core coincides with the positive core, whenever the core is nonempty.

The concept of the positive core is not new. Indeed, Sudhölter (1993) used it to
show that anonymity is logically independent of the remaining axioms in Sobolev’s
(1975) characterization of the prenucleolus. In 1993, in a letter to the second author,
Peleg indicated that a student of Maschler, namely the first author, was aware of the
importance of the positive core. Indeed, Maschler motivated the investigation of non-
symmetric prekernels, that is, of solutions that satisfy the axioms of Peleg’s (1986)
axiomatization of the prekernel with the exception that the equal treatment property is
replaced by single-valuedness for two-person games. In this context Maschler invented
the expression “positive core” that was first mentioned in the first author’s PhD thesis
(see Orshan 1994). Though this solution was already regarded as an interesting core
extension at that time, it served as an auxiliary solution only (see also Orshan and
Sudhölter 2003). The present paper aims to show that the positive core is interesting
in its own right.

Note that if an excess of a coalition S at a proposal x (see Sect. 2 for the formal
definition) is positive, then it may be interpreted as the dissatisfaction of S when faced
with x . If the excess is not positive, then the coalition is satisfied, that is, its dissat-
isfaction is 0. Hence, the positive core of a game consists of all preimputations that
lexicographically minimize the dissatisfactions of the coalitions.

Though the core is regarded as one of the most intuitive solutions for cooperative
games, there is (at least) one serious drawback: It specifies the empty set for many
remarkable games. From a normative point of view, the elements of a solution of a
game are interpreted as proposals of how to solve the game. If the solution applied to
some game is empty, then this game cannot be solved. In this sense the core, when
regarded a normative solution, should be applied to classes of balanced games (games
with a nonempty core) only. As soon as non-balanced games have to be considered the
core is a less suitable solution. It is then natural to replace the core by a solution that
(a) contains the core as a subsolution and that (b) is nonempty when applied to any
game under consideration. There are well-known nonempty core extensions. Indeed,
the literature mentions various prebargaining sets (see, e.g., Aumann and Maschler
1964; Granot and Maschler 1997; or Sudhölter and Potters 2001) that contain the core.
However, even if the core is nonempty, they can be much larger than the core. They may
contain counter intuitive proposals that are ruled out by the core. Recently Sudhölter
and Peleg (2000) introduced and axiomatized a smaller nonempty core extension, the
positive prekernel (see Sect. 2 for the precise definition). Though this solution is a
subsolution of the prebargaining sets, the core of a balanced game may be a proper
subset of the positive prekernel of this game. It is the aim of this paper to show that the
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The positive core of a cooperative game 115

positive core is characterized (see Remark 4.3 and Corollary 5.1) by intuitive simple
axioms. Only one property (see Definition 3.2) is employed that is not used in some
axiomatizations of the prekernel, the positive prekernel, the prenucleolus, or the core.

The paper is organized as follows: In Sect. 2 the notation and some definitions are
presented. Moreover, some characterizations of solutions known from literature and
relevant in the context of the positive core, are recalled.

The positive core satisfies nonemptiness, anonymity, covariance under strategic
equivalence, and it is Pareto optimal and reasonable. The core satisfies three vari-
ants of reduced game properties: The reduced game property (RGP), the converse
reduced game property (CRGP), and the reconfirmation property (RCP). The positive
prekernel satisfies two of them, namely RGP and CRGP. In Sect. 3 it is shown that
the positive core satisfies RGP and RCP. Moreover it shares a further property with
the core, the (positive) prekernel, and the nucleolus. Indeed, these solutions allow for
non-discrimination (ND). This axiom requires from the solution of a game that it,
whenever nonempty, contains a preimputation that does not discriminate (i.e., that is
invariant under all symmetries of the game).

The main result, Theorem 4.1, is formulated and proved in Sect. 4. It states that
the prenucleolus, the positive core, and its relative interior, are the unique solutions
that are nonempty-valued and satisfy reasonableness, covariance, RGP, RCP, and ND,
provided that the universe of players is infinite. It turns out that ND may be replaced by
anonymity and convex-valuedness. Moreover, the aforementioned results follow from
Theorem 4.2 in which ND is replaced by anonymity and the condition that the solu-
tion contains the prenucleolus as a subsolution. Section 4.1 presents examples showing
that each axiom in Theorem 4.1 and in Corollary 4.4 is logically independent of the
remaining axioms. Section 4.2 is devoted to the proof of Theorem 4.2. We investigate
the behavior and shape of solutions that are nonempty-valued and reasonable and sat-
isfy covariance, RGP, and RCP. First it turns out (see Theorem 4.5) that the restriction
of such a solution to one- and two-person games is a subsolution of the positive core.
If it also satisfies anonymity then, restricted to two-person games, it coincides either
with the prenucleolus, or the relative interior of the positive core, or the positive core.
A technical part of the required proof occurs in the Appendix. In order to generalize
this result to arbitrary games, it is shown (see Lemma 4.9) that the positive parts of
the excesses at elements of the solution of a game have to coincide. For this and the
preceding result the assumption of an infinite universe of potential players is crucial.
Lemma 4.9 is used to prove that Theorem 4.5 can be generalized, if the solution is
assumed to contain the prenucleolus. We conclude with some remarks in Sect. 5.

2 Notation and definitions

Let U be a set (the universe of players) containing, for simplicity, 1, . . . , k when-
ever |U | ≥ k. A (cooperative transferable utility) game is a pair (N , v) such that
∅ �= N ⊆ U is finite (N is the player set) and v : 2N → R, v(∅) = 0 (v is the
coalition function). Here 2N = {S ⊆ N } is the set of coalitions. Let (N , v) be a game.
Then

X (N , v) = {x ∈ R
N | x(N ) ≤ v(N )} and I∗(N , v) = {x ∈ R

N | x(N ) = v(N )}
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116 G. Orshan, P. Sudhölter

denote the set of feasible payoffs and the set of Pareto optimal feasible payoffs (pre-
imputations) of (N , v), where we use x(S) = ∑

i∈S xi (x(∅) = 0) for every S ∈ 2N

and every x ∈ R
N as a convention. Additionally, xS denotes the restriction of x to S,

i.e., xS = (xi )i∈S , and for disjoint coalitions S, T let (xS, xT ) = xS∪T . The following
abbreviations are used to recall the definitions of several well-known solutions that
are relevant in the sequel. Let S ⊆ N , let k, � ∈ N be distinct, and let x ∈ R

N .
Then e(S, x, v) = v(S)− x(S) denotes the excess of S, µ(x, v) = maxS⊆N e(S, x, v)

denotes the maximal excess and

sk�(x, v) = max{e(S, x, v) | S ⊆ N , � /∈ S 
 k}

denotes the maximal surplus of k against � at x with respect to (w.r.t.) (N , v).
The core of (N , v) is the set C(N , v) = {x ∈ I∗(N , v) | e(S, x, v) ≤ 0 ∀S ⊆ N }

and the prekernel of (N , v) is the set

K∗(N , v) = {x ∈ I∗(N , v) | sk�(x, v) = s�k(x, v) ∀k ∈ N and � ∈ N \ {k}}.

The positive prekernel of (N , v) is the set

K∗+(N , v) = {x ∈ I∗(N , v) | (sk�(x, v))+ = (s�k(x, v))+ ∀k ∈ N and � ∈ N \ {k}},

where t+ = max{t, 0} denotes the positive part of a real t . The prenucleolus of (N , v),
denoted ν(N , v), is the set of preimputations that lexicographically minimize the non-
increasingly ordered vector of excesses of the coalitions. The set ν(N , v) is a singleton
{ν(N , v)}.

In general, a solution σ is a mapping that associates with every game (N , v) a set
σ(N , v) ⊆ X (N , v).

