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Abstract

We discuss market games or linear production games with 1nite sets of players. The repre-
senting distributions of initial assignments are assumed to have disjoint carriers. Thus, the agents
decompose into 1nitely many disjoint groups each of which hold a corner of the market. In such
a market traditional solution concepts like the core tend to favor the short side of the market
excessively. We exhibit a solution concept which is more sensitive with respect to the preventive
power of the long side. Thereby, pro1ts of the long side are now feasible. This concept is the
modi1ed nucleolus or modiclus. Within certain limits, it predicts cartelization and assigns a “fair
share” for cartels on the long side of the market. Also, it organizes the internal distribution for
a speci1c cartel according to the “contested garment solution” of Aumann–Maschler.
? 2003 Elsevier B.V. All rights reserved.

Keywords: Cartel; Cooperative game; Modiclus solution; Nucleolus; Contested garment solution

1. Introduction

Within this paper, we continue to explain the endogenous formation of cartels in
large markets. The model is provided by a cooperative totally balanced game with a
potentially large but 1nite set of players or agents. Within this framework, we discuss
the formation of cartels predicted by a point-valued solution concept, the modi1ed
nucleolus or modiclus.

This concept respects the blocking power of a cartel: the result is not only in?uenced
by what a coalition of traders can attain but also what they can prevent others to
achieve. The modiclus formalizes the idea of the preventive power of a coalition.
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Formally, the tool to assess this preventive power of a coalition is the dual game.
The dual game assigns to a coalition the complementary worth of the complementary
coalition. Hence, if the complementary coalition is powerful then the original coalition
is weak and vice versa.

Therefore, for market games with distinct separate corners, this concept assigns pos-
itive worth to the long side of the market.

Most solution concepts of cooperative game theory do not respect any bargaining
achievement of the long side of the market, at least not when the game is large (i.e.,
in a replicated version or a nonatomic model).

We refer to a paper by Hart [3]. This author points out that the Walrasian equilibrium
or the core are unable to predict the endogenous formation of cartels within corners
of the market. Hart favors the vNM-stable set for his discussion. Indeed, this concept
seems to be able to predict cartelization. A more recent result by Rosenm#uller–Shitovitz
[7] about the characterization of convex vNM-stable sets corroborates his analysis.

We believe that the success of the vNM-stable set is due to the external stability of
this solution concept. External stability provides some preventive power for coalitions
during the bargaining process.

In the present context the modiclus provides preventive forces for coalitions, because
it involves the dual game. Let us shortly describe our concept. The framework is the
one of cooperative game theory, which we introduce as follows.

Consider a coalitional game given by triple (I;P; C), here I is the (1nite) set of
agents or players, P the power set of I , called system of coalitions and

C :P → R; C(∅) = 0;

a real-valued function on P, the coalitional function. The dual game is given by

C?(S) := C(I)− C(I − S) (S ∈P) (1)

and re?ects the preventive power of coalitions.
The modiclus is a nucleolus type concept [10]. Recall the procedure that yields the

nucleolus: for any preimputation x (i.e., x∈RI ; x(I) = C(I)), one lists the excesses

e(S; x; C) = C(S)− x(S)

(reasons to complain) in a (weakly) decreasing order, say

�(x) := (: : : ; e(S; x; C); : : :): (2)

Then the prenucleolus � is the unique preimputation such that �(•) is lexicographically
minimal, i.e.,

�(�) �lexic �(x) for all preimputations x: (3)

In order to obtain the modi6ed nucleolus or modiclus  , one lists bi-excesses

e(S; x; C)− e(T; x; C)
and proceeds accordingly. As diMerences of excesses (“bi-excesses”) are sums of ex-
cesses of the primal and dual game, the modiclus represents achievement powers and
preventive powers of coalitions alike.
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For further intuitive insight, it is useful to construct another game which incorporates
C and C? simultaneously. This game is the dual cover. Take two copies of the set of
players or agents, say

I 1;2 = I × {0; 1}
and de1ne a game NC: P1;2 → R on the coalitions of this set (the power sets are indexed
canonically) via

NC(S + T ) := max{C(S) + C?(T ); C(T ) + C?(S)} (S ∈P0; T ∈P1) (4)

(we use + instead of ∪ for disjoint unions). The game NC takes pairs of coalitions into
account, in one of them players act “constructively” and in the other one “preventively.”
This game re?ects the combined in?uence of the game and its dual. Now, NC is de1ned
on I 1;2. We obtain a concept de1ned on the original set of players by taking the
projection of the prenucleolus of the dual cover game on the original player set I . As
it turns out, (see [14]), this is the modiclus  .

The analysis of the modiclus describes the exogenous or external bargaining process
(between representatives of the cartels) as well as the endogenous (internal) bargaining
process (inside a speci1c cartel). In [8] we consider the case of uniformly distributed
initial assignments. This model already exhibits economic relevance in particular with
respect to the external bargaining process. Technically, it admits of easy and more
direct proofs.

The internal bargaining process inside a cartel is a much more complicated matter.
In corners with uniformly distributed initial assignments, the symmetry properties of
the modiclus yield a symmetric payoM. Hence, equal treatment prevails. However, in a
corner with various initial assignments a serious problem arises: How should the inter-
nal bargaining process be captured? Therefore, we have to come up with a completely
new approach which heavily rests on the (generalized) concept of reduced games (see
Lemma 2.7).

Indeed, the modiclus is very sensitive towards the initial assignment. The internal
bargaining process takes two “internal games” into account and carefully computes
the resulting payoMs. One of these games is the reduced game which results from the
distribution obtained by the external bargaining process in the sense of Davis–Maschler
[2]. The second game is even more interesting: It turns out that one has to consider
a “contested garment game” as discussed by Aumann–Maschler [1]. In this game, the
various members of a speci1c cartel have certain claims which implicitly result from
their ability to form ePcient coalitions with players outside the cartel. These claims
(like those in the contested garment game) are not totally realizable. The “estate,”
that is the assignment to the cartel by the external bargaining process, is limited and
hence the coalitions worth is also limited by the size of the garment. It turns out that
the contested garment solution, the reduced game and the external bargaining process
provided by the modiclus have to be carefully knitted together in order to provide
the internal share of a player according to the modiclus concept. For the details see
Section 6.

The paper is organized as follows. In Section 2 we introduce the model, recall some
important de1nitions and discuss simple properties of excesses. Section 3 exhibits the



266 J. Rosenm.uller, P. Sudh.olter / Discrete Applied Mathematics 134 (2004) 263–302

formation of cartels: the treatment of the various corners of the market is described for
markets with a certain weak balancedness property. Under mild additional assumptions
the corners of the long side of the market are treated equally and proportional to
their total initial assignment. Further results of Section 4 shows that the nucleolus of
a certain balanced game describes the amounts given to the players of the remaining
corners of the short side.

Section 5 shows that the assumptions employed in the other sections are automat-
ically satis1ed, if the game is “suPciently large.” This can be ensured by e.g., by
replication of the market.

Furthermore, Sections 6 and 7 exhibit the assignments to the various members of
the cartels, re?ecting the internal discussion within the cartels.

Finally, Section 8 contains examples and remarks.

2. De�nitions, simple properties

A game, as explained in Section 1, is a triple (I;P; C) satisfying C(∅) = 0. It is
not unusual to sloppily use the term just for the coalitional function and not always
for the triple. We are predominantly interested in market games or totally balanced
games which can be generated from exchange economies [11]. In order to represent
such a game we use the representation as a minimum game. That is, C is the minimum
of 1nitely many nonnegative additive set functions (distributions or measures), say
�1; : : : ; �r ∈RI+, de1ned on P via C(S) = min{�1(S); : : : ; �r(S)} (S ∈P). This we write
conveniently

C=
∧

{�1; : : : ; �r}: (5)

According to Kalai–Zemel [4], every totally balanced game can be represented this
way. Their interpretation is that C can be seen as a network game within which players
command certain nodes of a network-?ow setup. A traditional example is that of a
glove game. Here, coalitions need to combine indispensable factors (right-hand and
left-hand gloves) in order to acquire utility by selling the product (pairs of gloves) on
some external market.

We wish to concentrate on the orthogonal case, that is, the carriers of �
, denoted
by C(�
) = C
 (
 = 1; : : : ; r), are disjoint. Also we shall assume that I =

∑r

=1 C




describes a partition of I (each player owns a quantity of one and only one factor).
Finally, we assume that there are at least two measures (i.e., r¿ 2), because for r=1
the game C is additive. Let us use the term min-game for a game that satis1es these
requirement.

Orthogonality is certainly a restriction within the class of market games. The shape
of a min-game appears more drastically, a coalition which completely lacks one factor
receives no utility. Thus, players occupy r diMerent corners of the market, each one
de1ned by possession of a sole factor. The terms corner and carrier are synonyms in
this view.
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We use the abbreviation M
 in order to indicate the total mass of �
, that is, the
total initial assignment of goods in corner C
, formally

M
 := �
(I) = �
(C
) =
∑
i∈C


�
i : (6)

For convenience, the corners of the market are ordered according to total initial assign-
ment, i.e., M 16 · · ·6Mr is satis1ed. The min-game C given by (5) is not changed,
if every weight �
i (
 = 1; : : : ; r; i∈ I) is replaced by the minimum of M 1 and this
weight, thus �
i 6M 1 is generally assumed. Then the representation of the min-game
is unique. Let

� := |{
∈{1; : : : ; r}|M
 =M 1}|
denote the number of minimal corners.

Any coalition S ∈P decomposes naturally into the coalitions of its partners in the
various corners, this we write

S =
r∑

=1

S
 with S
 = S ∩ C
 (
= 1; : : : ; r): (7)

(We use + instead of ∪ to indicate the union of two coalitions if and only if the
coalitions are disjoint.)

A further important system of coalitions is provided by the diagonal which is for-
mally given by

D := {S ∈P|�
(S) = C(S) (
= 1; : : : ; r)}: (8)

A coalition S ∈D is called a diagonal coalition because the image of S under the
vectorvalued measure (�1; : : : ; �r) is located on the diagonal of Rr . Economically, di-
agonal coalitions are ePcient, as there is no excess supply of factors available in
order to generate C(S): Note that on diagonal sets, C behaves additively. As a conse-
quence, it is not hard to see that any core element x equals the game on the diagonal
(x(S) = C(S) (S ∈D)). In this sense, diagonal coalitions S are also e:ective: they can
aMord x(S) by their own productive power.

