
Rev. Econ. Design 4, 381–387 (1999)

c© Springer-Verlag 1999

Single-peakedness and coalition-proofness

Bezalel Peleg1, Peter Sudḧolter2
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1 Introduction

It is well-known that the majority rule is not transitive. In order to guarantee
transitivity we have to restrict the preferences of the voters. The first well-known
restriction is single-peakedness, which was introduced by Arrow (1951) and
Black (1948). The median voter scheme over the domain of single-peaked pref-
erences was shown to be compatible with Condorcet’s rule. Moulin (1980) has
introduced generalized median voter schemes over one-dimensional sets of alter-
natives. His paper includes, among other results, both the characterization of all
strategy-proof voting schemes, and the characterization of anonymous, strategy-
proof, and Paretian generalized median voter schemes. He also characterized
the family of schemes which only satisfy anonymity and strategy-proofness.
Border and Jordan (1983) extended generalized median voter schemes to multi-
dimensional sets of alternatives. As far as we know, the latest generalization of
Moulin (1980) is due to Barberá, Gul and Stacchetti (1993). They consider gen-
eralized median voter schemes over multi-dimensional sets of alternatives. As
expected, they restrict their analysis to multi-dimensional single-peaked prefer-
ences. One of their important results is that multi-dimensional generalized median
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voter schemes are characterized by strategy-proofness. We prove in this work that
multi-dimensional generalized median voter schemes are also coalition-proof.
For the notion of coalition-proofness see Bernheim, Peleg, and Whinston (1987).
Coalition-proofness may be regarded as an interesting stability property to be
satisfied by voting schemes, because in many cases the voters may have the
opportunity to communicate prior to vote. Therefore, generalized median voter
schemes being coalition-proof means that they generate “agreements” which are
immune to self-enforcing improving deviations. Peleg (1998) shows that piv-
otal mechanisms are not coalition-proof. We now shall explain and motivate our
result.

Let N be a set ofn = 2k + 1, k ≥ 1, voters, letB be a (finite) set of alter-
natives, and letP0 be a fixed linear ordering ofB. Assume that the preferences
of the members ofN on B are restricted to be single-peaked with respect to
P0. Then, the median voter scheme is strategy-proof and Paretian. Moreover, the
median voter’s peak is an outcome of a strong Nash equilibrium (with respect to
the true preferences). Thus, under the foregoing assumptions, the median voter
scheme is group strategy-proof. This result remains true, if we replace the me-
dian voter scheme by a generalized median voter scheme (see Moulin 1980).
However, Barbeŕa, Sonnenschein, and Zhou (1991) show that multi-dimensional
generalized median voter schemes are not coalitionally strategy-proof. In this
paper we address the following problem: What is the strongest kind of group
stability which is satisfied by all generalized median voter schemes? We solve
the foregoing problem in Sects. 4 and 5: Theorem 4.1 proves that every multi-
dimensional generalized median voter scheme is coalition-proof. Furthermore, in
Sect. 5 we give an example of a generalized median voter scheme which is not
strongly coalition-proof.

We now briefly review the contents of this paper. Section 2 contains pre-
liminary definitions and Sect. 3 introduces generalized median voter schemes.
The proof of the coalition-proofness of multi-dimensional generalized median
voter schemes is presented in Sect. 4. An example of a generalized median voter
scheme which is not strongly coalition-proof, is given in Sect. 5. Finally, some
remarks are contained in Sect. 6.

2 Definitions and notations

A game in strategic form is a systemG = (N , (Ai )i ∈N , (ui )i ∈N ) where N is a
finite set of players;Ai , i ∈ N , is the (non-empty) set of strategies ofi ; and
ui : ×j ∈N Aj → R is the payoff function of playeri ∈ N . (HereR is the set of
real numbers.) LetS ⊂ N , S 6= ∅. We denoteAS = ×i ∈SAi andA = AN . If x ∈ A
thenxS denotes the restriction ofx to S.