Gillies (1959) introduced the core, for the prekernel and prenucleolus we refer to
Maschler et al. (1972) and to Schmeidler (1969). The positive prekernel was introduced
by Sudhölter and Peleg (2000). Now we are able to define the positive core.

Definition 2.1 The positive core of a game (N , v) is the set C+(N , v) defined by

C+(N , v) = {x ∈ I∗(N , v) | (e(S, x, v))+ = (e(S, ν(N , v), v))+ ∀S ⊆ N }.

The prenucleolus is the preimputation which minimizes the highest excess, then
minimizes the number of coalitions attaining highest excess, then minimizes the sec-
ond highest excess, and so on. Thus, the prenucleolus is yielded by iteratively solving
a finite sequence of linear programs. The positive core can be computed by solving
the same sequence of linear programs as long as the excesses are positive.

A member of the positive core lexicographically minimizes the non-increasingly
ordered vector of positive excesses, whereas the prenucleolus lexicographically min-
imizes the non-increasingly ordered vector of all excesses. A member of the positive
prekernel balances the maximal surplus of distinct players whenever it is positive,
whereas a member of the prekernel balances the maximal surplus of all pairs of dis-
tinct players. In this sense the positive core of a game arises from the prenucleolus of
the game in a similar way as the positive prekernel arises from the prekernel.
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The positive core of a cooperative game 117

Clearly, C+(N , v) = C(N , v), if C(N , v) �= ∅, and ν(N , v) ∈ C+(N , v).
Now we recall the definition of the reduced game. For any z ∈ X (N , v) and any

∅ �= S ⊆ N the reduced game w.r.t. S and z, (S, vS,z), is defined by

vS,z(T ) =
⎧
⎨

⎩

0, if T = ∅,

v(N ) − z(N \ S), if T = S,

maxQ⊆N\S(v(T ∪ Q) − z(Q)), if ∅ �= T � S.

Some intuitive and well-known properties of a solution σ are as follows. The solu-
tion σ

(1) is covariant under strategic equivalence (COV), if for any game (N , v), any
z ∈ R

N , and any β > 0, σ(N , βv + z) = βσ(N , v) + z (the games (N , v)

and (N , βv + z) are strategically equivalent, where, by convention, z ∈ R
N is

identified with the additive coalitional function, again denoted by z, on the player
set N defined by z(S) = ∑

i∈S zi for all S ∈ 2N );
(2) is nonempty (NE), if σ(N , v) �= ∅ for every game (N , v);
(3) is Pareto optimal (PO), if σ(N , v) ⊆ I∗(N , v) for every game (N , v);
(4) is single-valued (SIVA), if |σ(N , v)| = 1 for every game (N , v);
(5) is anonymous (AN), if the following condition is satisfied for all games (N , v)

and (M, w): If π : N → M is a bijection such that πv = w (where πv(S) =
v(π−1(S)) ∀S ⊆ M), then σ(M, w) = π(σ(N , v)) (where, for any x ∈ R

N ,
πx ∈ R

M is defined by πx j = xπ−1( j) ∀ j ∈ M)—in this case the games (N , v)

and (M, w) are isomorphic;
(6) satisfies the equal treatment property (ETP), if for every game (N , v), for every

x ∈ σ(N , v), xk = x� for all substitutes k, � ∈ N (where k and � are substitutes,
if v(S ∪ {k}) = v(S ∪ {�}) ∀S ⊆ N \ {k, �});

(7) satisfies the zero inessential two-person game property (ZIG), if for every game
(N , v) with |N | = 2 and v = 0, σ(N , v) �= ∅;

(8) is reasonable (REAS), if, for every game (N , v), for every x ∈ σ(N , v), and for
every i ∈ N ,

min
S⊆N\{i}(v(S ∪ {i}) − v(S)) ≤ xi ≤ max

S⊆N\{i}(v(S ∪ {i}) − v(S));

(9) satisfies weak unanimity for two-person games (WUTPG), if, for every game
(N , v) with |N | = 2, {x ∈ I∗(N , v) | xi ≥ v({i}) ∀i ∈ N } ⊆ σ(N , v);

(10) satisfies the reduced game property (RGP), if for every game (N , v), ∅ �= S ⊆
N , and every x ∈ σ(N , v), xS ∈ σ(S, vS,x );

(11) satisfies the converse reduced game property (CRGP), if for every game (N , v)

with |N | ≥ 2 the following condition is satisfied for every x ∈ I∗(N , v): If, for
every S ⊆ N with |S| = 2, xS ∈ σ(S, vS,x ), then x ∈ σ(N , v);

(12) satisfies the reconfirmation property (RCP), if for every game (N , v), ∅ �= S ⊆
N , for every x ∈ σ(N , v) and y ∈ σ(S, vS,x ), (y, xN\S) ∈ σ(N , v).

With the help of these axioms the prekernel, the prenucleolus, the positive prekernel,
and the core can be characterized. We recall some of the axiomatizations.
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118 G. Orshan, P. Sudhölter

Theorem 2.2 (Peleg 1986) The unique solution that satisfies NE, PO, COV, ETP,
RGP, and CRGP is the prekernel.

Theorem 2.3 (Sobolev 1975) The unique solution that satisfies SIVA, COV, AN, and
RGP is the prenucleolus, provided |U | = ∞.

Theorem 2.4 (Sudhölter and Peleg 2000) The unique solution that satisfies NE, AN,
REAS, RGP, CRGP, and WUTPG is the positive prekernel, provided |U | ≥ 3.

Theorem 2.5 (Hwang and Sudhölter 2001) The unique solution that satisfies ZIG,
COV, AN, RGP, RCP, CRGP, and REAS is the core, provided |U | ≥ 5.

Remark 2.6 (1) In Theorem 2.2, CRGP is a substitute for maximality, i.e., each solu-
tion that satisfies the remaining axioms is contained in the prekernel (see Peleg
1986). Hence the prekernel is the maximum solution that satisfies the remaining
five axioms.

(2) Orshan (1993) shows that AN can be replaced by ETP in Theorem 2.3.
(3) Note that the prenucleolus is also axiomatized by NE, COV, ETP, and RCP (see

Orshan and Sudhölter 2003).

Remark 2.7 The positive core of a game is the set of all preimputations that lexico-
graphically minimize the non-increasingly ordered vector of the positive parts of the
excesses. A proof of this alternative “definition” of the positive core is straightforward.

The following simple results are useful. Let �2 be the set of games with at most
two players.

Remark 2.8 Let (N , v) be a game, ∅ �= S ⊆ N , k, � ∈ S, k �= �, and let x ∈ R
N .

Then

sk�(x, v) = sk�

(
xS, vS,x

)
. (2.1)

Remark 2.9 (cf. Lemma 4.3 of Hwang and Sudhölter 2001) If σ satisfies REAS and
RGP, then σ also satisfies PO.

Remark 2.10 (Lemma 7.1 of Sudhölter and Peleg 2000) Let σ 1, σ 2 be solutions. If
σ 1 satisfies PO and RGP, if σ 2 satisfies CRGP, and if σ 1(N , v) ⊆ σ 2(N , v) for every
game (N , v) ∈ �2, then σ 1 is a subsolution of σ 2.

3 Properties and examples

This section serves to show that the positive core has many properties in common with
the core, the (positive) prekernel, and the nucleolus. Moreover, an algebraic character-
ization by balanced collections of coalitions is provided. We shall also use the relative
interior, denoted rint C+ of the positive core. Let (N , v) be a game. Then

rint C+(N , v) = {x ∈ C+(N , v) | ∀S ⊆ N : e(S, ν(N , v), v) < 0 ⇒ e(S, x, v) < 0}.
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The positive core of a cooperative game 119

The positive core satisfies NE and, hence, ZIG, because it contains the prenucleo-
lus. Clearly, it satisfies COV, AN, and PO. It is a subsolution of the positive prekernel
which satisfies REAS (see Sudhölter and Peleg 2000), thus it satisfies REAS as well.
The relative interior of the positive core satisfies the same axioms. For two-person
games with a non-empty core, C+ coincides with the core and for two-person games
with an empty core it coincides with the prenucleolus. Therefore it satisfies, different
from rint C+, WUTPG.