Within the diagonal we are particularly interested in maximal elements. These are
diagonal coalitions S such that each corner assembles the maximal possible amount of
goods and hence the coalition’s worth is C(I). More precisely, such coalitions satisfy

�1(S) = · · ·= �r(S) =M 1: (9)

The system of maximal coalitions is denoted by

Dm := {S ∈P | S satis1es (9)}: (10)

The notion of excess is central to the discussion of nucleolus type solution concepts.
Given a vector x∈RI , recall that the excess of a coalition S ∈P (cf. Section 1) is

e(S; x; C) = C(S)− x(S): (11)
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This quantity measures the amount by which coalition S misses its worth C(S), hence
is dissatis1ed with x. The maximal excess of C at x is

�(x; C) := max{e(S; x; C) | S ∈P}: (12)

The task of computing excesses is a frequently imposed burden; we start out with
some versions concerning min-games. An imputation x of a game (I;P; C) is a vector
x∈RI satisfying Pareto optimality (i.e., x(I) = C(I)) and individual rationality (i.e.,
xi¿ C({i}) (i∈ I)). If C is the min-game given by (5) then an imputation x satis1es

xi¿ 0 (i∈ I) and x(I) =M 1;

thus xi6 �
i holds true for any i∈C
 and any corner C
. This means that x can be
written as

x =M 1
r∑

=1

c

�


M
 (13)

such that the c := (c
)
=1; :::; r is a vector of nonnegative coePcients summing up
to 1 (the vector of convexifying coe;cients) and �
 (
 = 1; : : : ; r) are normalized
measures, i.e., measures with carriers C
, having the same total mass �
(C
) = M


as �
. Conversely, any vector c of convexifying coePcients together with normalized
measures �
 (
= 1; : : : ; r) determines an imputation x by (13).

Here is the 1rst simple Lemma:

Lemma 2.1. Let C be a min-game given by (5) and c be a vector of convexifying
coe;cients. Let x be an imputation of the form

x =M 1
r∑

=1

c

�


M
 (14)

satisfying xi6 �
i (i∈C
; 
= � + 1; : : : ; r) and let S ∈P be any coalition:

(1) The excess of S is given by

e(S; x; C) = C(S)


1−

r∑

=1

c

M 1

M



−M 1

r∑

=1

c

�
(S)− C(S)

M
 : (15)

(2) For any �= 1; : : : ; � the dual excess of S satis6es

e(S; x; C?)6max{M 1(1− c
)− x(S − S
) | 
= �+ 1; : : : ; r} (16)

or

e(S; x; C?)6max{�
(S)− x(S
)− x(S − S
) | 
= 1; : : : ; �}: (17)
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Proof. The equation

e(S; x; C) = C(S)− x(S)

= C(S)−M 1
r∑

=1

c

�
(S)
M


= C(S)


1−

r∑

=1

c

M 1

M



−M 1

r∑

=1

c

�
(S)− C(S)

M


shows (15).
Choose 
0 satisfying C?(S)=M 1−�
0 (I−S). If 
0¿� is valid, then the observation

e(S; x; C?) = M 1 − �
0 (I − S)− x(S
0 )− x(S − S
0 )

6M 1 − x(C
0 )− x(S − S
0 ) (because xi6 �
0
i (i∈C
0 ))

= M 1(1− c
0 )− x(S − S
0 )

implies (16). If 
06 �, then (17) is implied by the equation

e(S; x; C?) =M 1 − �
0 (I − S)− x(S)

= �
0 (S)− x(S) (because �6 �):

The 1rst part of the lemma emphasizes the rôle of the diagonal, in particular that of
the maximal diagonal, in the case that the imputation is a convex combination of the
underlying measures. Indeed, it directly implies the following result.

Corollary 2.2. Let C and c satisfy the assumptions of Lemma 2.1 and let x be the
imputation given by

x =M 1
r∑

=1

c

�


M
 : (18)

If S ∈P is a coalition and S̃ ∈D is a diagonal coalition satisfying C(S̃)¿ C(S), then

e(S̃ ; x; C)¿ e(S; x; C) (19)

holds true.

Proof. The inequalities M 16M
 (
= 1; : : : ; r) directly imply

� :=


1−

r∑

=1

c

M 1

M



¿ 0;



270 J. Rosenm.uller, P. Sudh.olter / Discrete Applied Mathematics 134 (2004) 263–302

thus we obtain

e(S̃ ; x; C)− e(S; x; C) = (C(S̃)− C(S))�+M 1
r∑

=1

c

�
(S)− C(S)

M
 ¿ 0:

Due to the results of Kohlberg [5] there is a closed connection between a nucleolus
type concept and the balanced systems of coalitions it generates via the various levels
of excesses. Let us shortly introduce our notion of balancedness. We use a slightly
more general version which refers to collections of vectors (and induces the notions
for systems of coalitions).

Let S ∈P; S �= ∅ be a coalition. A 1nite nonempty collection of vectors X ⊆ RS is
said to be balanced with respect to z ∈RS , (or just “balances z”) if there is a sequence
of balancing coe;cients (bx)x∈X satisfying

bx¿ 0 and
∑
x∈X

bxx = z: (20)

Moreover, we shall say that X is just balanced, if it is balanced with respect to
(1; : : : ; 1)∈RS . Switching to systems of coalitions means to refer to the indicator func-
tion. Thus, If S ⊆ P is a nonempty system of coalitions such that S ⊆ T (S ∈S) is
true for some T ∈P, then we say that S is balanced with respect to T , if the collec-
tion {1S | S ∈S} balances 1T . This amounts to the traditional notion. However, in the
context of the modiclus, systems of pairs of coalitions are relevant. Indeed, we shall
say that a nonempty system S̃ ⊆ P × P of pairs of coalitions is balanced w.r.t. some
coalition U , if the collection {1R + 1T |(R; T )∈ S̃} balances 1U . Of course we say that
a system of coalitions or a system of pairs of coalitions, respectively, is balanced, if
the system balances the grand coalition I .

We are particularly interested in balanced systems that span the corresponding sub-
space generated by the indicator functions. This is based on the following remark which
is due to Sudh#olter [14, Remark 2.7].

Remark 2.3. Let X ⊆ RI be a 1nite collection of vectors and let z∈RI . Assume that
X balances z. Also, let Y ⊆ RI be a 1nite collection which contains X. If Y is
contained in the linear span of X, then Y balances z as well.

Clearly this remark greatly increases the possibilities of recognizing a system or
collection as balanced. For, usually a system we are dealing with is rather large and
unaccessible, so the construction of balancing coePcients is quite out of the question.
However, the general technique is to single out a subsystem which is balanced and
spanning in the above sense. Then the above remark does the job.

The notion of nondegeneracy is introduced as follows (cf. [9]). A 1nite collection
X ⊆ RI is nondegenerate, if it spans RI . Analogously, a system S of coalitions or a
system S̃ of pairs of coalitions, respectively, is said to be nondegenerate w.r.t. some
coalition T , if the collection of corresponding indicators or sums of pairs of indicators,
respectively, spans RT and T is the union of all coalitions involved.
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Occasionally, we shall also deal with weakly balanced collections. We say that X is
weakly balanced, if it allows for a set (bx)x∈X of weakly balancing coePcients, i.e.,
the condition bx¿ 0 in (20) is replaced by bx¿ 0.

Now, as we have mentioned above, some preimputation x (a Pareto optimal vector)
of some game C generates certain balanced system via the various levels of excesses.
In connection with the modiclus, it turns out that the relevant de1nitions are useful
also when biexcesses are involved.

For �∈R and any vector x∈RI de1ne the system of coalitions with excess at least
� which is

S(�; x; u) := {S ∈P | e(S; x; u)¿ �}: (21)

Now, as we want to deal with the modiclus, it is actually the notion of biexcesses
which matters most. We approach this idea by the analogous de1nition as follows:

S̃(�; x; C) := {(R; T )∈P× P | e(R; x; C) + e(T; x; C?)¿ �}: (22)

We are now in the position to discuss our solution concept the modi1ed nucleolus or
modiclus. The de1nition has been indicated in the introduction: the modiclus of a game
C, denoted by  (C), is the unique preimputation that lexicographically minimizes the
(ordered) vector of biexcesses. Note that the modiclus is an imputation in the case
that it is applied to a min-game. Indeed it must be individually rational by Corollary
2.6 of [14], because a min-game is zero-monotonic, i.e., C(S ∪ {i}) − C(S)¿ 0 =
C{i} (S ∈P; i∈ I) holds true.

Equivalently, it is the projection of the prenucleolus of the dual cover game onto
the set of primal players. For the details see [14].

Theorem 2.4. Let C be a game and let x be a preimputation of this game. Then
x =  (C) holds true, if and only if S̃(�; x; C) is balanced whenever this system is
nonempty.

For a proof of Theorem 2.4 see [14, Theorem 2.2].

Remark 2.5. Note that Theorem 2.4 is the analog of Kohlberg’s [5] well-known result
which characterizes the (pre)nucleolus by balanced systems of coalitions.

A further technique to be employed frequently is provided by the idea of the derived
game, which is a relative of the reduced game Xa la Davis–Maschler [2]. Recall that
the reduced game vS;x of a game (I;P; C) is de1ned on the powerset of S for any
nonempty coalition ∅ �= S ⊆ I and a any vector x∈RI by

CS;x(R) =




0 if R= ∅;
C(I)− x(I − S) if R= S;

maxQ⊆I−S C(R+ Q)− x(Q) if ∅ �= R$ S:
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But in the vicinity of the modiclus, the appropriate reduction takes into account both,
the game and its dual. De1ne the derived game with respect to S and x to be the game
CS;x on the powerset of S given by

CS;x(R) :=

{
CS;x(R) if R∈{∅; S};
max{CS;x(R)− �; (C?)S;x(R)− �?} otherwise:

(23)

Here we use the abbreviations � = �(x; C) and �? = �(x; C?).

Remark 2.6. Let (I;P; C) be a game:
(1) If x is a preimputation, then its projection to any nonempty coalition S belongs

to the core of the derived game CS;x. Indeed, for any R ⊆ S with ∅ �= R �= S the
inequalities

e(T; xS ; CS;x) = max
Q⊆I−S

e(T + Q; x; C)6 �

and

e(T; xS ; (C?)S;x) = max
Q⊆I−S

e(T + Q; x; C?)6 �?

are valid by the de1nition of the reduced game. Moreover, the equation CS;x(S)=x(S)
holds true by Pareto optimality of x.

(2) If Ct is the game which arises from C by adding the constant t ∈R to the worth
of every nontrivial coalition, i.e., if Ct is de1ned by

Ct(S) :=

{
C(S) if S ∈{∅; I}
C(S) + t otherwise

(S ∈P);

then the prenucleoli of C and Ct coincide (see Lemma 4.5 in [13]).
(3) The prenucleolus satis1es the reduced game property (see [12] or [6]): The

projection of the prenucleolus of a game coincides with the prenucleolus of the cor-
responding reduced game. Of course reduction has to be taken with respect to the
prenucleolus.

