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1 Introduction

It is well-known that the majority rule is not transitive. In order to guarantee
transitivity we have to restrict the preferences of the voters. The first well-known
restriction is single-peakedness, which was introduced by Arrow (1951) and
Black (1948). The median voter scheme over the domain of single-peaked pref-
erences was shown to be compatible with Condorcet’s rule. Moulin (1980) has
introduced generalized median voter schemes over one-dimensional sets of alter-
natives. His paper includes, among other results, both the characterization of all
strategy-proof voting schemes, and the characterization of anonymous, strategy-
proof, and Paretian generalized median voter schemes. He also characterized
the family of schemes which only satisfy anonymity and strategy-proofness.
Border and Jordan (1983) extended generalized median voter schemes to multi-
dimensional sets of alternatives. As far as we know, the latest generalization of
Moulin (1980) is due to Barbér Gul and Stacchetti (1993). They consider gen-
eralized median voter schemes over multi-dimensional sets of alternatives. As
expected, they restrict their analysis to multi-dimensional single-peaked prefer-
ences. One of their important results is that multi-dimensional generalized median
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voter schemes are characterized by strategy-proofness. We prove in this work that
multi-dimensional generalized median voter schemes are also coalition-proof.
For the notion of coalition-proofness see Bernheim, Peleg, and Whinston (1987).
Coalition-proofness may be regarded as an interesting stability property to be
satisfied by voting schemes, because in many cases the voters may have the
opportunity to communicate prior to vote. Therefore, generalized median voter
schemes being coalition-proof means that they generate “agreements” which are
immune to self-enforcing improving deviations. Peleg (1998) shows that piv-
otal mechanisms are not coalition-proof. We now shall explain and motivate our
result.

Let N be a set olh = 2k + 1, k > 1, voters, letB be a (finite) set of alter-
natives, and lePy be a fixed linear ordering d8. Assume that the preferences
of the members ofN on B are restricted to be single-peaked with respect to
Po. Then, the median voter scheme is strategy-proof and Paretian. Moreover, the
median voter’s peak is an outcome of a strong Nash equilibrium (with respect to
the true preferences). Thus, under the foregoing assumptions, the median voter
scheme is group strategy-proof. This result remains true, if we replace the me-
dian voter scheme by a generalized median voter scheme (see Moulin 1980).
However, Barber, Sonnenschein, and Zhou (1991) show that multi-dimensional
generalized median voter schemes are not coalitionally strategy-proof. In this
paper we address the following problem: What is the strongest kind of group
stability which is satisfied by all generalized median voter schemes? We solve
the foregoing problem in Sects. 4 and 5: Theorem 4.1 proves that every multi-
dimensional generalized median voter scheme is coalition-proof. Furthermore, in
Sect. 5 we give an example of a generalized median voter scheme which is not
strongly coalition-proof.

We now briefly review the contents of this paper. Section 2 contains pre-
liminary definitions and Sect. 3 introduces generalized median voter schemes.
The proof of the coalition-proofness of multi-dimensional generalized median
voter schemes is presented in Sect. 4. An example of a generalized median voter
scheme which is not strongly coalition-proof, is given in Sect. 5. Finally, some
remarks are contained in Sect. 6.

2 Definitions and notations

A game in strategic form is a syste@® = (N, (A)ien, (Ui)ien) WhereN is a
finite set of playersA;, i € N, is the (non-empty) set of strategies igfand
Ui : xjenAj — R is the payoff function of player € N. (HereR is the set of
real numbers.) LeS C N, S 7 (). We denoteAs = xjcsA andA=Ay. If x € A
thenxs denotes the restriction of to S.

Let G = (N, (A)ien, (U)ien) be a strategic game, I&c N, S # (), and let
X € A. The reduced gameof G with respect to (w.r.t.)S and x is the game
GS* = (S, (A)ies, (U)ies), whereuX(ys) = u; (Ys,xn\s) for all ys € As and
i €S.
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Let G = (N, (A)ien, (Ui)ien) be a strategic game. € A is a Nash equilib-
rium (NE) of G if, for everyi € N, ui(x) > ui(yi,xn\¢iy) for ally, € A, We
now define coalition-proofness by induction on the number of players.

Definition 2.1. (1) In a single player game G, & A is acoalition-proof Nash
equilibrium (CPNE) if and only if it is an NE.
(2) Letn> 1 and assume that CPNE has been defined for games with fewer than
n players. Then
a) For any game G with n players, « A is self-enforcingif, forall S ¢ N,
S#0,N, % is a CPNE in the reduced game>@.
b) For any game G with n players, ® A is a CPNE if it is self-enforcing
and if there does not exist another self-enforcing strategy vectar A
such that u(y) > ui(x) foralli € N.