Remark 3.1 It is well-known that the prekernel of any three-person game coincides
with its prenucleolus. Hence, by Theorem 4.1 of Sudhölter and Peleg (2000), the
positive core of any three-person game coincides with its positive prekernel.

A further property of the positive core is interesting. Let (N , v) be a game. A sym-
metry of (N , v) is a permutation π of N such that πv = v. Let SYM(N , v) denote
the group of symmetries of (N , v).

Definition 3.2 A solution σ allows for non-discrimination (ND), if the following
property is valid for every game (N , v): If σ(N , v) �= ∅, then there exists x ∈ σ(N , v)

such that πx = x for every π ∈ SYM(N , v).

ND has the following simple interpretation: If the players of a game (N , v) are able
to agree upon a proposal to solve the game (that is, if σ(N , v) �= ∅), then ND requires
that they should as well be able to agree upon a proposal, which is invariant under all
symmetries of the game and which, hence, does not discriminate.

There is a “natural” strong version of ND. Indeed, a solution σ satisfies strong
non-discrimination (SND), if every x ∈ σ(N , v) is invariant under symmetries. Note
that any solution σ that satisfies SIVA and AN also satisfies SND. Hence the prenu-
cleolus satisfies SND and the (positive) prekernel, the core, the (relative interior of
the) positive core, and many other well-known solutions satisfy ND. Note that there
are also set-valued solutions that satisfy SND (e.g., the maximal satisfaction solution
introduced by Sudhölter and Peleg 1998).

The following approach results in a characterization of the positive core by balanced
collections of coalitions and allows to deduce RGP and RCP.

For every game (N , v), for every x ∈ R
N and every α ∈ R denote D(α, x, v) =

{S ⊆ N | e(S, x, v) ≥ α}. Let S ⊆ N . The characteristic vector χ S of S is the
member of R

N which is given by

χ S
i =

{
1, if i ∈ S,

0, if i ∈ N \ S.

A collection D ⊆ 2N of coalitions is balanced (over N ), if there are coefficients
γS > 0, S ∈ D, such that

∑
S∈D γSχ

S = χ N . The collection (δS)S∈D is called a
system of balancing weights.

We first recall a result of Kohlberg (1971) characterizing the prenucleolus.

Theorem 3.3 Let (N , v) be a game and x ∈ I∗(N , v). Then the following assertions
are equivalent: (a) x = ν(N , v). (b) For every α ∈ R and every y ∈ R

N satisfying
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120 G. Orshan, P. Sudhölter

y(N ) = 0 and y(S) ≥ 0 for all S ∈ D(α, x, v), y(S) = 0 for all S ∈ D(α, x, v). (c)
For every α ∈ R, D(α, x, v) is balanced or empty.

The equivalence of (a) and (b) may be proved directly and the equivalence of (b)
and (c) is a direct consequence of the duality theorem of linear programming. In a
completely analogous way the following result may be proved.

Theorem 3.4 Let (N , v) be a game and x ∈ I∗(N , v). Then the following asser-
tions are equivalent: (a) x ∈ C+(N , v). (b) For every positive α ∈ R and every
y ∈ R

N satisfying y(N ) = 0 and y(S) ≥ 0 for all S ∈ D(α, x, v), y(S) = 0 for all
S ∈ D(α, x, v). (c) For every positive α ∈ R, D(α, x, v) is balanced or empty.

Theorem 3.4 implies (see Theorem 6.3.14 in Peleg and Sudhölter 2003) that the
positive core satisfies RGP and RCP. Moreover, the relative interior of the positive
core may be characterized by modifying Theorem 3.4 only inasmuch as C+ has to be
replaced by rint C+ and positive has to be replaced twice by nonnegative. This mod-
ification implies that the relative interior of the positive core satisfies RGP and RCP
as well. Hence, the following theorem is valid.

Theorem 3.5 The positive core and its relative interior satisfy RGP and RCP.

We shall now present an example which shows that the positive core does not satisfy
CRGP. Sudhölter and Peleg (2002) use a similar example.

Example 3.6 Let N = {1, 2, 3, 4} and v(S), S ⊆ N , be defined by

v(S) =
⎧
⎨

⎩

0, if S ∈ {∅, N },
2, if S ∈ {Si | i = 1, 2, 3, 4},

−2, otherwise,

where S1 = {1, 2}, S2 = {2, 3}, S3 = {3, 4}, and S4 = {1, 4}. Note that SYM(N , v)

contains the subgroup generated by the cyclic permutation, which maps 1 to 2, 2
to 3, 3 to 4, and 4 to 1; thus the game is transitive. (A game is called transitive,
if its symmetry group is transitive.) As ν satisfies ND and PO, ν(N , v) = 0. Thus
e(S, ν(N , v), v) = 2 for S ∈ {Si | i = 1, . . . , 4} and e(T, ν(N , v), v) ≤ 0 for all
other coalitions. Therefore,

C+(N , v) = convh{(1,−1, 1,−1), (−1, 1,−1, 1)},

where “convh” means “convex hull”. Let x ∈ convh{(2,−2, 2,−2), (−2, 2,−2, 2)},
k ∈ N , and � ∈ N \ {k}. Then sk�(x, v) = 2 and sk�(x, v) is attained by some
Si , i = 1, . . . , 4. Thus

convh{(2,−2, 2,−2), (−2, 2,−2, 2)} ⊆ K∗(N , v).

The current example together with Theorem 2.4 shows that the positive core does not
satisfy CRGP when |U | ≥ 4.

123



The positive core of a cooperative game 121

Remark 3.7 The positive core shares another property with the core: The positive core
is convex-valued (CON). Indeed, Definition 2.1 directly implies that the positive core
of a game is a compact convex polyhedral set.

In the next section we shall need the following easy result.

Remark 3.8 (see, e.g., Remark 2.7 of Sudhölter 1997) Let ∅ �= N be a finite set and
let D be a balanced collection over N . If T ⊆ N satisfies χT ∈ 〈{χ S | S ∈ D}〉,
then D ∪ {T } is balanced. Here 〈· · · 〉 denotes the linear span. (We say that D spans
D ∪ {T }.)

4 A characterization of the positive core

This section is organized as follows. The present part is devoted to a discussion of our
main result, i.e., Theorem 4.1. We show that this result is implied by Theorem 4.2 and
that it may be used to characterize the positive core by simple and intuitive axioms
(see Corollary 5.1). In Sect. 4.2 we prove Theorem 4.2 and in Sect. 4.1 the logical
independence of the employed axioms is discussed. Throughout we shall assume that
σ is a solution.

Theorem 4.1 Assume that |U | = ∞. The solution σ satisfies NE, REAS, COV, RGP,
RCP, and ND, if and only if σ coincides

(1) with the prenucleolus or
(2) with the relative interior of the positive core or
(3) with the positive core.

We now show that NE and ND are implying AN and that the prenucleolus is a
subsolution, i.e., that Theorem 4.1 is implied by the following result.