(4) It is well known that the prenucleolus and the nucleolus coincide, when applied
to a game with a nonempty core.

The following lemma will be used in several proofs and can be regarded as an
adequate modi1cation of the reduced game property.

Lemma 2.7. Let C be a game and let x̂ :=  (C) be its modiclus. Furthermore, let
S ∈P be a nonempty coalition. Then the nucleolus x := �(CS; x̂) of the derived game
coincides with the projection of the modiclus, i.e., x = x̂S holds true.

Proof. We abbreviate � := �(x̂; C) and �? := �(x̂; C?). The modiclus of C is the
projection to I of the prenucleolus of the dual cover NC as de1ned in (4) of Section 1.
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Let Nx denote the prenucleolus of NC. Proposition 1.4 in [13] shows that

�( Nx; NC) = � + �?

and

NCI; Nx(S) =




0 if S = ∅;
C(I) if S = I;

max{C(S) + �?; C?(S) + �} otherwise

(24)

hold true. Let w := NCI; Nx denote this reduced game. By the reduced game property the
modiclus of C coincides with the prenucleolus of w. Let u := wS; x̂ denote the reduced
game with respect to S. With t := −(� + �?) we obtain ut = CS; x̂, thus Remark 2.6
completes the proof.

3. The treatment of corners

During this section let C=
∧{�1; : : : ; �r} be a min-game. We claim that the modiclus

represents the formation of cartels within the various corners of the market. These
cartels—or may be their representatives—bargain about their share of the total worth
M 1 of the grand coalition. Let x be an imputation represented as in formula (13) of
Section 2. As x(C
) = c
M 1 holds true, the convexifying coePcients c
 indicate the
share the various corners obtain at x. Similarly, the normalized measure �
 indicates
the internal distribution according to x inside a corner 
.

Within this section, we begin to clarify the shape of the coePcient vector c of the
modiclus. It turns out that there are basically three situations depending on the relations
of the total initial assignments in the corners in a peculiar way. Accordingly, in the
two extreme cases, the modiclus assigns the same share to all corners or just to the
minimal ones. In the intermediate case, the modiclus chooses a carefully constructed
combination of the two extremes.

The maximal diagonal coalitions play a crucial rôle (cf. (10) of Section 2). If we
focus on a corner, we should consider the partners of such coalitions, i.e., the system

Dm
 := {S ∩ C
 | S ∈Dm}: (25)

We shall impose some conditions (e.g. balancedness) upon this system which allow
the computation of maximal excesses and, later on, the determination of the coePcient
vector c. This condition is of interest in its own right, however, we shall see in a later
section that it is satis1ed for “large games,” i.e., for replicated versions or games with
“suPciently many” small players.

Lemma 3.1. Assume that Dm
 is weakly balanced w.r.t. C
 for every 
∈{�+1; : : : ; r}.
Also, let x be an imputation. De6ne a further imputation x̃ by

x̃ := M 1
r∑

=1

x(C
)
M 1

�


M
 ; (26)
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such that c̃
 := x(C
)=M 1 (
= 1; : : : ; r) constitute convexifying coe;cients. Then

�(x; C)¿ �(x̃; C) =M 1


1−

r∑

=1

c̃

M 1

M



 (27)

and

�(x; C?)¿ �(x̃; C?) =M 1
(
1−min



c̃


)
(28)

holds true. If equation prevails in (20), then x(S)= x̃(S) holds true for all coalitions
S of any balanced system in Dm
 (
= s+ 1; : : : ; r).

Proof. By the weak balancedness of Dm
 the system Dm of maximal diagonal coalitions
is nonempty. Corollary 2.2 implies that the maximal excess with respect to the primal
game at x̃ is attained by the coalitions of the system Dm. Inserting any coalition of
this system into (15) of Lemma 2.1 yields that this excess is indeed the one listed in
formula (27) for x̃.

Furthermore, an inspection of Lemma 2.1 ((16) and (17)) shows that the maximal
excess with respect to the dual game at x̃ is attained at those carriers which have
minimal total weight. This shows indeed the equation in formula (27). Of course these
carriers have the same weight at x as they have at x̃. Thus the statement of (28) is
veri1ed.

Now in order to compare the maximal excess at x and the maximal excess at x̃ we
proceed as follows. As Dm
 is weakly balanced for all 
, we 1x some 
 and choose
balancing coePcients (cR)R∈Dm
 . Then we obtain the equations

∑
R∈Dm


cRx(R) = x


 ∑
R∈Dm


cR1R


= x(C
)

= x̃(C
) = x̃


 ∑
R∈Dm


cR1R


=

∑
R∈Dm


cRx̃(R)

=
∑
R∈Dm


cR
M 1

M
 x̃(C

):

Hence, for some S
 ∈Dm
 we have

x(S
)6
M 1

M
 x(C

) = x̃(S
):

Thus, the excess of S :=
∑r


=1 S

 at x exceeds the one at x̃, i.e.,

e(S; x; C)¿ e(S; x̃; C) = �(x̃; C):

The 1nal assertion is as well implied by these considerations.



J. Rosenm.uller, P. Sudh.olter / Discrete Applied Mathematics 134 (2004) 263–302 275

Remark 3.2. It is the aim of the modiclus to minimize the maximal dual excess si-
multaneously with the maximal excess. With the dual game, the “preventive power” of
coalitions enters the scene. Now, in view of formula (28) (and the subsequent proof),
it is seen that the maximal dual excess (hence the maximal force of complaints) is
attained at the corners with minimal coePcient (share) c
. While this is presently
proved with respect to x̃, it will also be true with respect to the modiclus. Clearly, this
indicates “the formation of cartels” in the various corners of the market.

Analogously, the fact that the maximal excess is attained at maximal diagonal coali-
tions points to the maximal “achievement power” of this type of coalitions. This is a
consequence of the fact that these coalitions are ePcient as well as eMective in the
maximal possible fashion.

Lemma 3.3. Assume that Dm
 is nonempty for every 
∈{1; : : : ; r}. Also, let x =
M 1 ∑r


=1 c
�

=M
 be an imputation. Choose convexifying coe;cients (d
)
=1; :::; r sat-

isfying

d�¿d�+1 = · · ·= dr = min{c
 | 
= 1; : : : ; r} (�= 1; : : : ; �)

and put y := M 1 ∑r

=1 d
�


=M
.
Then

�(x; C)¿ �(y; C) (29)

and

�(x; C?) = �(y; C?) (30)

holds true. Moreover, equation prevails in formula (29) if and only if

c�¿ c�+1 = · · ·= cr = min{c
 | 
= 1; : : : ; r} (�= 1; : : : ; �)

holds true.

Proof. Formula (30) is a direct consequence of Lemma 3.1.
Now we turn to formula (29). Recall that the maximal excess is attained at the

elements of Dm (Corollary 2.2) which is assumed to be nonempty. In fact, this excess
at x is given by (15) of Lemma 2.1, that is, we have

�(x; C) =M 1


1−

r∑

=1

c

M 1

M



 : (31)

The same formula holds true mutatis mutandis for y. But as the coePcients de1ning
y are of the special shape indicated, the formula reduces at once. We introduce

c0 := min{c
 | 
= 1; : : : ; r}
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and obtain

�(y; C) =M 1


(r − �)c0 − c0

r∑

=�+1

M 1

M





=M 1c0


r − � − r∑


=�+1

M 1

M



=M 1c0


r − r∑


=1

M 1

M



 : (32)

Now the reader has to convince himself that this expression is smaller then the one re-
ferring to x (cf. (31)), as the smallest coePcients are attached to the smallest quotients
of weights.

Theorem 3.4. Suppose that Dm
 is weakly balanced w.r.t. C
 for every 
∈{� +
1; : : : ; r}. Then the following holds true:

(1) If �1; : : : ; �r satisfy

1 +
r∑

=1

M 1

M
 ¿r; (33)

then the modiclus treats all corners equally, i.e.,  is of the form

 (C) =M 1
r∑

=1

1
r

�


M
 : (34)

with a suitable family of normalized measures �
.
(2) If �1; : : : ; �r satisfy

1 +
r∑

=1

M 1

M
 ¡r; (35)

then the modiclus is of the form

 (C) =M 1
�∑

=1

c

�


M
 =
�∑

=1

c
�
 (36)

with convexifying coe;cients c
 (
 = 1; : : : ; �). In particular, the modiclus is
located in the core.

(3) Finally, if

1 +
r∑

=1

M 1

M
 = r (37)

is the case, then the modiclus treats all nonminimal corners equally, and the
minimal corners at least as well, i.e.,

 (C) =M 1
r∑

=1

c

�


M
 : (38)

Here c�+1 = · · ·= cr6 c
 (
= 1; : : : ; �).
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Proof. Put x̂ :=  (C). By weak balancedness of Dm
 (
= �+ 1; : : : ; r) both, Lemmas
3.1 and 3.3, may be applied. Indeed, the modiclus is an imputation which minimizes
the maximal biexcess. Therefore, we obtain

x̂(C
)¿ x̂(C�+1) = · · ·= x̂(Cr)= : �¿ 0 (
= 1; : : : ; �):

Thus,

M 1 − (r − �)�= x̂


 �∑

=1

C



¿ ��

is valid by Pareto optimality. We conclude that �6M 1=r holds true. It remains to prove
that �=M 1=r or �= 0, respectively, holds in the case that (33) or (35), respectively,
is satis1ed. In view of (27) and (28), the maximal excesses can be expressed by the
two formulae

�(x̂; C) =M 1


1−

r∑

=1

x̂(C
)
M





=M 1


1− M 1 − (r − �)�

M 1 − �
r∑


=�+1

1
M





= �


r − r∑


=1

M 1

M



 (39)

and

�(x̂; C?) =M 1
(
1− �

M 1

)
: (40)

Hence, the maximal biexcess is given by

�(x̂; C) + �(x̂; C?) =M 1 + �


r − 1−

r∑

=1

M 1

M



 : (41)

By the de1nition of the modiclus this maximal biexcess must be as small as possible.
If (33) or (35), respectively, is satis1ed, then the expression in the brackets is negative
or positive respectively. Hence � has to be maximal (i.e., �=M 1=r holds) in the 1rst
case and it has to be minimal (i.e., �= 0 holds) in the latter case.