Clearly, a CPNE of a gam& is an NE of G. The following definition is
closely related to Kaplan's definition of semi-strong equilibrium (see Kaplan
1992).

Definition 2.2. Let G= (N, (A)ien, (U )ien) be a strategic game and letx A.
x is astrong CPNE if

(1) x is an NE of G;
(2) for every SC N, S# 0, and every NE y of GS*, there exists ic S such
that u (x) > i (Ys, Xn\s)-

Clearly, a strong CPNE dB is a CPNE ofG.

NE’s , CPNE’s and SCPNE’s are ordinal concepts, that is, they are general-
ized in a straightforward manner to ordinal gamis (A )ien, (Pi)ien), whereN
andA; are defined as above apdis a preference (i.e. a complete and transitive
binary relation) onA. If C is a set and : A — C is an “outcome function”,
then every profileR;);cn Of preferences o€ induces a profile)ien Of pref-
erences oM by apb iff f(a)Pif(b) for all a,b € A andi € N. We write

(N, (A)ien, T, (Pi)ien) for (N, (Aien, (Pi)ien)-

3 Generalized median voter schemes

In this section we recall some definitions of Badbest al. (1993) which are
essential for our work.

Definition 3.1. For integers a< b, [a, b] will denote the se{a,a+1,..., b}_.
An /-dimensionabox B is a cartesian product of integer intervals: B= xleBl
where B =[al,bi]Jand d < bl.

Let B be an/-dimensional box. We consid& as a metric subspace of the
spaceR’ with theL;-norm. (TheL;-norm ofa € RYis ||a|| = Zle |ad|.) A linear
order onB is a complete (and, thus, reflexive), transitive, and antisymmetric
binary relation onB. If P is a linear order orB, then r(P) will denote the
(unique) maximum oP on B.



384 B. Peleg, P. Sudfter

Definition 3.2. A linear order P on a box B imulti-dimensional single-peaked
with bliss point a € B if and only if (i) 7(P) = «, and (ii) 5P~ for all 5,v € B
satisfying|a — || = [l = B[ +[[8 = |-

If B is an/¢-dimensional box, then we denote ky= 7(B) the set of all
single-peaked preferences with bliss pointBinLet B be an/-dimensional box
and letN = {1,...,n} be a (finite) set of players.

Definition 3.3. A social choice functionis a mapy : ™ — B. A social choice
functiony is avoting schemeif there exists a function f BN — B such that

o(P1,...,Py) =f(r(Py),...,7(Py) forall (Py,...,P,)exN
(f will also be called a voting scheme).

We shall be interested in the following class of voting schemes. First we need
an auxiliary definition.

Definition 3.4. Let B = [a,b] be a one-dimensional box and N {1,...,n}.
A left-coalition systemon B is a correspondence WB — 2V satisfying the
following conditions:

1) f¢eB,CeW(),and DD C, then De W(¢);
(2) If £,m € B and¢ < n, then WE) € W(n) and
(3) W(b) =2N.

Left-coalition systems induce voting schemes in a natural way. For each
& = (ag,...,an) € BN and¢ € B, let C(G,¢) = {i € N|oy < &} be the
coalition to the left of¢.

Definition 3.5. Let B = [a,b] be an integer interval and let \(Y) be a left-
coalition system on B. The voting schemeEN — B, defined as follows:

f(&) = min{¢|C(&,€) e W()} forall & € BN

is called thegeneralized median voter scheméGMVS) induced by ). When

B = x/_, Bl is an/-dimensional box, the voting schemeBN — B is a GMVS

iff =1, ...,f% and each f is the GMVS induced by some left-coalition system
Wi()onB.

4 GMVS'’s are coalition-proof

Let B be an/-dimensional box, leN = {1,...,n}, and letf : BN — B be a
GMVS. ForP = (Py,...,P,) € 7N we consider the strategic game

G(f;Py,...,P)=(N;B,...,B;f;P1,...,Pp).

Here B is the set of strategies of playéere N; f is the outcome function;
and Py, ..., P, are the preferences of the players on the outcome spaise.
coalition-proof if for every P = (Py,...,P,) € N, the n-tuple @ = &(P) =
(T(Py), ..., 7(Pn)) is a CPNE ofG(f; Py,...,Pp).
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Theorem 4.1. Every GMVS is coalition-proof.