Theorem 4.2 Assume that |U | = ∞. The solution σ satisfies REAS, COV, AN, RGP,
RCP, and ν is a subsolution of σ , if and only if σ ∈ {ν, rint C+, C+}.
Proof of Theorem 4.1 The three mentioned solutions satisfy the required properties.
Let σ satisfy the axioms. By Theorems 4.2 it suffices to prove (a) that ν is a subsolu-
tion of σ and (b) that σ satisfies AN. Let (N , v) be a game. By COV we may assume
without loss of generality that ν(N , v) = 0 ∈ R

N .
We first prove (a). By our infinity assumption on |U | and according to Sobolev

(1975) there exists a game (Ñ , w) satisfying the following properties:

(1) ν(Ñ , w) = 0 ∈ R
Ñ .

(2) N ⊆ Ñ and wN ,0 = v.
(3) (Ñ , w) is transitive.

By NE and ND and transitivity of (Ñ , w) there exists z ∈ σ(Ñ , w) such that zi = z j

for all i, j ∈ Ñ . By Remark 2.9, σ satisfies PO, thus z = ν(Ñ , w). By RGP of ν,
zN = ν(N , v). By RGP of σ , zN ∈ σ(N , v).

It remains to show (b). Let N̄ ⊆ U be such that there is a bijection π : N → N̄ . It
has to be proved that π(σ(N , v)) ⊆ σ(N̄ , πv). By the infinity assumption on |U | there
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122 G. Orshan, P. Sudhölter

is a further set of players of the same cardinality in U disjoint from both, N and N̄ , thus
we may assume that N and N̄ are disjoint. Let x ∈ σ(N , v). Then π(x) ∈ σ(N̄ , πv)

remains to be shown. We are going to define a “replicated” game (N ∪ N̄ , u) such that
the reduced games w.r.t. N and N̄ and the prenucleolus coincide with the games (N , v)

and (N̄ , πv) respectively. Putα = minR,S⊆N min{e(S, ν(N , v), v), e(S, x, v)+x(R)}
and define, for all S ⊆ N , T ⊆ N̄ ,

u(S ∪ T ) =
{

v(S), if T = π(S),

α, otherwise.

Let y = 0 ∈ R
N∪N̄ and observe that the equation

D(β, y, u) =
{ {S ∪ π(S) | S ∈ D(β, ν(N , v), v)}, if β > α,

2N∪N̄ , otherwise

is valid, thus y = ν(N ∪ N̄ , u) by Theorem 3.3. By (a), y ∈ σ(N ∪ N̄ , u). Observe
that uN ,y = v by construction, thus z := (x, yN̄ ) ∈ σ(N ∪ N̄ , u) by RCP. Again the

construction of u yields uN̄ ,z = πv − π(x), thus πx ∈ σ(N̄ , πv) by COV and RGP.
��

Remark 4.3 In Theorem 4.2 the property that ν is a subsolution of σ may be replaced
by NE and CON (see Remark 3.7). We may prove this statement by first proceeding as
in the proof of Theorem 4.1 till and including the construction of (Ñ , w). Then, by NE,
there exists y ∈ σ(Ñ , w), and, by Remark 2.9, y(Ñ ) = 0. By AN, π(y) ∈ σ(Ñ , w)

for every π ∈ SYM(Ñ , w). By CON,

z = 1

|SYM(Ñ , w)|
∑

π∈SYM(Ñ ,w)

π(y) ∈ σ(Ñ , w).

By transitivity, z = 0 = ν(Ñ , w). By RGP of ν, zN = ν(N , v). By RGP of σ ,
ν(N , v) ∈ σ(N , v) so that the proof is complete.

We say that σ is closed-valued (CLOS) if σ(N , v) is closed for any game (N , v).
With the help of CLOS the positive core may be characterized as follows.

Corollary 4.4 Assume that |U | = ∞ and σ �= ν. Then σ satisfies NE, REAS, COV,
RGP, RCP, CLOS, and ND, if and only if σ = C+.

4.1 On the independence of the axioms

Six examples are presented which show that each of the axioms (1) NE or “ν is a sub-
solution of σ”, (2) REAS, (3) COV, (4) RGP, (5) RCP, and (6) ND or AN is logically
independent of the remaining axioms in Theorems 4.1 and 4.2. Hence, Corollary 4.4
may be regarded as an axiomatization of the positive core.
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Let U be a set, let t ∈ R, t ≤ 0, and let (N , v) be a game. Let σ i , i = 1, . . . , 5, be
defined by

σ 1(N , v) = C(N , v),

σ 2(N , v) = I∗(N , v),

σ 3(N , v) = {x ∈ I∗(N , v) | max{e(S, x, v), t} = max{e(S, ν(N , v), v), t} ∀S ⊆ N },
σ 4(N , v) = {x ∈ I∗(N , v) | µ(x, v) = µ(ν(N , v), v)}, and
σ 5(N , v) = K∗+(N , v).

Let � be a total order of U . For every finite set N ⊆ U let �N be the restriction of �
to N and let ≤N

lex be the induced lexicographical order on R
N . Then σ 6 is defined by

σ 6(N , v) = {x ∈ C+(N , v) | x ≤N
lex y ∀y ∈ C+(N , v)}.

It is straightforward to check that σ i , i = 1, . . . , 6, satisfies all properties except
the i th one. If |U | ≥ 4 and t �= 0, then none of the solutions coincides with C+ or ν

or rint C+.

4.2 The proof of Theorem 4.2

We recall that �2 is the set of games with at most two players. We shall first derive
some results for solutions when restricted to �2 and assume throughout that |U | ≥ 3.

Theorem 4.5 The solution σ satisfies NE, REAS, COV, AN, RGP, and RCP, only
if it coincides on �2 with ν or rint C+ or with C+.

We first show that a solution σ satisfies σ(N , v) ⊆ C+(N , v) for all (N , v) ∈ �2, if
σ satisfies the axioms of Theorem 4.5 (where AN is not needed). The technical proof
of the remaining part of Theorem 4.5 is contained in Sect. 6.

Lemma 4.6 If σ satisfies NE, REAS, COV, RGP, and RCP, then σ(N , v) ⊆ C+(N , v)

for all (N , v) ∈ �2.

Proof By Remark 2.9, σ satisfies PO and the assertion is true for any 1-person game.
Let (N , v), |N | = 2, be a game.

If C(N , v) �= ∅, then, by COV, we may assume that there exists c ≥ 0 such that
v({�}) = −c ≤ 0 for all � ∈ N and v(N ) = 0. If x ∈ σ(N , v), then, by REAS,
−c ≤ x� ≤ c so that x ∈ C+(N , v) by PO.

If C(N , v) = ∅, then, by COV we may assume that v({i}) = 1 for i ∈ N and
v(N ) = 0. Let x ∈ σ(N , v). It remains to show that x = 0. Let N = {i, j}. By PO
and REAS, −1 ≤ xi ≤ 1 and x j = −xi . As |U | ≥ 3, there exists k ∈ U \ N . Define
Ñ = N ∪ {k} define (Ñ , w) by w(S) = v(S ∩ N ) for all S ⊆ Ñ . By NE there exists
z ∈ σ(Ñ , w) and, by REAS, zk = 0. Hence, (N , wN ,z) = (N , v). Let y ∈ R

Ñ be
defined by yN = x and yk = 0. By RCP, y ∈ σ(Ñ , w). Let π : N → {i, k} be the
bijection that satisfies π(i) = i and let x̃ ∈ R

{i,k} be given by x̃i = 0 and x̃k = xi .
Then πv = w{i,k},y − x̃ . Hence, by RGP and COV, πx ∈ σ({i, k}, πv). By inter-
changing N with { j, k} and k with i , we receive that, with π̃ : N → {i, k} defined by
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π̃(i) = k and π̃( j) = i , π̃x ∈ σ({i, k}, πv). Let z̃ ∈ R
Ñ be defined by z̃i = z̃ j = x j

and z̃k = 2xi . By RCP and COV, z̃ ∈ σ(Ñ , w) so that, by REAS, xi = 0. ��
We shall now turn to the general case.