This way we have now clari1ed the distribution of wealth between the cartels as
suggested by the modiclus. It depends crucially on the masses of the initial assignments:
if the excess supply on the long side of the market is just moderate (in the sense of
formula (33)), then the modiclus treats all corners equally and this is essentially a
result of the preventive powers the cartels can exercise (Remark 3.2). If the excess
supply on the long side is overwhelming, the modiclus falls into the core (and the
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primal maximal excesses are the important quantities). The intermediate case mixes
both ingredients.

The determination of the coePcient vector c (i.e., the shares of the cartels) is not yet
complete. The next section continues treating this task. It turns out that the modiclus
is determined by the nucleolus of a suitable derived game (Section 2) de1ned on the
playerset

∑�

=1 C


, i.e., on the short side.

4. The derived game on the short side

During this section we 1x a min-game C =
∧{�1; : : : ; �r} and continue to discuss

the treatment of corners. It turns out that a suitable derived game (cf. (23) of Section
2) de1ned on the short side S̃ :=

∑�

=1 C


 of the market allows to further specify
the coePcient vector c attached to the modiclus. Since the derived game is a relative
of the reduced game and re?ects the projection from the dual cover game down onto
the original player set, one might expect that the nucleolus enters the scene (recall
our explanations in Section 1). Indeed, it is seen that the modiclus can be described
employing the nucleolus of a suitable balanced game on the short side S̃.

Motivated by Theorem 3.4 we introduce the notion of the index of powers which is
the quantity

–(C) := 1 +
r∑

=1

M 1

M
 : (42)

This index depends on C only as the representation is unique (cf. Section 2).
Theorem 3.4 also suggests the classi1cation of min-games as follows. We say that

C has a strong long side or a strong short side, if (33) or (35) of Theorem 3.4,
respectively, is satis1ed, i.e., if

–(C)¿r (43)

or

–(C)¡r; (44)

respectively, holds true. In the remaining case, i.e., if

–(C) = r (45)

holds true, we say that C has balanced sides.
We start out with a strong short side.

Theorem 4.1. Let C have a strong short side. If Dm
 (
 = � + 1; : : : ; r) is weakly
balanced w.r.t. C
 then the modiclus coincides with the nucleolus, i.e.,  (C) = �(C)
holds true.

Proof. Let x̂ :=  (C) and x := �(C) denote the modiclus and nucleolus of the game
C. Note that x̂i = xi = 0 holds true for i∈ I − S̃ by Theorem 3.4 and the fact that the
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nucleolus is a member of the core. In view of Remark 2.6 and Lemma 2.7 it suPces
to show that the corresponding reduced and derived games coincide, i.e., that

CS̃ ; x̂ = CS̃ ;x= : w

holds true. Note that w coincides with the reduced game with respect to x̂, because
xI−S̃ = x̂I−S̃ holds true. Since both vectors show zero coordinates outside of S̃ the
computation of the reduced game is particularly easy and yields

w(R) =




0 if R= ∅;
M 1 if R= S̃

min
=1; :::;� �

(R) otherwise:

(R ⊆ S̃); (46)

Note that �(x̂; C) = 0 and �(x̂; C?) =M 1 hold true. In view of (23) of Section 2 and
by (46) it suPces to show that the inequality

(C?)S̃ ; x̂(R)−M 16 0 (6w(R))

is correct for any nontrivial coalition R ⊆ S̃. This inequality follows immediately from
(16) and (17) (see Section 2) applied to �= �.

Now the case of balanced sides is considered. We shall show that, under some
additional assumptions, the convexifying coePcients c
 occurring in (38) of Theorem
3.4 can be determined.

We have to introduce the following concept.

De�nition 4.2. Let C =
∧{�1; : : : ; �r} be a min game. We write �min := min
=1; :::; r

mini∈C
 �


i . Furthermore, we say that the long side shows small players if some corner


 with maximal weight M
 = Mr contains a player with minimal (positive) weight
�min.

Now we have the following theorem.

Theorem 4.3. Let C have balanced sides and let the long side show small players. If
Dm
 is nondegenerate and balanced w.r.t. C
 for every 
∈{� + 1; : : : ; r}, then the
modiclus is of the form

 (C) =M 1


 �∑

=1

Mr + �min

��min + rMr

�


M
 +

∑


=�+1

Mr

��min + rMr

�


M



 (47)

with a suitable family of normalized measures �
 (
= 1; : : : ; �).

Proof. Step 1: Let x̂ denote the modiclus of C: By Theorem 3.4 there are normalized
measures �
 and convexifying coePcients c
 (
= 1; : : : ; r) satisfying

c
¿ c�+1 = · · ·= cr= : %
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such that

x̂ =M 1


 �∑

=1

c

�


M
 +

∑


=�+1

%
�


M



 (48)

holds true. By Lemma 3.1 the maximal excesses are given by the expressions

�(x̂; C) =M 1% and �(x̂; C?) =M 1 −M 1% (49)

and they are attained by all maximal diagonal coalitions. Hence, nondegeneracy and
balancedness of the Dm
 (
= � + 1; : : : ; �) implies that �
 = �
 holds true.
Step 2: De1ne

d1 = · · ·= d� :=
Mr + �min

��min + rMr and d�+1 = · · ·= d
 = � :=
Mr

��min + rMr (50)

and put

x := M 1


 �∑

=1

d

�


M
 +

∑


=�+1

�
�


M



 : (51)

Then the d
 are convexifying coePcients and by Lemmas 3.1 and 3.3 the maximal
excesses are given by the expressions

�(x; C) =M 1� and �(x; C?) =M 1 −M 1�: (52)

Hence, the maximal biexcesses at x̂ and at x coincide and can be computed as

�(x̂; C) + �(x̂; C?) =M 1 = �(x; C) + �(x; C?): (53)

The next two steps serve to determine the second highest excesses at x.
Step 3: Let S ∈P−Dm be any coalition which is not a maximal diagonal coalition.

We are going to prove that

e(S; x; C)6 �(x; C)− ��minM 1

Mr = : �2 (54)

holds true. As S �∈ Dm two cases may occur:

(1) If S ∈D−Dm holds true, then e(S; x; C)6 (M 1 − �min)�= �(x; C)− ��min is valid
by (15) of Section 2.

(2) In the remaining case there exist 
; �∈{1; : : : ; r} with 
 �= � such that �
(S)¿
��(S) + �min holds true. In this case we conclude via (15) of Lemma 2.1 that
e(S; x; C)6 �(x; C)− ��minM 1=Mr holds true.

Step 4: Let S ∈P−{C
 | 
= s+1; : : : ; r} be any coalition which is not a nonminimal
corner. We are going to prove that

e(S; x; C?)6 �(x; C?)− ��minM 1

Mr = : �?2 (55)
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holds true. We distinguish two cases:

(1) If S is contained in C� for some � = � + 1; : : : ; r, then we S �= C� holds true by
the assumption. Therefore, the dual excess is given by

e(S; x; C?) =M 1 −min{M 1; ��(I − S)} − x(S): (56)

If the minimum is M 1, then (55) follows from the fact that �?2 ¿ 0 holds true. In
the remaining case we obtain

e(S; x; C?) =M 1 − ��(I − S)− x(S) =M 1 − ��(I − S)− � M
1

M� �
�(S)

holds true. By (50) this expression yields

e(S; x; C?) = �(x; C?)−
(
1− �M 1

M�

)
�t(I − S):

The fact that

1− ��minM 1

M� =
M� − �M 1

M� ¿
�M 1

Mr

holds true implies (55) in the current case.
(2) If S is not contained in any nonminimal corner, then by Lemma 2.1 ((16) or (17)

applied to �= �) it suPces to show that

�?2 ¿ max

=�+1;:::;


M 1(1− �)− x(S − C
) (57)

and

�?2 ¿ max

=1;:::;�

�
(S)− x(S) (58)

hold true. By the assumption S − C
 is nonempty, thus the inequalities

x(S − C
)¿min
i∈I

xi¿
M 1

Mr ¿
�M 1

Mr

show (57). Moreover, the observation that

max

=1;:::;�

�
(S)− x(S) = max

=1;:::;�

�
(S)(1− d
)6M 1(1− d1) = �?2

holds true directly shows (58).

Step 5: In view of the fact that �(x; C)− �2 = �(x; C?)− �?2 we conclude that

e(R; x; C) + e(T; x; C?)6M 1 − �M 1

Mr (59)

holds true for any pair of coalitions such that R �∈ Dm or T �∈ {C
 | 
= � + 1; : : : ; r}}
is satis1ed. By (53) the same property must be satis1ed for x̂. Indeed, the modiclus
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lexicographically minimizes the biexcesses. Let �∈{1; : : : ; �} be such that x̂(C�) is
minimal. Moreover, let i∈C
0 satisfy �ri = 1. Eq. (45) shows that Mr ¿M 1 holds
true. By balancedness of Dm
0 there is a coalition T ∈Dm such that i �∈ T is valid. Put
R̂ := T ∪ {i}. Then we have the equations

e(R̂; x̂; C) = �(x̂; C)− % M
1

Mr (60)

and

e(C�; x̂; C?) = �(x̂; C?)− c�M 1: (61)

These equations imply %¿ � and c�¿d�. The coePcients d
 and the coePcients cr
are convexifying coePcients, thus c
 = d
 (
= 1; : : : ; r) holds true.

In order to describe the modiclus via the nucleolus of a certain game with playerset
S̃ in the case that the min-game C has a strong long side or balanced sides an additional
assumption is needed.

De�nition 4.4. Let C=
∧{�1; : : : ; �r} be a game satisfying –(C)¿ r.

1. C or (�1; : : : ; �r) allows matches, if the following condition is satis1ed:

∀�= 1; : : : ; � ∀S ∈C� ∀
= � + 1; : : : ; r ∃T ∈C
: ��(S) = �
(T ) (62)

2. De1ne

% := %(C) :=

{ 1
r if –(C)¿r is true;

Mr

��min+rMr if –(C) = r is true:
(63)

3. Let

F := M 1%; G := 1− %
r∑


=�+1

M 1

M
 ; H := M 1(1− (r − �)%): (64)

Theorem 4.5. Let C have either a strong long side or balanced sides. Let the long
side show small players and let (�1; : : : ; �r) allow matches. Let the game w on the
short side S̃ be de6ned by

w(R) := max
{
H − G max


=1;:::;�
�
(S̃ − R); F − min


=1;:::;�
�
(S̃ − R); 0

}
: (65)

Let x := �(w) be the nucleolus of w. Then the modiclus x̂ :=  (C) is given by

x̂S̃ = x and x̂i = F
�
i
M
 (i∈C
; 
= � + 1; : : : ; r): (66)

In other words, the modiclus coincides with �(w) on S̃ and with the measure F
∑r


=�+1

�
=M
 on I − S̃.

