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Abstract 

Homogeneous games were introduced by von Neumann and Morgenstern in the constant- 
sum case. Peleg studied the kernel and the nucleolus within this framework. However, for the 
general nonconstant-sum case Ostmann invented the unique minimal representation, 
Rosenmiiller gave a second characterization and Sudhiilter discovered the “incidence vector”. 
Based on these results Peleg and Rosenmiiller treated several solution concepts for “games 
without steps”. The present paper treats the case of games “with steps”. It is shown that with 
a suitable version of a “truncated game” the nucleolus of a game is essentially the one obtained 
by truncating behind the “largest step”. As the truncated version has “no steps”, the case “with 
steps” is reduced to the one “without steps”, which is treated in the paper by Peleg and 

Rosenmiiller. 

Homogeneous games 

The material of this paper is organized as follows. This section serves as an 
introduction to the theory of homogeneous games and provides the necessary con- 
cepts and notations. Section 1 deals with certain families of representations of 
homogeneous games “with steps”. These families put an increasing amount of weight 
at the players within the lexicographically first minimal winning coalition (The- 
orem 1.11). As a consequence, it turns out that in games with steps, the system of 
minimal winning coalitions cannot be (weakly) balanced (Corollary 2.6). This is of 
course important in context with the structure of the nucleolus; thus Section 2 dis- 
cusses some simple properties of the nucleolus. However, Corollary 2.6 is not sufficient 
to explain the structure of the nucleolus of a homogeneous game “with steps”. 
Therefore, Section 3 explains the “reduction theory” of the nucleolus. First, a trunc- 
ation procedure is necessary. This, after some preliminary work, is described by 
Definition 3.6. Lemma 3.7 explains the nature of the truncated game. Finally, by 
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Theorem 3.8 and Corollary 3.9 we collect the material available so far and prove that 
the nucleolus of a game with steps reduces to the one of the truncated version. 

This section serves as an introduction to the theory of homogeneous (simple) games. 
All of the material presented may be found in the literature, see e.g. Ostmann [6], 
Rosenmiiller [lo], Sudhiilter [14]. 

Let FV = { 1,2,3, . . . } denote the “universe of players”. For the “grand coalition” we 
choose some “interval” R = [a,b] = {iEN la d i d b}. p = p(Q) = E([a,b]) = 
(S 1 S c Q} is the system of coalitions. If 

v:p+ (w, v(8) = 0 

is a mapping on P, then (s2, P, v) is a game; somewhat sloppily we refer to v as to 
“a game”. v is sim:le if v: c T{O, l} holds true. 

Unions of coalitions and players are written S u i instead of S u {i>; S + T and 
S + i denote disjoint unions. Similarly, i < T denotes i < j (j E T) (S, TE P, i, j E Sz). 

Given a simple game u, W= W(v) = {SEE 1 v(S) = l} is the system of winning 
coalitions while 

W” = W”(u) = {SEF~IU(T) = 0 for TsS} 

is the system of minimal winning coalitions (“min-win coalitions”). 
A vector M = (Mi)ieRE rWq is tantamount to a function on E via M(S) = xieS Mi 

(SE P) (thus, it is a nonsimple “game”) and hence called a “measure” (M is additive). 
Games and in particular measures, may be restricted on subsets T E 52, the notation is 
vlT or MIT; e.g. 

4AS) = o(Tn S) (SEE), 

VITP) = 4s) WpV)); 

the version living on P(Q) and the one living on P(T) are not distinguished. We 
tolerate u 10. 

If M is a measure and A > 0, then (M, A) is a representation of u if 

u(S) = :, L M(S) 2 2, 
M(S) < 2 

holds true, in this case we write v = v y. Of course, integer representations are of 
particular interest. 

A measure M is said to be homogeneous w.r.t. 2 E [w+ + (written “M horn P) if, for 
any TEE with M(T) > A, there is S c T with M(S) = A. 

A game v is homogeneous if there exists a representation (M, A) with M horn 1 and 
v(Q) = 1. (The definition is due to von Neumann and Morgenstern [lS].) 

We assume all representable games to be directed, i.e., there exists a representation 
(M, A) such that i < j implies Mi 2 Mj (i,jsL?). 

Thus, the “strong” or “large” players (the ones with big weight Mi) are first in 
enumeration (or “index”). In particular, if 1(S) = max { i I i E S} for S E P, then I(S) is the 
“weakest”, “smallest”, or last player in S. 

While players are ordered according to “size”, coalitions are ordered lexicographi- 
tally. In particular, the lex-max min-win coalition is the lexicographically first minimal 
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winning coalition; in a homogeneous game with a homogeneous representation 
(M, A) this coalition is sometimes denoted by S(O) or S@) (an interval with measure 
M(S’“‘) = A). 