Lemma 4.7 If σ satisfies NE, REAS, COV, RGP, and RCP, then it is a subsolution
of the positive prekernel.

Proof By Lemma 4.6, σ(N , v) ⊆ C+(N , v) ⊆ K∗+(N , v) for all (N , v) ∈ �2. By
Theorem 2.4, K∗+ satisfies CRGP. Therefore Remark 2.10 applied to σ 1 = σ and
σ 2 = K∗+ completes the proof. ��

If σ is a subsolution of the positive prekernel and if σ satisfies COV, RGP, and RCP,
then it is shown that a coalition which has a positive excess at some member of the
solution when applied to the game, has the same excess at any member of the solution
of the game. The following simple lemma is useful.

Lemma 4.8 Let (N , v) be a game, let x ∈ K∗+(N , v), and let k ∈ N. If µ(x, v) > 0
then there exist Sk, S−k ⊆ N such that

e(Sk, x, v) = e(S−k, x, v) = µ(x, v), k ∈ Sk, and k /∈ S−k .

Proof It suffices to show that there exists � ∈ N \ {k} such that

sk�(x, v) = s�k(x, v) = µ(x, v). (4.1)

Let S ⊆ N be a coalition attaining µ(x, v). As µ(x, v) > 0, ∅ �= S �= N . If k ∈ S,
then (4.1) holds for every � ∈ N \ S. If k /∈ S, then (4.1) holds for every � ∈ S. ��

The following Lemma is proved in Sect. 6.

Lemma 4.9 Let |U | = ∞, let σ be a subsolution of the positive prekernel, let (N , v)

be a game, let x, y ∈ σ(N , v), and let S̄ ⊆ N. If σ satisfies NE, COV, RGP, and RCP,
then

e(S̄, x, v) > 0 ⇒ e(S̄, y, v) = e(S̄, x, v).

Corollary 4.10 If |U | = ∞, if the prenucleolus is a subsolution of σ , and if σ satisfies
REAS, COV, RGP, and RCP, then σ is a subsolution of the positive core.

Proof By Lemma 4.7 the solution σ is a subsolution of the positive prekernel, hence
Lemma 4.9 can be applied. ��

Now we are ready to finish the desired proof.

Proof of Theorem 4.2 The three solutions satisfy the desired properties. Let, now, σ

be a solution that satisfies the axioms and contains the prenucleolus. By Theorem 4.5
the following three cases (1)–(3) may occur.
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(1) The solution σ coincides with the prenucleolus on the set of all 2-person games.
By (2.1), σ must be a subsolution of the prekernel, thus σ satisfies ETP. By Theorem
4.2 of Orshan and Sudhölter (2003), σ is the prenucleolus.

(2) The solution σ coincides with the positive core on the set of all 2-person games.
By Corollary 4.10, σ is a subsolution of the positive core. Let (N , v) be a game. It
remains to show C+(N , v) ⊆ σ(N , v). Without loss of generality we may assume that

N = {1, . . . , n}, N∗ := {1∗, . . . , n∗} = {n + 1, . . . , 2n} ⊆ U.

By COV we may assume that ν(N , v) = 0 ∈ R
N . If C+(N , v) = ν(N , v), then NE

completes the proof. Hence, let x ∈ C+(N , v) \ ν(N , v) and put Ñ = N ∪ N∗. It is
no loss of generality to assume that

x1 ≥ · · · ≥ xn . (4.2)

We are going to define a game (Ñ , w) which allows to show that σ(Ñ , w) contains a
member y such that

(a) the reduced game (N , wN ,y) coincides with (N , v) and
(b) the restriction yN coincides with x .

Indeed the proof is finished by RGP as soon as (Ñ , w) and y are constructed.
Let k ∈ N and ei ∈ R, i = 1, . . . , k, be defined by

{ei | i = 1, . . . , k} = {v(S) | v(S) < 0}, e1 > · · · > ek,

i.e., e1, . . . , ek are the different negative excesses of (N , v) at the prenucleolus in the
strictly decreasing order. Moreover, define S i , T i , βi for all i = 1, . . . , k by the
requirements

S i = {S ⊆ N | v(S) = ei }, (4.3)

T i =
⎧
⎨

⎩
T ⊆

i⋃

j=1

⋃

S∈S j

S

⎫
⎬

⎭
, (4.4)

βi = max
S∈T i

x(S). (4.5)

Note that S i is the i th negative level set. By construction

ek < · · · < e1 < 0 = x(∅) ≤ β1 ≤ · · · ≤ βk .
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Put T 0 = {∅} and βk+1 = maxS⊆N v(S)+maxT ⊆N x(T ). We are now ready to define
w. For S, T ⊆ N , let w(S ∪ T ∗) be given by the following equation:

w(S ∪ T ∗) =

⎧
⎪⎪⎨

⎪⎪⎩

v(S), if v(S) ≥ 0 and T = S,

ei − βi , if

((
S ∈ S i , T ∈ T i

)
or(

S = ∅, T ∈ T i \ T i−1
)
)

for some 1 ≤ i ≤ k,

ek − βk+1, otherwise.

We are going to show that

ν(Ñ , w) = 0 ∈ R
Ñ (4.6)

and

y� := (x1, . . . , x�︸ ︷︷ ︸
�

, 0, . . . , 0
︸ ︷︷ ︸

n−�

,−x1, . . . ,−x�︸ ︷︷ ︸
�

, 0, . . . , 0
︸ ︷︷ ︸

n−�

) ∈ σ(Ñ , w) ∀� = 1, . . . , n.

(4.7)

(a) In order to show (4.6), it suffices to show in view of Theorem 3.3 that, for any
R ⊆ Ñ ,

D(w(R), 0, w) = {Q ⊆ Ñ | w(Q) ≥ w(R)}

is balanced (over Ñ ). If w(R) ≥ 0, i.e., R = S ∪ S∗ for some S with v(S) ≥ 0,
then the required balancedness follows immediately from the fact that 0 is the
prenucleolus of (N , v) and the observation that

{Q ⊆ Ñ | w(Q) ≥ w(R)} = {T ∪ T ∗ | T ⊆ N , v(T ) ≥ v(S)}.

Thus it remains to show that

D̂i := {Q ⊆ Ñ | w(Q) ≥ ei − βi }

is balanced for any i = 1, . . . , k. By Remark 3.8 it suffices to show that D̂i

contains a balanced subset Di that spans D̂i . In order to define Di note that

S ∪ ∅ ∈ D̂i ∀S ∈
i⋃

j=1

S j and ∅ ∪ {t∗} ∈ D̂i ∀{t} ∈ T i

for i = 1, . . . , k. Hence we put

Di := {S ∪ S∗ | v(S) ≥ 0} ∪
i⋃

j=1

S j ∪ {{t∗} | {t} ∈ T i } ∀i = 1, . . . , k.
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By Theorem 3.3, {S ⊆ N | v(S) ≥ 0} ∪ ⋃i
j=1 S j is balanced over N , hence

{S∗ ⊆ N∗ | v(S) ≥ 0} ∪ {S∗ ⊆ N∗ | S ∈ ⋃i
j=1 S j } is balanced over N∗. The

observation that {{t∗} | {t} ∈ T i } = {{t∗} | t ∈ ⋃i
j=1

⋃
S∈S j S} shows that

Di is balanced. Also, it is straightforward to show that Di spans D̂i for every
i = 1, . . . , k.