Proof. In view of balancedness and nondegeneracy of the Dm
 Theorems 3.4, 4.3 and
Lemma 3.3 show that the modiclus has the desired shape on I − S̃.
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In view of Lemma 2.7 it suPces to show that the derived game CS̃ ; x̂ coincides
with w. For the “trivial” coalitions, i.e., for S̃ and ∅, coincidence is certainly true. Let
R ⊆ S̃ ; ∅ �= R �= S̃ be a nontrivial coalition and let u1 := CS̃ ; x̂ and u2 := (C?)S̃ ; x̂ be the
corresponding reduced games. In view of (27) and (28) of Section 3 we obtain

� := �(x̂; C) = F


r − r∑


=1

M 1

M



 ; �? := �(x̂; C?) =M 1 − F:

In order to show that

u1(R)− � = H − G max

=1;:::;�

�
(S̃ − R) (67)

is satis1ed, let Q ⊆ I − S̃. An application of (15) of Section in 2 yields

C(R+ Q)− x̂(Q)6 min

=1;:::;�

�
(R)


1− F

r∑

=�+1

1
Mr


 ;

thus

C(R+ Q)− x̂(Q)− �6
(
M 1 − max


=1;:::;�
�
(S̃ − R)

)
G − �

= H − G max

=1;:::;�

�
(S̃ − R): (68)

On the other hand the measures allow matches. Take coalitions Q
 ⊆ C
 (
 = � +

1; : : : ; r) satisfying �
(Q
) = min�=1; :::;� �
�(R), de1ne Q :=

r∑

=�+1

Q
 and note that (68)

is now, in fact, an equation. We conclude that (67) is satis1ed.
Moreover, we want to show that

F − min

=1;:::;�

�
(S̃ − R)6 u2(R)− �? (69)

and

max
{
F − min


=1;:::;�
�
(S̃ − R); 0

}
¿ u2(R)− �? (70)

hold true. Indeed, an application of (16) and (17) of Section 2 in the case �=� yields

C?(R+ Q)− x̂(Q)6M 1 − F

or

C?(R+ Q)− x̂(Q)6 max

=1;:::;�

�
(R);
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thus

C?(R+ Q)− x̂(Q)− �?6max
{
F − min


=1;:::;�
�
(S̃ − R); 0

}
: (71)

On the other hand we have

C?(R)− �? = F − min

=1;:::;�

�
(S̃ − R):

We conclude that (69) and (70) are satis1ed.
If r ¿� holds true, then the equation

C?(R+ Cr)− x̂(Cr)− �? =M 1 − F − �? = 0

is satis1ed. Hence, the derived game coincides with w in this case.
A game is exact, if any coalition is eMective with respect to some core element.

Clearly a min-game is exact, iM � = r holds true. For an exact min-game inequality
(43) is necessarily satis1ed; formally we have a strong long side. In the exact case we
obtain G = 1 and H =M 1, thus

H − G max

=1;:::;r

�
(I − R) = min

=1;:::;r

�
(R)¿ 0

is satis1ed. Therefore, w(R) is given by

w(R) = max
{
H − G max


=1;:::;�
�
(S̃ − R); F − min


=1;:::;�
�
(S̃ − R)

}
and the proof is again 1nished by (67), (69), and (70).

Note that the proof of the theorem, when applied to min-games with a strong long
side only, does not require the assumption that some maximal corner contains a player
of minimal weight.

The internal discussion inside each cartel determines the shape of the solution or
rather the shape of each �
. This goal we approach in Section 6. Within the next
section, we explain that the assumptions about balancedness employed so far follow
from requirements concerning the size of the game. For “large games” the modiclus
behaves as indicated in Theorems 3.4, 4.1 and 4.5.

5. Large games, balancedness, and nondegeneracy

This section has the character of an interlude. We want to introduce the notion of
“large games” in a suitable sense and show that the results of the previous sections
indeed clarify the treatment of corners when “many players” (of the smallest type)
are present. In fact it will turn out that the t-fold replication of a min-game, the
determining measures of which are integervalued and assign weight 1 to at least one
player, satis1es all assumptions employed in the theorems of the subsequent sections,
if t is large enough.
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In order to simplify the framework, we will tentatively change the notation and
replace (C
; �
) by (I; �). Thus, we consider a 1nite set I of cardinality n and a positive
measure ��0 on I with total weight �(I) = m. Moreover, we 1x a total ordering ≺
on I satisfying �i¿ �j whenever i ≺ j holds true. Throughout this section we shall
assume that � is integervalued. Also we write �max for the maximum of {�i | i∈ I}.

Lemma 5.1. Let p∈N satisfy �max6p6 �(I). Then the system

S�;≺;p :=


S ∈P

∣∣∣∣∣∣∣∣
�(S)6p; �(S + {i})¿p(i∈ I − S);
�((S + j) ∩ {k ∈ I | k � j})6p

(j∈ I − S; j ≺ max S)


 (72)

is balanced.

Proof. We proceed by induction. If |I | = 1, the requirements imply immediately that
I is the unique member of S := S�;≺;p and the lemma follows.

Assume now, that |I | exceeds 1 and the lemma has been veri1ed for all player sets of
less cardinality. Moreover, w.l.o.g. assume that I = {1; : : : ; n} and that ≺ is the natural
ordering of integers. Let NS ∈S be the lexicographically 1rst coalition (i.e., collect the
largest weights until reaching but not exceeding p). Fix player i∈ NS and consider the
following two cases that may occur:

(1) �(I − {i})6p. Then I − {i} is an element of S. Moreover, this coalition is the
unique element which does not contain i.

(2) �(I − {i})¿p. Then, by induction hypothesis, the system Si which is obtained
on I − {i} using p and the restrictions of � and ≺, is balanced. It turns out that
Si = {S ∈S|i �∈ S}. For, the inclusion ⊆ is straightforward. Moreover, ⊇ follows
from the fact that every subcoalition of {k ∈ I |k � i} has measure less than or
equal to p.

Consequently, in both cases, the indicator 1I−{i} is a positive linear combination of
the indicators 1S (S ∈S; i �∈ S). Finally, we can write

1I =
1
| NS|


1 NS +

∑
i∈ NS

1I−{i}


 ;

which proves the lemma.

Theorem 5.2. Let M 1 ∈N be such that �max6M 1¡m holds true. Suppose J1 ⊆ I
consists of players of weight 1 only. If the conditions

m+ := �(I − J1)¿M 1; (73)

�(J1) = |J1|¿ 2m+�max

M 1 − �max + 1
(74)
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and

|J1|2¿ 2m+�max (75)

are ful6lled, then the system

QM 1 := {S ∈P|�(S) =M 1} (76)

is balanced and nondegenerate.

Proof. Step 1: Assume I={1; : : : ; n} and �1¿ · · ·¿ �n. Thus �1 is the maximal weight.
De1ne m1 := m− m+ = |J1|= �(J1) and let p∈N satisfy

�16p6m+: (77)

We denote by S+
p the system on I−J1 := I+ which is obtained via Lemma 5.1 applied

to the restriction of �, the natural ordering, and p.
By Lemma 5.1 there are balancing coePcients b+R (p) = b+R ¿ 0 (R∈S+

p) satisfying∑
R∈S+

b+R 1R = 1I+ :

By de1nition of S+
p the weight �(R) of any coalition R∈S+

p satis1es

�(R)¿p− �1 + 1: (78)

By integration with � we conclude that

m+ =
∑
R∈S+

b+R �(R)¿ (p− �1 + 1)
∑
R∈S+

b+R (79)

holds true. Using (77) we obtain that p¿�1−1 holds and, thus, we obtain an estimate∑
R∈S+

b+R 6
m+

p− �1 + 1
: (80)

Let q∈N now satisfy

p6 q6m− �1 + 1 (81)

and de1ne

Sp;q := {R+ T |R∈S+
p ; T ⊆ J1; �(T ) = q− �(R)} ⊆ QM 1 : (82)

We conclude from (74), (77), and (78) that m1 + �(R)¿ q holds true for any R∈S+
p ,

thus the coePcients

bR+T (p; q) = bR+T :=
b+R

|{T ⊆ J1|R+ T ∈Sp;q}| (83)
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are well de1ned. We obtain∑
R+T∈Sp;q

bR+T1R+T = 1I+ + K(p; q)1J1= : xp;q (84)

with a suitable constant K(p; q)¿ 0. We want to show that this constant can be esti-
mated. Indeed, for R+ T ∈Sp;q, inequality (78) implies that

|T |= q− �(R)6 q− p+ �1 − 1

holds true. By (80) we obtain

K(p; q)6
m+(q− p+ �1 − 1)
m1(p− �1 + 1)

: (85)

Step 2: We are going to apply (85) in the case p= q=M 1. Indeed, the assumption
(74) shows that (81) holds in this case. Moreover, S := SM 1 ;M 1 is a subset of the

system QM 1 , thus x := xM
1 ;M 1

is a nonnegative linear combination of indicators of this
system. The inequalities

1 ¿
2m+�1

m1(M 1 − �1 + 1)
(by (74)

¿
m+(�1 − 1)

m1(M 1 − �1 + 1)
¿K(M 1; M 1) (by (80))

show that K := K(M 1; M 1)¡ 1 holds true.
Step 3: We are going to apply (85) in the case p := m+ − max{0; M 1 − m1} and

q := m−M 1. First of all note that p satis1es (77) by (74). Secondly q satis1es (81)
by (74) and the fact that m=m+ +m1¿M 1 +m1 holds true. Next we shall show that
L := K(p; q) is strictly less than 1. Two cases may be distinguished:

(1) If M 16m1 holds true, then p = m+ is valid. In this case Sp;q consists of all
coalitions of the form I+ + T where T ⊆ J1 satis1es |T |=m1 −M 1. Hence L¡ 1
is satis1ed.