Let G = (N , (Ai )i ∈N , (ui )i ∈N ) be a strategic game, letS ⊂ N , S 6= ∅, and let
x ∈ A. The reduced gameof G with respect to (w.r.t.)S and x is the game
GS,x = (S, (Ai )i ∈S, (ux

i )i ∈S), whereux
i (yS) = ui (yS, xN\S) for all yS ∈ AS and

i ∈ S.
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Let G = (N , (Ai )i ∈N , (ui )i ∈N ) be a strategic game.x ∈ A is a Nash equilib-
rium (NE) of G if, for every i ∈ N , ui (x) ≥ ui (yi , xN\{i }) for all yi ∈ Ai . We
now define coalition-proofness by induction on the number of players.

Definition 2.1. (1) In a single player game G, x∈ A is a coalition-proof Nash
equilibrium (CPNE) if and only if it is an NE.

(2) Let n> 1 and assume that CPNE has been defined for games with fewer than
n players. Then
a) For any game G with n players, x∈ A is self-enforcing if, for all S ⊂ N ,

S 6= ∅, N , xS is a CPNE in the reduced game GS,x.
b) For any game G with n players, x∈ A is a CPNE if it is self-enforcing

and if there does not exist another self-enforcing strategy vector y∈ A
such that ui (y) > ui (x) for all i ∈ N .

Clearly, a CPNE of a gameG is an NE ofG. The following definition is
closely related to Kaplan’s definition of semi-strong equilibrium (see Kaplan
1992).

Definition 2.2. Let G = (N , (Ai )i ∈N , (ui )i ∈N ) be a strategic game and let x∈ A.
x is a strong CPNE if

(1) x is an NE of G;
(2) for every S⊂ N , S 6= ∅, and every NE yS of GS,x, there exists i∈ S such

that ui (x) ≥ ui (yS, xN\S).

Clearly, a strong CPNE ofG is a CPNE ofG.
NE’s , CPNE’s and SCPNE’s are ordinal concepts, that is, they are general-

ized in a straightforward manner to ordinal games (N , (Ai )i ∈N , (pi )i ∈N ), whereN
andAi are defined as above andpi is a preference (i.e. a complete and transitive
binary relation) onA. If C is a set andf : A → C is an “outcome function”,
then every profile (Pi )i ∈N of preferences onC induces a profile (pi )i ∈N of pref-
erences onA by api b iff f (a)Pi f (b) for all a, b ∈ A and i ∈ N . We write
(N , (Ai )i ∈N , f , (Pi )i ∈N ) for (N , (Ai )i ∈N , (pi )i ∈N ).

3 Generalized median voter schemes

In this section we recall some definitions of Barberá et al. (1993) which are
essential for our work.

Definition 3.1. For integers a≤ b, [a, b] will denote the set{a, a + 1, . . . , b}.
An `-dimensionalbox B is a cartesian product of̀ integer intervals: B= ×`

j =1Bj

where Bj = [aj , bj ] and aj ≤ bj .

Let B be an`-dimensional box. We considerB as a metric subspace of the
spaceR` with theL1-norm. (TheL1-norm ofα ∈ R` is ‖α‖ =

∑`
j =1 |αj |.) A linear

order onB is a complete (and, thus, reflexive), transitive, and antisymmetric
binary relation onB. If P is a linear order onB, then τ (P) will denote the
(unique) maximum ofP on B.
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Definition 3.2. A linear order P on a box B ismulti-dimensional single-peaked
with bliss point α ∈ B if and only if (i)τ (P) = α, and (ii) βPγ for all β, γ ∈ B
satisfying‖α − γ‖ = ‖α − β‖ + ‖β − γ‖.

If B is an `-dimensional box, then we denote byπ = π(B) the set of all
single-peaked preferences with bliss point inB. Let B be an`-dimensional box
and letN = {1, . . . , n} be a (finite) set of players.

Definition 3.3. A social choice functionis a mapϕ : πN → B. A social choice
functionϕ is a voting schemeif there exists a function f: BN → B such that

ϕ(P1, . . . , Pn) = f (τ (P1), . . . , τ (Pn)) for all (P1, . . . , Pn) ∈ πN

(f will also be called a voting scheme).

We shall be interested in the following class of voting schemes. First we need
an auxiliary definition.

Definition 3.4. Let B = [a, b] be a one-dimensional box and N= {1, . . . , n}.
A left-coalition system on B is a correspondence W: B → 2N satisfying the
following conditions:

(1) If ξ ∈ B, C ∈ W(ξ), and D ⊃ C , then D∈ W(ξ);
(2) If ξ, η ∈ B andξ < η, then W(ξ) ⊂ W(η) and
(3) W(b) = 2N .