(b) Assertion (4.7) is shown recursively. Denote the prenucleolus ν(Ñ , w) = 0
by y0. By the definition of y� we conclude for every T ⊆ N that y�(T ∗) =
−x(T ∩ {1, . . . , �}) ≥ −βk+1. Also, by (4.5), y�(T ∗) ≥ −βi for every T ∈ T i

and every i = 1, . . . , k. Also, by (4.2), we have y�(S) ≥ min{x(S), 0} for all
S ⊆ N . We conclude for S, T ⊆ N that

e(S ∪ T ∗, y�, w) ≤ max{e(S, x, v), ei }, if S ∈ S i for some 1 ≤ i ≤ k. (4.8)

Also,

e(S ∪ T ∗, y�, w) < 0, if w(S ∪ T ∗) = ek − βk+1 (4.9)

We conclude that

(
e(S ∪ T ∗, y�, w)

)

+ = (
w(S ∪ T ∗)

)
+ .

Let w�−1 := w{�, �∗}, y�−1 ∀� = 1, . . . , n. denote the coalition function of the
“bilateral” reduced game w.r.t. {�, �∗} and y�−1. By (4.8) and (4.9),

(x�,−x�) ∈ C({�, �∗}, w�−1) ∀� = 1, . . . , n. (4.10)

The facts that the solution σ coincides with the positive core on 2-person games
and that it contains the prenucleolus show that RCP, when applied recursively to
� = 1, . . . , n, yields the following “chain” of arguments:

y�−1 ∈ σ(Ñ , w) ⇒ y� ∈ σ(Ñ , w)

Now the proof of this case can be finished. Put y = yn and observe that wN ,y = v by
the definition of w. Thus RGP implies yN ∈ σ(N , v). Clearly yN = x is satisfied.

(3) The solution σ coincides with the relative interior of the positive core on the set
of all 2-person games.

By Corollary 4.10, σ is a subsolution of the positive core. By copying the relevant
part of the proof of the second case, it can be shown that the relative interior of the
positive core is a subsolution of σ . Indeed, a careful inspection of the definition of the
game (Ñ , w), especially of (4.8) and (4.9), shows that (4.10) may be replaced by

(x�,−x�) ∈ int C({�, �∗}, w�−1) ∀� = 1, . . . , n,

123



128 G. Orshan, P. Sudhölter

whenever x ∈ rint C+(N , v) is assumed. (“int C” means the “interior of C relative to
I∗”, i.e., for every game (M, u), int C(M, u) = {x ∈ C(M, u) | e(S, x, u) < 0 ∀∅ �=
S � M}.)

Hence it remains to show that σ(N , v) ⊆ rint C+(N , v) for any game (N , v) satis-
fying C+(N , v)\rint C+(N , v) �= ∅. Take x ∈ C+(N , v)\rint C+(N , v) and let S̄ ⊆ N
be a coalition satisfying 0 = e(S̄, x, v) > e(S̄, ν, v), where ν = ν(N , v) denotes the
prenucleolus. Without loss of generality we may assume N = {1, . . . , n}, 1 ∈ S̄ and
∗ = n + 1 ∈ U . Moreover, let (N ∪ {∗}, w) defined by

w(S) =

⎧
⎪⎪⎨

⎪⎪⎩

v(S \ {∗}), if S ⊆ N \ {1} or 1, ∗ ∈ S,

v(S̄), if S = S̄,

e(S̄, ν, v), if S = {∗},
ν(S \ {∗}) − α, otherwise,

where α := µ(x, v) − minS⊆N e(S, ν, v) − e(S̄, ν, v).

Claim z := ν(N ∪ {∗}, w) = (ν, 0)

For β > e(S̄, ν, v),

D(β, z, w) = {S ∈ D(β, ν, v) | 1 �∈ S} ∪ {S ∪ {∗} | 1 ∈ S ∈ D(β, ν, v)}.

For −α < β ≤ e(S̄, ν, v),

D(β, z, w) = {S ∈ D(β, ν, v) | 1 �∈ S} ∪ {S̄, {∗}} ∪ {S ∪ {∗} | 1 ∈ S ∈ D(β, ν, v)}.

For β ≤ −α, D(β, z, w) = 2N∪{∗}. Hence our claim follows from Theorem 3.3.
The reduced game (N , wN ,z) coincides with (N , v). Assuming, on the contrary,

that x ∈ σ(N , v), yields z̃ := (x, 0) ∈ σ(N ∪ {∗}, w) by RCP. Applying RGP yields

(x1, 0) ∈ σ({1, ∗}, w{1,∗},̃z).

Moreover, this reduced game can easily be computed as

w{1,∗},̃z({1}) = e(S̄, x, v) + x1, w
{1,∗},̃z({∗}) = e(S̄, ν, v) < 0, w{1,∗},̃z({1, ∗}) = x1.

Therefore the interior of the core of this reduced game is nonempty. The fact that
(x1, 0) is not a member of this interior shows the desired contradiction. ��

5 Remarks

It is possible to characterize the positive core as the maximum solution that satisfies
several axioms. Indeed, in view of Theorem 4.2, Remark 4.3, and Theorem 4.1 the
positive core is the maximum solution satisfying NE, REAS, COV, AN, CON, RGP,
and RCP, or, alternatively, satisfying NE, REAS, COV, ND, RGP, and RCP, provided
that |U | = ∞. Moreover, we may replace the requirement of being maximum by weak
unanimity for two-person games.
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Corollary 5.1 If |U | = ∞, then there is a unique solution that satisfies WUTPG, NE,
REAS, COV, RGP, RCP, and ND, and it is the positive core.

Peleg and Sudhölter (2003, Remark 6.3.3) show that Theorem 2.3 is no longer valid
if 4 ≤ |U | < ∞. Similarly, the infinity assumption on |U | is crucial in Theorems 4.2
and 4.1, in Remark 4.3, in Corollary 4.4, and in the aforementioned characterizations
of the positive core. Indeed, if |U | < ∞, then define for any game (N , v),

σ(N , v) =
{

C+(N , v), if N � U,

{x ∈ I∗(N , v) | xS ∈ C+(S, vS,x ) ∀∅ �= S � N }, if N = U.

In order to show that σ satisfies RCP, let (N , v) be a game, let ∅ �= S � N , let x ∈
σ(N , v), let y ∈ σ(S, vS,x ), and define z = (y, xN\S). If N � U , then z ∈ σ(N , v)

by the definition of σ , because the positive core satisfies RCP. Hence, we may assume
that N = U . Let T ⊆ N . We claim that (e(T, x, v))+ = (e(T, z, v))+. If S ⊆ T or
S ∩ T = ∅, then our claim is obvious. Hence, we assume that S \ T �= ∅ �= S ∩ T
and observe that e := (

vS,x (T ∩ S) − x(T ∩ S)
)
+ = (

vS,x (T ∩ S) − y(T ∩ S)
)
+ so

that

e = max
Q⊆N\S

(e((T ∩ S) ∪ Q, x, v))+ = max
Q⊆N\S

(e((T ∩ S) ∪ Q, z, v))+ .

If e > 0, then x(S ∩ T ) = z(S ∩ T ) and our claim follows. If e ≤ 0, then
e(T, x, v), e(T, z, v) ≤ 0 so that our claim is always valid. Now RCP follows from
Theorem 3.4, because D

(
α, xT , vT,x

) = D
(
α, zT , vT,z

)
for any α > 0 and all

∅ �= T � N .
It is straightforward to show that σ satisfies the remaining properties that are

employed in the mentioned results.
For 4 ≤ |U | < ∞, by Exercises 6.3.2 and 6.3.3 of the aforementioned book, there

exist a game (U, v) and x ∈ I∗(U, v) such that x /∈ C+(U, v) and xS is the prenucle-
olus of (S, vS,x ) for any ∅ �= S � U . We conclude that C+ is a proper subsolution of
σ when |U | ≥ 4.

We conjecture that CON is not logically independent of the remaining axioms in
Remark 4.3. Also, we do not know whether the aforementioned characterizations and
Corollary 5.1 are axiomatizations, because we do not have examples which show that
AN, CON, or ND are independent of the remaining axioms.