Proof. We shall prove our claim by induction on the number of players
Step 1. n= 1.

Let B = xleBJ be an/¢-dimensional box and let : B — B be a GMVS. If
P € n(B) thent(P) is a dominant strategy i®(f; P) = (N; B;f; P), becausd
is strategy-proof. Hence(P) is an NE of G(f ; P).

Assume now that every GMVS with players, 1< k < n, is coalition-proof.
LetN ={1,...,n}, letB = xleBJ' be an¢-dimensional box, lewi ; Bi — 2N
be a left-coalition system oB/, j =1,...,¢, and letf : BN — B be the GMVS
which is induced bywi(-), j = 1,...,¢. Furthermore, lePs,...,P, € 7(B),
anda; =7(P;), i =1,...,n. We shall prove thatv = (ay, . .., an) is a CPNE of
G(f;Py,...,Ppn).

Step 2.a is self-enforcing.

For eachS ¢ N, S # 0, N, and eachj = 1,....¢, define the (reduced) left-
coalition system\, 5 on B! by

TeW (e TUfi eN\S|al <& eWi()
forall T ¢ S and all¢ € Bl. As the reader may easily verifyvé’& is
a left-coalition system orB! (w.r.t. the set of playersS). Denote byfS:&
the GMVS which is induced by 5, j = 1,...,¢. Then G(f>%; (P)ics) =
(S;BS;£54; (P)ics) is the reduced game @(f;Py,...,P,) w.r.t. S andd. By
the induction hypothesias™= (o)ies is @ CPNE ofG(f S%; (P;)cs). Because
this is true for each proper subsetldf & is self-enforcing.

Step 3.4 is a CPNE.

Assume, on the contrary, that i not a CPNE. Then, there exists € BN
such that (i)B is self-enforcing (in the gam&(f; Py, ..., Py)), andf (B) #f(a);
and (i) f(B)Pif (&) for i = 1,...,n. We denotes = f(&) andt = f(3). Let
s=(£, ..., &Y andt = (..., n%). We distinguish the following possibilities.

(4.1) There existsn € {1,...,¢} such thatt™ < n™. LetQ ={i € N |
a" <&M and " > £M}. Q is non-empty becausg" < n™. Without loss of
generalityQ = {1,...,r} andaf' < ... < o". Now replace sequentially, in
M =Gr,....,6M, M by o™ i =1,...,r. There existk, 1 < k <r such that
fal, ... o 1,68, ..., 60) = ™ and f (o, ..., o, Behgs - B) = ¢ <
n™. By the choice ofk, o' < ¢. Thus, all the members d@* = {1,... k}
strictly prefera™ | Q* to 8™ | Q* at 3 (o™ | Q* = (o™ | i € Q*) etc.). That
is, Q* can improve upord by playing @™ | Q*,37™| Q*), wherep~™ = (3 |
jed{1,...,03\ {m}).

(4.2) There existsn € {1,...,¢} suchthaty™ < ™. LetQ ={i e N | f" >
€M™ and g" < ¢M}. Clearly,Q # 0. Without loss of generalitQ = {1,...,r}
andaf' > ... > o". Now replace sequentially, ii™ = (57", ..., 67", 5™ by of",
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i=1,...,r. Forsomek, 1<k <r, f™f,...,o¢, Bass-- -, 00 = ¢ > n™,
and¢ < af'. Thus, all the members @* = {1,...,k} strictly prefera™ | Q*
to 4™ | Q* at j.
We call a coalitionQ regretful if there existsm € {1,...,¢} such that
Q can improve upon? by playing @™ | Q,8™™ | Q). f(&) ¥ f(j3) implies
that (4.1) or (4.2) is true. Hence, we have proved the existence of a non-empty
regretful coalition. LeflT be a (non-empty) regretful coalition of minimum size.
The following claim is true.

Claim 4.2. For eachm=1,... ¢, f ((«™T,3~™T), AN\T)Pif (3) for all i € T.
Proof of Claim 4.2Let 1 < m < ¢. We denote

T_ {ieT|a"<n™, To={ieT|a"=n"}, and

T, {ieT|o">n"}

We have to consider seven cases.