Left-coalition systems induce voting schemes in a natural way. For each
α̃ = (α1, . . . , αn) ∈ BN and ξ ∈ B, let C(α̃, ξ) = {i ∈ N |αi ≤ ξ} be the
coalition to the left ofξ.

Definition 3.5. Let B = [a, b] be an integer interval and let W(·) be a left-
coalition system on B. The voting scheme f: BN → B, defined as follows:

f (α̃) = min{ξ|C(α̃, ξ) ∈ W(ξ)} for all α̃ ∈ BN

is called thegeneralized median voter scheme(GMVS) induced by W(·). When
B = ×`

j =1 Bj is an `-dimensional box, the voting scheme f: BN → B is a GMVS
if f = (f 1, . . . , f `) and each fj is the GMVS induced by some left-coalition system
Wj (·) on Bj .

4 GMVS’s are coalition-proof

Let B be an`-dimensional box, letN = {1, . . . , n}, and letf : BN → B be a
GMVS. For P̃ = (P1, . . . , Pn) ∈ πN we consider the strategic game

G(f ; P1, . . . , Pn) = (N ; B, . . . , B; f ; P1, . . . , Pn).

Here B is the set of strategies of playeri ∈ N ; f is the outcome function;
and P1, . . . , Pn are the preferences of the players on the outcome space.f is
coalition-proof if for every P̃ = (P1, . . . , Pn) ∈ πN , the n-tuple α̃ = α̃(P̃) =
(τ (P1), . . . , τ (Pn)) is a CPNE ofG(f ; P1, . . . , Pn).
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Theorem 4.1. Every GMVS is coalition-proof.

Proof. We shall prove our claim by induction on the number of playersn.

Step 1. n= 1.

Let B = ×`
j =1Bj be an`-dimensional box and letf : B → B be a GMVS. If

P ∈ π(B) thenτ (P) is a dominant strategy inG(f ; P) = (N ; B; f ; P), becausef
is strategy-proof. Henceτ (P) is an NE ofG(f ; P).

Assume now that every GMVS withk players, 1≤ k < n, is coalition-proof.
Let N = {1, . . . , n}, let B = ×`

j =1Bj be an`-dimensional box, letWj : Bj → 2N

be a left-coalition system onBj , j = 1, . . . , `, and letf : BN → B be the GMVS
which is induced byWj (·), j = 1, . . . , `. Furthermore, letP1, . . . , Pn ∈ π(B),
andαi = τ (Pi ), i = 1, . . . , n. We shall prove that ˜α = (α1, . . . , αn) is a CPNE of
G(f ; P1, . . . , Pn).

Step 2.α̃ is self-enforcing.

For eachS ⊂ N , S 6= ∅, N , and eachj = 1, . . . , `, define the (reduced) left-
coalition systemWj

S,α̃ on Bj by

T ∈ Wj
S,α̃(ξ) ⇔ T ∪ {i ∈ N \ S | αj

i ≤ ξ} ∈ Wj (ξ)

for all T ⊂ S and all ξ ∈ Bj . As the reader may easily verifyWj
S,α̃ is

a left-coalition system onBj (w.r.t. the set of playersS). Denote by f S,α̃

the GMVS which is induced byWj
S,α̃, j = 1, . . . , `. Then G(f S,α̃; (Pi )i ∈S) =

(S; BS; f S,α̃; (Pi )i ∈S) is the reduced game ofG(f ; P1, . . . , Pn) w.r.t. S andα̃. By
the induction hypothesis ˜αS = (αi )i ∈S is a CPNE ofG(f S,α̃; (Pi )i ∈S). Because
this is true for each proper subset ofN , α̃ is self-enforcing.

Step 3.α̃ is a CPNE.

Assume, on the contrary, that ˜α is not a CPNE. Then, there exists̃β ∈ BN

such that (i)β̃ is self-enforcing (in the gameG(f ; P1, . . . , Pn)), andf (β̃) /= f (α̃);
and (ii) f (β̃)Pi f (α̃) for i = 1, . . . , n. We denotes = f (α̃) and t = f (β̃). Let
s = (ξ1, . . . , ξ`) and t = (η1, . . . , η`). We distinguish the following possibilities.