6 Appendix

Proof of Theorem 4.5 Let (N , v) be a 2-person game and assume that N = {1, 2}. If
the core of (N , v) is empty or single valued, then Lemma 4.6 finishes the proof. Hence,
by COV, we may assume that (N , v) is given by v({1}) = v({2}) = v(∅) = 0 and
v(N ) = 1. Assume that σ(N , v) does not coincide with the prenucleolus. It remains to
show that σ(N , v) ⊇ rint C+(N , v). By AN and PO there is x0 ∈ σ(N , v) satisfying

0 ≤ x0
1 < x0

2 = 1 − x0
1 ≤ 1 (6.1)
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It suffices to show that

(1) there is a convergent sequence (x̄ k)k∈N satisfying x̄ k ∈ σ(N , v) ∀k ∈ N with
limit (0, 1) and

(2) σ(N , v) is convex.

Indeed, if x ∈ rint C(N , v), then choose k ∈ N such that x̄ k
1 ≤ min{x1, x2} and notice

that (x̄ k
2 , x̄ k

1 ) ∈ σ(N , v) is true by AN. Hence x is a convex combination of these two
vectors.

ad 1 Let Ñ = {1, 2, 3} and let (Ñ , w) be defined by

w(S) =
{

0, if S = ∅, Ñ ,

−1, otherwise,

for all S ⊆ Ñ . Moreover, let

X≤ = {x ∈ C(Ñ , w) | x1 ≤ x2 ≤ 0 ≤ x3}, X≥ = {x ∈ C(Ñ , w) | x1 ≤ 0 ≤ x2 ≤ x3},

and define g≤ : X≤ → R
Ñ by g≤(x) = (−α − x3, min{α, x3}, max{α, x3}) , where

α = (1 − x1)(2 − x3)

2 + x2
− 1 = x1

x3 − 1

2 + x2
∀x ∈ X≤,

and g≥ : X≥ → R
Ñ by g≥(y) = (min{β, y1}, max{β, y1},−β − y1) , where

β = (1 + y1)(2 + y1)

2 − y2
− 1 − y1 = −y3

1 + y1

2 − y2
∀y ∈ X≥.

Note that the denominators are positive, because x and y are assumed to be elements
of the core. (In fact, C(Ñ , w) is the convex hull of all permutations of (−1, 0, 1).)

For any x ∈ X≤ and for any y ∈ X≥ we observe that ({1, 2}, w{1,2},x ) and
({2, 3}, w{2,3},y), respectively, are isomorphic (by interchanging players 2 and 3 and
by interchanging 1 and 2, respectively) to

(

{1, 3},
(
w{1,3},x + (x2 + 1, x2 + 1)

) 2 − x3

2 + x2
− (1, 1)

)

and to

(

{1, 3},
(
w{1,3},y + (1, 1)

) 2 + y1

2 − y2
− (1 + y1, 1 + y1)

)

,

respectively. Thus, by AN, RGP, RCP, and COV of the core, we conclude (see the
proof of Lemma 4.6) that

g≤(x) ∈ C(Ñ , w) ∀x ∈ X≤ and g≥(y) ∈ C(Ñ , w) ∀y ∈ X≥.
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The proof of the following properties is straightforward and skipped:

g≤(x) ∈ X≥, g≤
1 (x) ≤ x1, and g≤

3 (x) ≥ x3 ∀x ∈ X≤ (6.2)

∀x ∈ X≤ : g≤(x) = x ⇔ x = 0 or x = (−1, 0, 1) (6.3)

g≥(y) ∈ X≤, g≥
1 (y) ≤ y1, and g≥

3 (y) ≥ y3 ∀y ∈ X≥ (6.4)

∀y ∈ X≥ : g≥(y) = y ⇔ y = 0 or y = (−1, 0, 1) (6.5)

Therefore the composition g = g≥ ◦ g≤ : X≤ → X≤ is well-defined and satisfies
“monotonicity”, i.e., it satisfies g1(x) ≤ x1 and g3(x) ≥ x3 for all x ∈ X≤. Hence for
any x ∈ X≤ \ {0} the sequence (gk(x))k∈N converges to (−1, 0, 1).

In order to construct the sequence (x̄ k)k∈N with the desired properties we first
show that X≤ contains a nonzero member x1 of σ(Ñ , w). For this purpose choose
z ∈ σ(Ñ , w) ∩ (

X≤ ∪ X≥)
which is possible by NE and Lemma 4.7. If z �= 0, then

put

x1 =
{

z, if z ∈ X≤,

g≥(z), otherwise,

and observe that x1 belongs to σ(Ñ , w) by AN, RGP, RCP, and COV.
If z = 0, then observe that the reduced game (N , wN ,z) is strategically equivalent

to (N , v), thus by NE, RGP, RCP, COV, and the assumption that σ(N , v) �= {ν(N , v)},
there is some y ∈ σ(Ñ , w) \ {0}. By Lemma 4.6 we may assume that y belongs to
X≤ ∪ X≥, thus we define x1 = y in the first and x1 = g≥(y) in the latter case.

Now the proof of this part may be finished by defining the sequence (x̄ k)k∈N as
follows. Put xk = gk−1(x1) ∀k ∈ N and define

x̄ k =
(

xk
1 + 1

2 − xk
3

,
xk

2 + 1

2 − xk
3

)

∀k ∈ N.

Then the sequence (x̄ k)k∈N converges to (0, 1), because (xk)k∈N converges to
(−1, 0, 1). It remains to show that x̄ k ∈ σ(N , v) for any natural number k. This asser-

tion is implied by COV, RGP, and the observation that v =
(
wN ,xk + (1, 1)

)
1

2−xk
3

.

ad 2 In view of AN it suffices to show that (α, 1 − α) belongs to σ(N , v) for any
0 < α ≤ 1

2 . By (1), which was just proved, there exists (a, 1 − a) ∈ σ(N , v) satis-
fying 0 ≤ a ≤ α. Additionally, we shall assume that 1−a

2−a ≥ a (which is true, e.g., if

a ≤ 1/4). For any β such that 1−a
2−a ≤ β ≤ 1 define (Ñ , wβ) by

wβ(S) =
⎧
⎨

⎩

1, if S = Ñ ,

β, if S = N ,

0, otherwise,

and choose x0 ∈ σ(Ñ , wβ). Then x0 ∈ K∗+(Ñ , wβ) by Lemma 4.7. It is well-known
(see Sudhölter and Peleg 2000) that the positive prekernel of a three-person game
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coincides with its positive core. Hence x0 ∈ C(Ñ , wβ). We proceed by recursively
applying RGP, RCP, and COV four times. In (2) and (4) AN is employed in addition.
For a sketch of the four steps see Fig. 1.

(1) Let (N , w0) be the reduced game of (Ñ , wβ) w.r.t. N and x0. Then

w0({1}) = w0({2}) = 0, w0(N ) = 1 − x0
3 ,

thus x1 = (
a(1 − x0

3 ), (1 − a)(1 − x0
3 ), x0

3

) ∈ σ(Ñ , wβ). (If β = 1, then x0
3 = 0

and w0 = v.)
(2) Let ({2, 3}, w1) be the reduced game of (Ñ , wβ) w.r.t. {2, 3} and x1. The inequal-

ities β ≥ 1−a
2−a ≥ a ≥ x1

1 imply w1({2}) = max{0, β − x1
1} = β − x1

1 . Also,
w1({3}) = 0 and w1({2, 3}) = 1 − x1

1 . Thus

x2 =
(

a(1 − x0
3 ), (1 − β)a + β − x1

1 , (1 − β)(1 − a)
)

∈ σ(Ñ , wβ).