(2) If M 1¿m1 holds true, then the inequalities

L6
m+(m−M 1 − m+ +M 1 − m1 + �1 − 1)

m1(m+ −M 1 + m1 − �1 + 1)
(by (85))

¡
m+(�1 − 1)

m1(m+ −M 1 + m1
2 )

(because (74) implies m1¿ 2�1)

¡
2m+�1
(m1)2

¡ 1 (by (75))

show the assertion.
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Let bR+T (R+T ∈Sp;q) be the coePcients as de1ned in (83) and put 2 :=
∑

R+T∈Sp; q
bR+T − L¿ 0. Then the equation

1
2

∑
R+T∈Sp; q

bR+T1I−(R+T ) =
1
2
((2 + L)1I − 1I+ − L1J1 )

=
2 + L− 1

2
1I+ + 1J1 = %1I+ + 1J1= : y (86)

shows that y is a positive linear combination of the indicators of the system

T := {S ∈P|I − S ∈Sp;q}:
Moreover, %¡ 1 holds, because L¡ 1 is valid. The de1nition of p and q implies that
T is a subset of QM 1 .
Step 4: The third system of coalitions that will be used is the set R which is de1ned

as follows. For any i∈ I+ de1ne the system R(i) and R by

R(i) := {R− {i}+ T |R∈S+; T ⊆ J1; |T |=M 1 − �(R− {i})} (87)

and R =
⋃
i∈I+ R

(i). Here the natural notation S+ = {S ∩ I+|S ∈S} is used. Let b+R
(R∈S+) be balancing coePcients of this system. Condition (74) implies that m1¿M 1

− �(R− {i})(R∈S+) holds true, thus the coePcients

b(i)R−{i}+T :=
b+R

|{T ⊆ J1|R− {i}+ T ∈R(i)}| (88)

are well de1ned. Similarly to (84) it is seen that∑
R−{i}+T∈R(i)

b(i)R−{i}+T1R−{i}+T = 1I+−{i} + K (i)1J1= : x(i) (89)

holds. Summing up the vectors x(i) and normalizing yields
1

n− m1 − 1

∑
i∈I+

x(i) = 1I+ + K̃1J1= : z: (90)

Hence, we have shown that z can be expressed as a positive linear combination of the
indicators of the system R(i) ⊆ QM 1 .
Step 5: Put Q := R∪S∪T. The last three steps show that Q is, indeed, a subsystem of

QM 1 . In view of Remark 2.3 it suPces to show that Q is balanced and nondegenerate.
In view of the fact that K ¿ 1 holds true, we can 1nd 1¿3¿ 0 such that K −

3(K − K̃)¿ 1 is true. Then x̃ := (1− 3)x + 3z can be expressed as

x̃ = 1I+ + NK1J1

with a suitable 06 NK ¡ 1. Moreover, the equation

1− NK
1− NK%

y +
1− %
1− NK%

x̃ = 1I

shows that Q is balanced, because the coePcients are strictly positive.
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Now we turn to nondegeneracy. The vectors x and y can be used to show that
1I+ and 1J1 are spanned by the indicators of Q. Additionally using the x(i) (i∈ I+)

de1ned in (89) shows that every indicator 1{i}(i∈ I+) as well belongs to the span.
Then pick any i∈ I+ and any coalition R∈S+ which contains i. All indicators 1T
satisfying R − {i} + T ∈R(i) are spanned. The corresponding coalitions are exactly
those subsets of J1 that possess the cardinality M 1 − �(R) + �i. This cardinality is, by
(74), strictly less than m1 and, by de1nition of S+; it is strictly positive. Therefore
1{i}(i∈ J1) is spanned.

Now we draw the conclusions of our results. To this end, we return to the original
setup within which we deal with a min-game. Recall that the shape of the modiclus
(with respect to the coePcients determining the share of the cartels) was clari1ed in
Sections 3 and 4. We want to show that the conditions employed are satis1ed if there
are suPciently many small players present.

For �∈N, the t-fold replication of any measure � is denoted by �(t). Likewise, I (t)

is used for the t-fold replication of I . Thus, we assume that the t-fold replication of
the game (I;P; C), denoted by (I (t);P(t); C(t)) is a concept well known to the reader.

Corollary 5.3. Let C=
∧{�1; : : : ; �r} be an integer valued min-game. Assume that, for

some 
¿�, there is at least one player with weight 1 in corner C
. Then there is
t0 ∈N such that for any t¿ t0 with respect to the replicated game C(t) the system of
partners of maximal diagonal coalitions, i.e., the system

Dm
(t) = {S ∈P(t)|�
(t)(S) = tM 1} (91)

is balanced and nondegenerate.

Proof. Given 
, let k be a player with weight 1 in corner 
. We appeal to Theorem
5.2 which will be applied to C
(t); �
(t) and tM 1. To be more precise, we have �
(C
−
{j})¿M 1 and hence, for any natural t, we have �
(t)(C
(t) − J1)¿ tM 1 where J1 is
the coalition of all t copies of player k. Thus, using �=�
(t) for the moment, condition
(73) is satis1ed for all t ∈N.

Now, the right-hand term in (74) is clearly bounded in t. For, tm+ as well as tM 1

increase linearly and maxj∈C
(t) �j does not change with t. therefore, if |J1|= t is large
enough, Eq. (74) will be satis1ed.

Similarly, the left-hand side in (75) equals t2 while the right-hand side again in-
creases linearly. It is now obvious how to choose the desired bound t0 in order to
ensure the statement of Theorem 5.2. Thereafter, it satis1es to realize that QtM 1 as
de1ned in (76) equals the system of partners we are concerned with, that is (91).

Remark 5.4. (1) Note that, under the assumptions of Corollary 5.3, t0 can be chosen
in such a way that the vector (�(t)1; : : : ; �(t)r) of replicated measures allows matches
(cf. (62) of Section 3) for t¿ t0.

(2) The index of relative powers, i.e., the quantity –(C) (cf. formula (42) of Section
4) is preserved under replication. This means that a min-game possesses a strong long
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side, a strong short side, or balanced sides, respectively, if and only if this property
holds for any replicated game.

(3) It is not hard to see that another procedure can be implemented which also pre-
serves the index of relative powers and ensures that Theorem 3.4 holds true eventually.
One can add players of weight 1 in large numbers to each corner. This way the mass
relations can be kept constant and again it is possible to show that the balancedness
as well as the nondegeneracy condition (see Theorem 5.2) is ensured after 1nitely
many steps. The proof is actually much easier and we will not dwell on this subject
excessively. We refer to this procedure by adding small players.

(4) We shall say that an integervalued min-game
∧{�1; : : : ; �r} is large, if Dm
 is

balanced and nondegenerate, C
 contains a player of weight 1 (
= � + 1; : : : ; r), and
(�1; : : : ; �r) allows matches.

Corollary 5.5. Let C =
∧{�1; : : : ; �r} be an integer valued min-game. Assume that,

for all 
¿�, there is at least one player with weight 1 in corner C
. Then both,
replication and adding small players, generate large games after 6nitely many steps.
Hence, the assertions of all theorems of Sections 3 and 4 are valid.

6. The VIP formula and a bankruptcy problem

Within this section we restrict ourselves to min-games C =
∧{�1; : : : ; �r} satisfying

the following conditions:

(1) The measures �1; : : : ; �r are integervalued.
(2) The measures �2; : : : ; �� are uniformly distributed, i.e.,

�
i = 1 (i∈C
; 
= 2; : : : ; �): (92)

(3) C has either a strong long side or balanced sides.
(4) The corners Dm
 are balanced and nondegenerate w.r.t. C
 for any 
=�+1; : : : ; r.
(5) Any weight in every nonminimal corner exceeds the sum of the smaller weights

by at most one, i.e., that

�
i 6 1 + �
({j∈ I |�
j ¡�
i }) (i∈C
; 
= � + 1; : : : ; r) (93)

holds true.

Given integervalued measures, (93) is equivalent to the condition that every natural
number smaller than or equal to M
 is the weight of some coalition with respect to
�
. Also, (93) yields �min = 1 and ensures that the long side shows small players (cf.
De1nition 4.2).

Given these assumptions, we are going to classify the behavior of x̂ :=  (C) by a
formula involving the shape of the initial assignments represented by �1. First of all
Theorems 3.4, 4.3 and 4.5 completely determine the shape of the modiclus restricted to
the union of nonminimal corners I−S̃. Here S̃=

∑�

=1 C


 is the short side of the market
as in Section 4. Moreover, these theorems determine the vector c of convexifying
coePcients given by c
M 1 = x̂(C
) for any 
 = 1; : : : ; r. As a consequence, for any
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player in C2; : : : ; C� the modiclus is completely determined by the equal treatment
property (see [14]).

Imagine a situation in which the modiclus x̂ is agreed upon by the bargaining process
of the representatives of the various cartels (corners), and hence is externally 1xed.
As in Section 5, for the sake of the internal discussion, we will tentatively replace
corner C1 by I—this will now be the player set. The initial assignment �1 will be
replaced by � and because of the external in?uence the players will have to agree on
the distribution of M 1 − x̂(

∑r

=2 C


). This quantity is now replaced by a positive real
E. Which kind of “internal game” should we have in mind in order to discuss the
bargaining process inside the cartel C1?

Of course players will internally argue with their strength in the global game C given
the modiclus (which is 1xed on the corners outside). These arguments may formally
be based on the quantity

max


C({i}+ T )− x̂(T )

∣∣∣∣∣∣T ⊆
r∑

=2

C



 (94)

for i∈C1. That is, player i points to coalitions he could form with partners (who are
already assigned a de1nite share by the modiclus based on the uniform distribution in
their corner). Player i could try to join these partners at the same conditions and then
he would get the surplus. In view of Lemma 2.1 and Corollary 2.2 we expect this
quantity to be maximal, when player i attempts to form diagonal coalitions (the excess
appears more or less in Eq. (94)).

Now, based on x̂ and the coePcient c
 of corner C
, we compute for player k ∈C

the payoM

x̂k =
M 1

M
 c
�


k =

M 1

M
 c
:

Hence, the quantity speci1ed in (94) when {i}+ T is diagonal turns out to be

C({i}+ T )−
r∑

=2

M 1

M
 c
�
1
i = �1i


1−

r∑

=2

M 1

M
 c



 :

This quantity is now abbreviated by �1i 2. Similarly, a coalitions S ⊆ C1 would have an
aspiration of �1(S)(1− (M 1=M
)c
) or �1(S)2. Note that E6 2�1(C1) can be veri1ed.

Let us focus on a player set I , a measure � and positive real numbers E and 2
satisfying E6 2�(I). Each player enters the discussion with a “claim” based on his
external possibilities. This claim is given by �i2. However, the total of claims, i.e.
2�(I) (weakly) exceeds the “estate” E that can be allotted at all inside the cartel. This
kind of problem is well known in the literature and was 1rst discussed by Aumann–
Maschler [1] who treat a bankruptcy problem that appears already in the Talmud. In
this context, the data 2�i appear as “debts” of the estate towards the contestants. The
game w derived from this problem is given by

w(S) := (E − 2�(I − S))+ (S ∈P) (95)
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and re?ects a pessimistic attitude: If the opposing coalition I − S successfully leaves
booking its claims, the remainder towards E is what is left for coalition S to dis-
tribute. The solution concept mentioned in the Talmud according to Aumann–Maschler
is the “contested garment consistent solution” (the CG-solution). It coincides with the
nucleolus of the corresponding game w (the CG-game).