(4.3)T_ #0, To Z0, andT, # (). Without loss of generalitffo = {1,...,r},
T_={r+1...,;r+k}andof}; <... <oy, T+ ={r+k+1,...,q}, whereq
is the number of members af, anda} ,; > ... > ag‘. First, fori € Ty replace
gMin g™ = (B, ..., 01 by o". Clearly f™(a™|To, 5™N \ To) = ™. Now
replace sequentially im{"|To, ™|N \ To) 8™ by o fori =r +1,...,r +k. By
the minimality of T and (i), i=1,2, of Definition 3.4 ™(a™|ToUT_, 8N\ (ToU
T_)) =5™. (The Ble of (i), i=1,2, of Definition 3.4 is to guarantee that the order
of replacement, firsTy and thenT_, does not matter.) Similarly, we may show,
by replacing sequentiallg™ | T+ by o™ | T, thatf ™(a™T, 8™|(N \ T)) = ™.

A careful examination of the proof of (4.3) reveals that if at least two out
of the three set3_, T and T, are non-empty, thef™(a™|T, "IN \ T) = ™.
Thus it remains to consider the following three cases.

(4.4) Ty #0, T_ =T, = 0. Clearly, in this casé™(a™|T,MN \ T) = n™.

(4.5)T_ #0, To = T, = . Again, an examination of the proof of (4.3) reveals
that ¢ = f™(a™|T,8™|N \ T) satisfies¢ < n™ and¢ > of", i € T. Hence, the
claim is proved in this case.

(4.6) T. #0, To =T_ = (. An examination of the proof of (4.3) reveals that
¢C=fMa™T,8MIN\T) satisfies{ > n™ and¢ < of", i €T.

Let T be a (non-empty) minimal (in size) regretful coalition. We conclude
from Claim 4.2 thatf (&|T, 3|N \ T) # f(3) andf (&[T, 3|N \ T)Pif (3) for all
i € T. ThereforeT # N, because, by ~hypothesifs(B)Pif(&) fori =1,...,n.
Now consider the reduced gan®'( f T-7; (P,)i 7). By the induction hypothesis
a|T is a CPNE of this game. Hen@e has an internally consistent improvement
upon 3. As T # N this is impossible becausg is self-enforcing. Thus, the
desired contradiction has been obtained. Q.E.D.

5 An example

We shall show by means of an example that GMVS’s may not be strongly
coalition-proof. Let = 3,B! = {0,1} forj = 1,2, 3, andN ={1,2,3}. We define
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a GMVSTf by means of the following left-coalition systema/ : Bl — 2N is
defined byw! (0) ={S ¢ N | S has at least two membérandWi (1) = 2V, for

j =1,2,3. LetB = x,Bl and letel be thej-th unit vector inR?, j = 1,2,3.
We define three additivau(: B — R is additive ifu(x +y) = u(x) + u(y) for all
X,y € B) utility functions onB as follows:u;(0) = 0, uy(e!) = 4, uy(e?) = —1,
anduy(e®) = —2; uy(0) = 0, ux(et) = —1, ux(e?) = 4, anduy(e®) = —2; u3(0) = 0,
us(e!) = —1, uz(e?) = —2, andus(e®) = 4. Let P; be the preference relation
represented by, i = 1,2,3. ThenP; is single-peaked with bliss poirg',

i = 1,2,3. Now f(e',e?,e?) = (0,0,0) because of our definition divi (0),

j =1,2,3. However, (00,0) is not Pareto optimal. Indeed, let be defined by
01(0) = 0, ty(et) = 1, Gy(e?) = 2, Gy(e®) = 4, and letu; = (3 = (; also be three
additive utility functions orB. Denote byP; the preference relation represented
by G, i = 1,2,3. Clearly, 7(F;) = (1,1,1) =e, i = 1,2,3, andf(e,e,e) = e.
Also, f (e, e, e)Pif (et, €%, e3), i = 1,2,3. Moreover, because of our definition of
Wi(0),j = 1,23, (e e e) is an NE of the gameR";f; Py, P, P3). Hence, the
truthtelling strategy €', e, €3) is not a strong CPNE.

6 Concluding remarks

In this paper we proved that the strongest kind of group stability satisfied by all
multi-dimensional GMVS's is coalition-proofness. This result is very far from
being a consequence of strategy-proofness. Indeed, Peleg (1998) shows that piv-
otal mechanisms are not coalition-proof. Also, our result does not follow from
Dasgupta et al. (1979), because multi-dimensional GMVS’s may not be group
strategy-proof. We recall that Dasgupta et al. (1979) contains a detailed investiga-
tion of the relationship between strategy-proofness and group strategy-proofness.
When the dimension is greater than one, our restricted domain of preferences is
too small to yield the Dasgupta-Hammond-Maskin type of results.
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