(3) Let (N , w2) be the reduced game of (Ñ , wβ) w.r.t. N and x2. Then

w2({1}) = w2({2}) = 0, w2(N ) = 1 − x2
3 ,

thus x3 = (
a(1 − x2

3 ), (1 − a)(1 − x2
3 ), x2

3

) ∈ σ(Ñ , wβ). Note that x3 does not
depend on x0, because x2

3 = (1 − β)(1 − a).
(4) Let ({1, 3}, w3) be the reduced game of (Ñ , wβ) w.r.t. {1, 3} and x3. The inequal-

ity β ≥ x3
2 is true, because β ≥ 1−a

2−a . Hence, w3({1}) = max{0, β−x3
2 } = β−x3

2 .
Also, w3({3}) = 0 and w3({1, 3}) = 1 − x3

2 . Thus

x4 =
(
(1 − a)(1 − β) + β − x3

2 , x3
2 , a(1 − β)

)
∈ σ(Ñ , wβ).

Fig. 1 Sketch of the steps (1)–(4) in ad 2
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Now the proof may be finished by considering the reduced game (N , w4) of
(Ñ , wβ) w.r.t. x4. Indeed, we have

w4({1}) = w4({2}) = 0, w4(N ) = 1 − x4
3 ,

thus

yβ = 1

1 − x4
3

(x4
1 , x4

2 ) ∈ σ(N , v).

A careful inspection of the construction immediately shows that

yβ
1 =

{
a, if β = 1,
1
2 , if β = (1 − a)/(2 − a).

The continuity of the mapping β �→ yβ shows that there exist some β̃, 1−a
2−a ≤

β̃ ≤ 1, such that yβ̃
1 = α. ��

Proof of Lemma 4.9 Assume without loss of generality that 1 ∈ S̄ and that N =
{1, . . . , n}. Choose ∗ ∈ U \ N , let us say ∗ = n + 1, and put Ñ = N ∪ {∗}.

Choose α > (n + 1) maxP,Q⊆N (v(P) − v(Q)) and define the game (Ñ , w) by

w(S) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v(S \ {∗}), if S ⊆ N \ {1} or 1, ∗ ∈ S,

v(S̄), if S = S̄,

v(N ), if S = N ,

0, if S = {∗},
v(S \ {∗}) − α, otherwise.

By NE there exists z ∈ σ(w). It is the aim to show the following assertions:

(1) (N , wN ,z) is strategically equivalent to (N , v).
(2) s∗1(z, w) > 0 and s∗1(z, w) is only attained by the coalition {∗}.
(3) s1∗(z, w) is only attained by S̄.

Then we shall use RGP and RCP to “insert” x or y and immediately deduce the
desired coincidence of the excesses. In order to prove (1) we shall show the following

Claim z∗ ≤ 0
Assume, on the contrary, z∗ > 0.

Step 1 It is first proved that

∃k̄ ∈ N \ {1} : zk̄ < − max
P,Q⊆N

(v(P) − v(Q)). (6.6)

Indeed, the assumption yields

s1∗(z, w) ≥ e(N , z, w) = v(N ) − z(N ) = z∗ > 0.
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134 G. Orshan, P. Sudhölter

As z ∈ K∗+(Ñ , w), s∗1(z, w) > 0. Choose T ⊆ N \{1} such that e(T ∪{∗}, z, w) > 0.

As T �= ∅,

0 < v(T ) − α − z(T ) − z∗ ≤ v(T ) − α − z(T )

= (v(T ) − v(∅)) − α − z(T ) < −n maxP,Q⊆N (v(P) − v(Q)) − z(T ).

Hence there is k̄ ∈ T ⊆ N \ {1} with zk̄ < − maxP,Q⊆N (v(P) − v(Q)).

Step 2 Let S ⊆ N ∪ {∗} attain µ(z, w). By Step 1 there exists i ∈ N \ {1} such that
zi < − maxP,Q⊆N (v(P) − v(Q)). The following assertions are shown:
(1) S̄ attains µ(z, w) .
(2) If S �= S̄, then S ⊇ (N ∪ {∗}) \ S̄.
(3) Player i does not belong to S̄.

In order to show (1) the following claim is shown:

S �= S̄ ⇒ i ∈ S. (6.7)

note that {∗} does not attain µ(z, w) because µ(z, w) is positive. Let T ⊆ (N ∪{∗})\{i}
such that T �= S̄ and T �= {∗}. If S̄ �= T ∪ {i} �= N , then

e(T ∪ {i}, z, w) − e(T, z, w) = v ((T ∪ {i}) \ {∗}) − v(T \ {∗}) − zi > 0.

Also, if T ∪ {i} ∈ {N , S̄}, then

e(T ∪ {i}, z, w) − e(T, z, w) = v(T ∪ {i}) − v(T ) − zi + α > 0.

Hence (6.7) is shown. By Lemma 4.8 there exists S−i ⊆ (N ∪ {∗}) \ {i} attaining
µ(z, w). By (6.7), S−i = S̄, thus (1) is shown.

Now this step may be completed. In order to show (2) we assume, on the contrary,
that there is some coalition S �= S̄ attaining maximal excess such that S �⊇ (N∪{∗})\S̄.

By (6.7), i ∈ S. Choose j ∈ (N∪{∗})\(S̄∪S). Then µ(z, w) = e(S, z, w) = si j (z, w)

so that s ji (z, w) = µ(z, w) which is impossible by (6.7). Moreover, (3) is valid
because of the existence of S−i .

Step 3 By the preceding steps there is some coalition S attaining maximal excess
such that 1 �∈ S 
 ∗. Moreover, {∗} �= S, hence

0≥e(S ∪ {1}, z, w) − e(S, z, w)=v((S ∪ {1})\{∗})−v(S\{∗})+α − z1.

Thus z1 > n maxP,Q⊆N (v(P) − v(Q)). By (1) of the preceding step (the maximality
of e(S̄, z, w)) we obtain

0 < e(S̄, z, w) = v(S̄) − z1 − z(S̄ \ {1})
< −((n − 1) max

P,Q⊆N
(v(P) − v(Q))) − z(S̄ \ {1})
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and, thus, there is i ∈ S̄ \ {1} with zi < − maxP,Q⊆N (v(P) − v(Q)). The last
observation contradicts (3) of the preceding step. Thus our claim is shown.

Now the proof may be finished. Let u = wN ,z be the reduced game. By rea-
sonableness of the positive prekernel, z∗ ≥ −α. Hence, z∗ ≤ 0 implies that u =
v + (−z∗, 0, . . . , 0

︸ ︷︷ ︸
n−1

). By RCP and COV

z1 = (−z∗, 0, . . . , 0, z∗) + (x, 0) ∈ σ(N ∪ {∗}, w) and
z2 = (−z∗, 0, . . . , 0, z∗) + (y, 0) ∈ σ(N ∪ {∗}, w).

By REAS of the positive prekernel, zt
i ≥ − maxP,Q⊆N (v(P)−v(Q)) for all i ∈ N\{1}

and t = 1, 2. Therefore s∗1(zt , w) must be attained by {∗}, thus this surplus is non-
negative and

s∗1(z
1, w) = −z∗ =

(
s1∗(z1, w)

)

+ ≥ (
e(S̄, x, v) + z∗

)
+.

As e(S̄, x, v) > 0, z∗ < 0. Hence, e(N , zt , w) < 0 and s1∗(zt , w) must be attained
by S̄ for t = 1, 2.

Therefore e(S̄, z1, w) = e(S̄, x, v) + z∗ = e({∗}, z1, w) = −z∗ and, similarly,
e(S̄, z2, w) = −z∗. Thus,

z∗ = −e(S̄, x, v)

2
and z∗ = −e(S̄, y, v)

2
.

Hence we conclude that e(S̄, x, v) = e(S̄, y, v) is satisfied. ��
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