The solution concept one might adopt is, therefore, suggested by the procedure de-
veloped in [1]. In the present context, we are going to introduce this concept as follows.

Imagine that a quantity of 2�i=2 is guaranteed to each of the players. This is the
average of his individually rational payoM (which is 0) in the global game C and the
aspiration in the endogenous game of the cartel.

Now the rich players have to pay a constant fee 3 and the poor ones are allotted
2�i=2. Who is considered to be rich and who is poor depends on the size of the fee
which is determined by the requirement

∑
i∈I

max
(
2�i − 3; 2�i2

)
= E: (96)

Thereafter, if 3(E; 2) is the (unique) solution of (96), the labels “rich” and “poor”
can immediately be allotted. The smallest rich player is the one, say k0, such that
�k0 − 3(E; 2) just exceeds or equals (2�k0 )=2 and �k0+1 − 3(E; 2) is below (2�k0+1)=2.

To have a nice term, we call the rich players in this context the VIPs. The 1nal
formula arising eventually for the modiclus of the corner with big chunks of initial
assignments will be called the VIP formula.

Remark 6.1. Recall that the total mass is �(I)= : m. Now, for 2m¿E¿ 2m=2, it is
not too hard to see that (96) indeed admits of a unique solution 3(E; 2)¿ 0.

Now we are going to present the endogenous solution in a precise manner. The
result will be called the E-2-CG measure.

De�nition 6.2. Let E; 2 be real numbers. Assume that (E; 2) satis1es

0¡2 and
2
2
m¡E6 2m: (97)

De1ne the real number 3(E; 2) by the requirement

∑
i∈I

max
{
�i2 − 3(E; 2); �i2 2

}
= E (98)

and the E-2-CG measure x(E;2) by

x(E;2)
i := max

{
�i2 − 3(E; 2); �i2 2

}
: (99)
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Remark 6.3. (1) Assumption (97) implies that 3(E; 2) and, thus, x(E;2) are well de1ned.
Moreover, by de1nition, we have

x(E;2)(I) = E: (100)

Again (97) implies that 3(E; 2) is nonnegative. Note that 3(E; 2) = 0 holds true if and
only if E coincides with 2m.

(2) The following procedure shows how to compute 3(E; 2) recursively. For any
�∈{�i | i∈ I} let S� := {i∈ I | �i¿ �} be the set of players of a weight weakly ex-
ceeding � and de1ne 3� by the requirement∑

i∈S�
(2�i − 3�) +

∑
j∈I−S�

2
�j
2

= E; (101)

i.e., by

3� :=
1
|S�|

(
2m
2

+
2�(S�)

2
− E

)
: (102)

Let �max and �min denote the maximum and minimum of {�i | i∈ I} and observe that

3�min =
1
n
(2m− E)¿ 0 (by (97))

holds true as well as

23�max =
1

|S�max | (2m+ �(S�max )− 2E)

¡
1

|S�max |2�(S�max ) = 2�i(i∈ S�max ):

Thus N� := min{�i | i∈ I; 23�i 6 2�i} is a member of {�i | i∈ I}. A comparison of (98)
and (101) shows that 3(E; 2) coincides with 3 N�.

(3) The measure x(E;2) is indeed the nucleolus of the game w given by (95),
hence it is the contested garment consistent solution of the underlying bankruptcy
problem [1].

In order to describe the modiclus of the game C recall the quantity % (Formula (63)
of De1nition 4.4). De1ne the quantities

2 :=
1 + (r − �)(� − 1)%

�
− %

r∑

=�+1

M 1

M
 ; E := M 1
(

1− (r − �)%
�

)
: (103)

Remark 6.4. If C has a strong long side, then 2 can be written as

2 = 1− 1
r

r∑

=2

M 1

M
 =
1
r
(r − –(C) + 2) (104)
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and E can be written as

E =
M 1

r
; (105)

thus

1
r
6 2¡

2
r

is valid. Therefore,

M 1 2
2
6E¡M 12 (106)

holds true. Moreover (106) is also valid in the case that C has balanced sides. Indeed,
in this case 2 and E are given by

2 =
1 + 2Mr

� + rMr and E =M 1
(

1 +Mr

� + rMr

)
; (107)

thus (106) is valid even with strict inequalities in this case.
Hence, the pair (E; 2) satis1es condition (97) and the quantity 3(E; 2) and the

E-2-CG measure x(E;2) are well de1ned. Of course we apply the corresponding de1ni-
tions to the 1nite set C1 and to the restriction of �1 to C1. In what follows the measure
x(E;2) on C1 is as well considered as a measure on I with carrier C1 whenever this is
needed.

Theorem 6.5. The modiclus of C is the imputation given by

 (C) = x̂(E;2) + %
r∑

=2

�


M
 : (108)

Proof. By Theorems 3.4, 4.3, 4.5 and Corollary 2.6 of [14] the modiclus  (C)= : x̂
has the desired form, when restricted to I − C1.

Let w be the bankruptcy game with player set C1 de1ned by

w(S) = (E − 2�1(C1 − S))+:

By Remark 6.4 x := x(E;2) is the nucleolus of w (see [1]). In view of Lemma 2.7 it
suPces to show that w coincides with the derived game CC1 ; x̂. For the trivial coalitions,
coincidence is certainly true. Let R ⊆ C1; ∅ �= R �= C1 be a nontrivial coalition and let
u1 := CC1 ;x̂ and u2 := (C?)C

1 ;x̂ be the corresponding reduced games. In view of (27)
and (28) of Section 3 we obtain

� := �(x̂; C) =M 1


(r − �)%− %

r∑

=�+1

M 1

M



= 2M 1 − E (109)
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and

�? := �(x̂; C?) =M 1(1− %): (110)

In order to show that

u1(R)− � = E − 2�1(C1 − R) (111)

is satis1ed let Q ⊆ I − C1. An application of (15) of Section in 2 yields

C(R+ Q)− x̂(Q)6 �1(R)


1− (1− (r − �)%)� − 1

�
− %

r∑

=�+1

M 1

Mr


 ;

thus C(R+ Q)− x̂(Q)6 �1(R)2 holds true as well as

C(R+ Q)− x̂(Q)− �6 (�1(R)−M 1)2 + E = E − 2�1(C1 − R): (112)

On the other hand the measures allow matches. Take coalitions Q
 ⊆ C
 (
=2; : : : ; r)
satisfying �
(Q
)=�1(R), de1ne Q :=

∑r

=�+1Q


 and note that (112) is now, in fact,
an equation. We conclude that (111) is satis1ed.

Now let Q ⊆ I − C1 be a coalition. Lemma 2.1 ((16) and (17) applied to � = 1)
implies that

C?(R+ Q)− x̂(Q)6max{M 1(1− %); �1(R)}
and, thus,

u2(R)6 (�1(R)−M 1(1− %))+ (113)

hold true. On the other hand we obtain

C?(R+ Cr)− x̂(Cr) =M 1(1− %);
thus u2(R)¿ 0 is valid. Hence, it suPces to show that

u1(R)− �¿ �1(R)−M 1(1− %) (114)

holds true. By (63) of Section 4 (with �min = 1) we obtain r%6 1, thus inequality
(114) implies that

E +M 1(1− %) =M 1
(
1 +

1− r%
�

)
¿M 1 (115)

holds true. Eq. (111) together with (115) show that

(u1(R)− �)− (�1(R)− �?) = E − 2�1(C1 − R)− �1(R) +M 1(1− %)
¿M 1 − 2M 1 − (1− 2)�1(R)¿ 0

holds true.
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7. A strong short side

In this section, we discuss the modiclus of a min-game with a strong short side.
Under some conditions it coincides with the barycenter of the measures on the short
side. This means that the modiclus equals the nucleolus of the exact game generated
by the measures on the short side. The preliminary result, therefore, deals with the
nucleolus of exact min-games. Next, we show that the nucleolus and the modiclus of
an exact min-game coincide, if and only if the nucleolus treats all corners equally.
Recall that a min-game C=

∧{�1; : : : ; �r} is exact, iM � = r holds true.

Theorem 7.1. Let C=
∧{�1; : : : ; �r} be an exact min-game and let �
 (
=1; : : : ; r) be

integervalued. Denote by C
1 := {i∈C
|�
i = 1} and assume that, for all 
= 1; : : : ; r,
the condition

|C
1 |¿max


��i − 1

∣∣∣∣∣∣i∈
∑
��=

C�


 (116)

is satis6ed. Then the nucleolus is the barycenter of the measures involved, i.e.,

�(C) = Nx =
1
r

r∑

=1

�
: (117)

Proof. Step 1: We are going to show that the coalitions of maximal excess form a
balanced system. Moreover, we show the same fact for the coalitions of second largest
excess and prove that this system is nondegenerate. This suPces in view of Remarks
2.5 and 2.3.

First of all we discuss the maximal excess with respect to Nx. Since the game is
exact and Nx is in the core, this excess is 0 and it is attained exactly on diagonal sets.
Note that the system D of diagonal sets is easily recognized to be balanced, as the
complement of a diagonal set is diagonal as well.
Step 2: We turn to the second largest excess. Note that, in view of Eq. (116), there

is at most one corner C
 with C
1 = ∅. If so, we assume without loss of generality that
this is the 1rst corner.

Now, for every j∈C
1 (
= 2; : : : ; r) the excess of {j} turns out to be −1=r.
Next, let S be an arbitrary coalition which is not diagonal. Then there are corners

5 and � such that �5(S)¿ C(S) = ��(S) holds true. Then the excess is

C(S)− Nx(S) = ��(S)− 1
r

r∑

=1

�
(S)

=−1
r

r∑

=1

(�
(S)− ��(S))6− 1
r
(�5(S)− ��(S))6− 1

r
:

Consequently, the second largest excess is −1=r.
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Step 3: We de1ne, for 
= 1; : : : ; r and i∈C
 a system of coalitions

S
; i := {S ∈P|S
 = {i}; S� ⊆ C�1 ; |S�|= �
i − 1(� �= 
)}: (118)

Observe that these systems are contained in S(−1=r; Nx; C). Now by summing up we
obtain for each 
∑

i∈C


1
|S
; i|

∑
S∈S
; i

1S = 1C
 + y
: (119)

Here, y
 is a nonnegative vector which has positive coordinates exactly in
∑

��=
 C
�
1.

This we write∑
S∈S


cS1S = 1C
 + y
 (120)

with S
 :=
⋃
i∈C
 S


; i and nonnegative coePcients c•. From (120) we obtain by again
summing up∑

S∈S

ĉS1S = 1I + ŷ (121)

with S :=
⋃

=1; :::; r S


 and an obvious choice of ĉ•. Moreover, ŷ is nonnegative and
positive exactly on

∑r

=1 C



1 . This coalition (the one of players with weight 1) we

now abbreviate by C1 :=
∑r


=1 C


1 .