(4.1) There existsm ∈ {1, . . . , `} such thatξm < ηm. Let Q = {i ∈ N |
αm

i ≤ ξm and βm
i > ξm}. Q is non-empty becauseξm < ηm. Without loss of

generalityQ = {1, . . . , r } and αm
1 ≤ . . . ≤ αm

r . Now replace sequentially, in
βm = (βm

1 , . . . , βm
n ), βm

i by αm
i , i = 1, . . . , r . There existsk, 1 ≤ k ≤ r such that

f m(αm
1 , . . . , αm

k−1, β
m
k , . . . , βm

n ) = ηm and f m(αm
1 , . . . , αm

k , βm
k+1, . . . , β

m
n ) = ζ <

ηm. By the choice ofk, αm
k ≤ ζ. Thus, all the members ofQ∗ = {1, . . . , k}

strictly preferαm | Q∗ to βm | Q∗ at β̃ (αm | Q∗ = (αm
i | i ∈ Q∗) etc.). That

is, Q∗ can improve upoñβ by playing (αm | Q∗, β−m | Q∗), whereβ−m = (β j |
j ∈ {1, . . . , `} \ {m}).

(4.2) There existsm ∈ {1, . . . , `} such thatηm < ξm. Let Q = {i ∈ N | αm
i ≥

ξm and βm
i < ξm}. Clearly, Q 6= ∅. Without loss of generalityQ = {1, . . . , r }

andαm
1 ≥ . . . ≥ αm

r . Now replace sequentially, inβm = (βm
1 , . . . , βm

n ), βm
i by αm

i ,
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i = 1, . . . , r . For somek, 1 ≤ k ≤ r , f m(αm
1 , . . . , αm

k , βm
k+1, . . . , β

m
n ) = ζ > ηm,

and ζ ≤ αm
k . Thus, all the members ofQ∗ = {1, . . . , k} strictly preferαm | Q∗

to βm | Q∗ at β̃.
We call a coalitionQ regretful if there existsm ∈ {1, . . . , `} such that

Q can improve uponβ̃ by playing (αm | Q, β−m | Q). f (α̃) 6= f (β̃) implies
that (4.1) or (4.2) is true. Hence, we have proved the existence of a non-empty
regretful coalition. LetT be a (non-empty) regretful coalition of minimum size.
The following claim is true.

Claim 4.2. For eachm = 1, . . . , `, f ((αm|T, β−m|T), β̃N\T )Pi f (β̃) for all i ∈ T.

Proof of Claim 4.2.Let 1 ≤ m ≤ `. We denote

T− = {i ∈ T | αm
i < ηm}, T0 = {i ∈ T | αm

i = ηm}, and

T+ = {i ∈ T | αm
i > ηm}.

We have to consider seven cases.
(4.3) T− 6= ∅, T0 6= ∅, andT+ 6= ∅. Without loss of generalityT0 = {1, . . . , r },

T− = {r + 1, . . . , r + k} andαm
r +1 ≤ . . . ≤ αm

r +k , T+ = {r + k + 1, . . . , q}, whereq
is the number of members ofT, andαm

r +k+1 ≥ . . . ≥ αm
q . First, for i ∈ T0 replace

βm
i in βm = (βm

1 , . . . , βm
n ) by αm

i . Clearly f m(αm|T0, β
m|N \ T0) = ηm. Now

replace sequentially in (αm|T0, β
m|N \ T0) βm

i by αm
i for i = r + 1, . . . , r + k. By

the minimality ofT and (i), i=1,2, of Definition 3.4f m(αm|T0 ∪T−, βm|N \ (T0 ∪
T−)) = ηm. (The r̂ole of (i), i=1,2, of Definition 3.4 is to guarantee that the order
of replacement, firstT0 and thenT−, does not matter.) Similarly, we may show,
by replacing sequentiallyβm | T+ by αm | T+, that f m(αm|T, βm|(N \ T)) = ηm.

A careful examination of the proof of (4.3) reveals that if at least two out
of the three setsT−, T0 and T+ are non-empty, thenf m(αm|T, βm|N \ T) = ηm.
Thus it remains to consider the following three cases.