Next, for �= 1; : : : ; r, we introduce a further system

T� := {T ∈P|�
(T ) =M 1 − 1(
 �= �); ��(T ) =M 1} (122)

the elements of which have second largest excess as well. Take T =
⋃r
�=1 T

� and
observe that∑

T∈T

1T = |T|1I − ẑ; (123)

where ẑ is a nonnegative vector with positive coordinates exactly on C1.
Choose 3¿ 0 suPciently small such that

(1− 3)(1I + ŷ) + 3(1I − ẑ)= : 1I − z (124)

satis1es z¿ 0. Again, z has positive coordinates at most on C1. Now the system
R := {{j}|j∈C1} consists of coalitions of second largest excess (Step 2) and yields

z =
∑

{j}∈R

zj1{j}: (125)

Note that R ⊆ S holds true. Hence, S∪T is a balanced system. Moreover, this system
(actually S) is nondegenerate.
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Theorem 7.2. Let C =
∧{�1; : : : ; �r} be an exact min-game. Then the following two

assertions are equivalent:
(1) The nucleolus �(C) treats all corners equally, i.e., it satis6es

�(C)(C
) =
M 1

r
(
= 1; : : : ; r):

(2) The modiclus  (C) coincides with the nucleolus �(C).

Proof. One direction ((2) ⇒ (1)) is implied by Theorem 3.4, because condition (33)
is automatically satis1ed and the assumption is empty in the exact case (� = r). It
remains to prove the opposite direction.

Note that the inequalities

06 xi6 �
i (i∈C
; 
= 1; : : : ; r) (126)

and

M 1(r − 1)
r

− ��(T ) + x(T�) =−e

T� +∑


�=�
C
; x; C


¿ 0 (T ∈P) (127)

are immediate consequences of the fact that the nucleolus of the game must be a
member of its core. Therefore, the maximal excesses � := �(x; C) and �? := �(x; C?)
satisfy the equations

� = 0 and �? =
M 1(r − 1)

r
(128)

and are attained by ∅; I and by any corner C
 (
=1; : : : ; r), respectively. Let �6 �?:
In view of Theorem 2.4 it remains to show that S̃(�) : =S̃(�; x; C) is balanced. Note
that (S; T )∈ S̃(�) implies that

(S; C
)∈ S̃(�) and e(S; x; C)¿ �− �?= : 2 (129)

and

(∅; T )∈ S̃(�) and e(T; x; C?)¿ �− � = � (130)

hold true. Moreover, all pairs (∅; C
) (
 = 1; : : : ; r) belong to S̃(�) as well. In view
of the fact that balancedness of a system S implies balancedness of the system S ∪
{C
|
= 1; : : : ; r} it suPces to show that

S(2; x; C) ∪ S(�; x; C?)

is balanced. By Remark 2.3 and the characterization of the nucleolus (see Remark 2.5)
it suPces to show that

S := {1S |S ∈S(b; x; C) ∪ {C
|
= 1; : : : ; r}}
spans {1T |T ∈S(�; x; C?)}. Let T ∈S(�; x; C?) and C� be some carrier satisfying ��(T )
= max
=1; :::; r �

�(T ) = C?(T ). By (127) and the fact that
∑


 �=� x(C
) = �? holds, we
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obtain the equation

−e

T� +∑


 �=�
C
; x; C


= �? − e(T�; x; C?)

and the inequality

x(T − T�)6 �? − e(T�; x; C?) + x(T − T�) = �? − e(T�; x; C?):

Hence the coalitions T� +
∑


 �=� C

 and T − T� both belong to the system S(2; x; C):

The proof is completed by the observation that

1T =


1T� +

∑

 �=�

1C



+ 1T−T� −

∑

�=�

1C


holds true.

Theorems 4.1, 7.1 and 7.2 yield the following result.

Corollary 7.3. Suppose C=
∧{�1; : : : ; �r} is a min-game which possesses a strong short

side. Assume that Dm
 is weakly balanced for every 
= �+1; : : : ; r and that, for all

 = 1; : : : ; �; condition (116) is satis6ed and �
 is integer valued. Then the modiclus
is given by the equation

 (C) =
1
�

�∑

=1

�
:

Remark 7.4. If we assume uniform distribution, then Corollary 7.3 and Theorem 6.5
(which rests on Theorem 4.5) imply the result presented in [8, Theorem 3.1].

8. Examples and remarks

Within this section we present a few examples. In particular, these examples show
that some conditions used in the theorems are crucial. We start out with an exact game.
In the following example the nucleolus is not the barycenter of the measures involved
and neither does it coincide with the modiclus. Clearly this is at variance with Theorem
7.1, the conditions of which are not satis1ed.

Example 8.1. Let r = 3; C
 = {
} (
 = 1; 2) and C3 = {3; 4}. The measures are
de1ned by

�1 = (3; 0; 0; 0);

�2 = (0; 3; 0; 0);

�3 = (0; 0; 2; 1):
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Then the arising min-game C is exact. It can be shown that the nucleolus and the
modiclus are given by

�(C) = 1
6 (5; 5; 5; 3)= : x and  (C) = 1

2 (2; 2; 1; 1)= : x̂: (131)

Let us add (at least) one small player of weight 1 to each corner. In view of 3¿l+1
we cannot employ Theorem 7.1 directly. However, a stronger version of Theorem 7.1
exists as �1 and �2 (apart from a diMerent carrier) look equal. Hence, the modiclus
and the nucleolus coincide and are given by the barycenter. That is, the measures

�1 = (3; 1; 0; 0; 0; 0; 0);

�2 = (0; 0; 3; 1; 0; 0; 0);

�3 = (0; 0; 0; 0; 2; 1; 1)

generate a min-game with modiclus and nucleolus equal to

1
3 (3; 1; 3; 1; 2; 1; 1):

Example 8.2. Let r=5, let the measures �
 on their carriers C
 (
=1; 2; 3) be de1ned
as in Example 8.1, and let �4; �5 be the uniform measures with carriers C4; C5 which
are assumed to be disjoint, not to intersect C1 + C2 + C3, and to satisfy

|C5|¿ |C4|¿M 1 and M 1(|C4|+ |C5|)¡ |C4| |C5|: (132)

The arising min-game is denoted by u. Then u has a strong short side, because

M 1

M 4 +
M 1

M 5 ¡
M 5

M 4 +M 5 +
M 4

M 4 +M 5 = 1

holds true. Theorem 4.1 explains that the nucleolus of the derived game on the short
side determines the modiclus. In view of Example 8.1 we, therefore, obtain

 (u) =
1
6


5; 5; 5; 3; 0; : : : ; 0︸ ︷︷ ︸

M 4+M 5


 :

Of course, if we add (at least) one player in the 1rst three corners and make sure that
(132) is satis1ed, then the derived game of the short side yields a modiclus which
coincides with a nucleolus (cf. Example 8.1), hence an application of Corollary 7.3
results in a modiclus represented by

1
3 (3; 1; 3; 1; 2; 1; 1; 0; : : : ; 0):

Remark 8.3. Note that the nucleolus of any replicated game of C or u of Examples
8.1 and 8.2 assigns the largest amount to the third corner C3(t). Namely, if t¿ 2, then
the players with weight 2 receive the payoM 1, the players with weight 1 receive 1

2 ,
whereas all players in the other minimal corners receive 3

4 .
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The following example shows that the second assertion of Theorem 3.4 does not
hold without the weak balancedness of restrictions of maximal diagonal coalitions to
the nonminimal corners.

Example 8.4. Let 106 n6 29; r = 3; C1 = {1; 2; 3}; C2 = {4; 5; 6}; C3 = {7; : : : ; n},
and �1; �3 be uniform measures, and let �2 be given by

�2 =


0; 0; 0; 2; 1; 1; 0; : : : ; 0︸ ︷︷ ︸

n−6


 :

Finally, let C be the corresponding min-game. In what follows we shall use the abbre-
viation k := |C3|=M 3 (i.e., 46 k6 23). Then one can see that

 (C) =
1
9k


3k; 3k; 3k; 7k − 6; k + 3; k + 3; 9; : : : ; 9︸ ︷︷ ︸

k times


= : x̂ (133)

holds true.
Hence, the modiclus treats all corners equally for k=4; : : : ; 23. For k=12 the game

has balanced sides and for k¿ 13 it possesses a strong short side. Hence, Theorem
3.4 (2) is not true without the weak balancedness assumption. Moreover Theorem 4.3
is no longer valid when the assumption concerning the Dm
 is not satis1ed.

Example 8.5. Let k = 3; C1 = {1}; C2 = {2; 3}; C3 = {4; 5; 6}, and �
 be given by

�1 = (4; 0; 0; 0; 0; 0);

�2 = (0; 3; 3; 0; 0; 0);

�3 = (0; 0; 0; 3; 3; 3):

The arising min-game C has a strong long side. However, in contrast to Theorem 3.4,
the modiclus does not yield equal treatment of the corners. Indeed, we claim that

 (C) =
1
5
(8; 3; 3; 2; 2; 2)

holds true. Indeed, the corners C2 and C3 are the only coalitions attaining maximal
dual excess, whereas the maximal primal excess is attained by all coalitions containing
1 member of each corner and by all coalitions containing 1 member of the minimal and
2 members of each of the other corners. It can be checked that the pairs of coalitions
of maximal biexcess form a nondegenerate and balanced system.

Remark 8.6. (1) In case k¿ 25 the modiclus of the game de1ned in Example 8.4 is
concentrated to the 1rst corner. Hence the “region” in which the modiclus guarantees
equal treatment of the corners, is just much larger than in the case of the presence of
weakly balanced Dm
 (
=�+1; : : : ; r). We conjecture that the corresponding assertion
(1) of Theorem 3.4 remains true, if “weak balancedness” is replaced by “nonemptiness.”
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(2) The t-fold replication of the game in Example 8.4 satis1es the balancedness and
nondegeneracy property of Dm2(t) whenever t¿ 2, thus Theorems 3.4 and 4.3 can be
applied in the replicated case.

(3) It should be noted that the modiclus of the t-fold replication of the game de-
1ned in Example 8.5 coincides with the barycenter of the measures involved, if t is
suPciently large. However, balancedness and nondegeneracy of Dm
(t) (
 = 2; 3) are
only satis1ed in the case that t is a multiple of 3.

(4) Finally it should be remarked that the modiclus treats the corners equally in the
case that only two corners are present. In this case, no further conditions have to be
satis1ed in order to guarantee this kind of “equal treatment property” among corners.
For a proof see [15].
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