(4.4) T0 6= ∅, T− = T+ = ∅. Clearly, in this casef m(αm|T, βm|N \ T) = ηm.
(4.5)T− 6= ∅, T0 = T+ = ∅. Again, an examination of the proof of (4.3) reveals

that ζ = f m(αm|T, βm|N \ T) satisfiesζ ≤ ηm and ζ ≥ αm
i , i ∈ T. Hence, the

claim is proved in this case.
(4.6) T+ 6= ∅, T0 = T− = ∅. An examination of the proof of (4.3) reveals that

ζ = f m(αm|T, βm|N \ T) satisfiesζ ≥ ηm andζ ≤ αm
i , i ∈ T.

Let T be a (non-empty) minimal (in size) regretful coalition. We conclude
from Claim 4.2 thatf (α̃|T, β̃|N \ T) 6= f (β̃) and f (α̃|T, β̃|N \ T)Pi f (β̃) for all
i ∈ T. ThereforeT 6= N , because, by hypothesis,f (β̃)Pi f (α̃) for i = 1, . . . , n.
Now consider the reduced game (BT ; f T,β̃ ; (Pi )i ∈T ). By the induction hypothesis
α̃|T is a CPNE of this game. HenceT has an internally consistent improvement
upon β̃. As T 6= N this is impossible becausẽβ is self-enforcing. Thus, the
desired contradiction has been obtained. Q.E.D.

5 An example

We shall show by means of an example that GMVS’s may not be strongly
coalition-proof. Let̀ = 3, Bj = {0, 1} for j = 1, 2, 3, andN = {1, 2, 3}. We define
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a GMVS f by means of the following left-coalition systems:Wj : Bj → 2N is
defined byWj (0) = {S ⊂ N | S has at least two members} andWj (1) = 2N , for
j = 1, 2, 3. Let B = ×3

j =1Bj and letej be thej -th unit vector inR3, j = 1, 2, 3.
We define three additive (u : B → R is additive if u(x + y) = u(x) + u(y) for all
x, y ∈ B) utility functions onB as follows:u1(0) = 0, u1(e1) = 4, u1(e2) = −1,
andu1(e3) = −2; u2(0) = 0, u2(e1) = −1, u2(e2) = 4, andu2(e3) = −2; u3(0) = 0,
u3(e1) = −1, u3(e2) = −2, and u3(e3) = 4. Let Pi be the preference relation
represented byui , i = 1, 2, 3. Then Pi is single-peaked with bliss pointei ,
i = 1, 2, 3. Now f (e1, e2, e2) = (0, 0, 0) because of our definition ofWj (0),
j = 1, 2, 3. However, (0, 0, 0) is not Pareto optimal. Indeed, let ˆu1 be defined by
û1(0) = 0, û1(e1) = 1, û1(e2) = 2, û1(e3) = 4, and let ˆu2 = û3 = û1 also be three
additive utility functions onB. Denote byP̂i the preference relation represented
by ûi , i = 1, 2, 3. Clearly,τ (P̂i ) = (1, 1, 1) = e, i = 1, 2, 3, and f (e, e, e) = e.
Also, f (e, e, e)Pi f (e1, e2, e3), i = 1, 2, 3. Moreover, because of our definition of
Wj (0), j = 1, 2, 3, (e, e, e) is an NE of the game (BN ; f ; P1, P2, P3). Hence, the
truthtelling strategy (e1, e2, e3) is not a strong CPNE.

6 Concluding remarks

In this paper we proved that the strongest kind of group stability satisfied by all
multi-dimensional GMVS’s is coalition-proofness. This result is very far from
being a consequence of strategy-proofness. Indeed, Peleg (1998) shows that piv-
otal mechanisms are not coalition-proof. Also, our result does not follow from
Dasgupta et al. (1979), because multi-dimensional GMVS’s may not be group
strategy-proof. We recall that Dasgupta et al. (1979) contains a detailed investiga-
tion of the relationship between strategy-proofness and group strategy-proofness.
When the dimension is greater than one, our restricted domain of preferences is
too small to yield the Dasgupta-Hammond-Maskin type of results.
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