Players i and j are of the same type (written i N j or i N 0 j), if, for all S E 52 - (i + j), 
v(S + i) = u(S + j) holds true. A representation (M, 2) is symmetric if i N j implies 

Mi = Mj (i, je!2). 
Player i E R is a dummy if v(S u i) = u(S) for all S EL. All dummy players are of the 

same type. Note that the game is assumed to be directed; thus, the definition of types 
induces a decomposition of 52 into intervals 

6’ = TI + ... + T, 

of players of one type. in T, is also expressed as “i is of type p”; thus 

R = (1, . . ..Y} 

denotes the set of types. If dummies are present, then Y is “the dummy type” and, in 
a natural way, type p is “stronger” than type p + 1 ( p E R - I). 

We shall refer to “dummy” as to a character that may or not be attached to a player. 
There are two further characters, “sum” and “step”, which we are going to explain now. 

To this end, fix a nondummy player ies2. 
Among all min-win coalitions containing i, let L”’ be a one with minimal length, i.e., 

/(L”‘) = min{1(S)IS3ii, S,Fm}. 
Then 

CC’):= [QL”‘) + 1 b] 

is the domain of i and ‘M(j) - :- MIc(w is i’s satellite measure. 
Now, if M”‘(C(‘)) 2 Mi, then i is a sum (“his character is sum”), since he may be 

replaced in a min-win coalition by a coalition of smaller players, his weight being the 
sum of the weights of the smaller players. 

In this case, we call u@) := r_$Ii’ the satellite game of i (a homogeneous game!). Also, 
S”’ = SM, M”) is the coalition of i’s satellites; this is the lex-max min-win coalition of rY). 

Otherwise, if M”‘(C(‘)) < Mi, then i is a step. In this case his (“pseudo”) satellites 
are the members of his domain, i.e., we put Sci):= Cc’). 

“Sum” and “step” are possible characters of a player-like dummy. From this, there 
results a further decomposition of 52 into the sets of characters 

Q=C+I7+A, 

where 1 = C(v) = {iEQ)is a sum>, L7 = n(u) = {steps} and A = A(v) = {dummies}. 
C as well as d may be empty while n is not. 

Remark 0.1. The following is well known (Ostmann [6], Rosenmiiller [lo], Sudholter 

Cl41 ). 
(1) The smallest nondummy player is always a step. Its domain may be the empty 

set. If u is a constant-sum game, then the smallest nondummy is the only step. 
(2) A homogeneous game has a unique minimal representation (M, 1) (e.g., in the 

sense that (M, 2) is integer and M(Q) is minimal), this representation is symmetric and 
attaches weight 0 to dummies. 
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(3) A pair (M, 2) is a homogeneous representation of v iff there exists real numbers 
di B 0 with di > 0 (ien), di = 0 (ieC) such that 

Mi = Ai (i E A ), 

Mi = Ai + M(S”‘) (ieC u II) 

holds true. (Ai (in 52) is the “jump at i”.) The unique minimal representation is 
obtained by putting Ai = 0 (iE A), Ai = 1 (i En). 

(4) Let jEC and let ieC (j) be a nondummy w.r.t. u(j) (suitably, we write 
i $ A (j) := A (v(j))). Then i has domain, satellites etc. w.r.t. v (j); let C(i,j), M(i*j) denote his 

domain and satellite measure w.r.t. v(j). Then 

C(i)= u {C(iqj)ljEC, iEC(j), i$A(j)), 

M(i) = max {M(i,j) ljE C, iE C(j), i$A (j)} 

holds true with an obvious interpretation of “max”. 
(5) If i$S’“‘, then iEC iff ieC(j’ for some jES(‘). Also, iEA if ied for all jES(“). 
(6) Let jES(“) and let 1’ = I(S”). Then C (j) = [I” + 1, b]. Sci) n I7 is the coalition of 

“inevitable players” (i.e., those that are present in every min-win coalition). If all 
players in S@) are steps (inevitable), then v is the unanimous game of the members of 
S’ (with minimal representation 

_ - 
(M, 3,) = (l,..., 1,O ,..., 0;/1)). 

; 
Apart from the inevitable players, no further steps occur in S”. 

(7) In every homogeneous representation (M, ,I) of v, sums of the same type have the 
same weight. Steps of the same type may have different weight, but then they appear 
or do not appear simultaneously (“as a block”) in every min-win coalition. 

1. Monotone representation 

Representations of homogeneous games are essentially defined by prescribing the 
“jumps” at the various steps. This section serves to study the consequences if the 
jumps are considered to be (positive) affine functions of a real parameter. 

Lemma 1.1 (small steps belong to i’s domain). Let v be a homogeneous game and let 
i < z be two players of diferent type. Zf z $ C, then z E C”‘. 

Proof. By induction on the number of types. If there is just one type, nothing has to be 
proved. 

Otherwise, let S(‘) be the lex-max min-win coalition. z cannot be an inevitable 
player (since i precedes him and is of different type). Also, z cannot be one of the sums 
in SC”). Hence, z $ S(I), and if i E S(‘) the proof is done. 

If i $ SC”), then consider, for every sum j E S(‘) the satellite game v(j). In at least one of 
these satellite games, i and z are of different type. Since z #C, we have r 4 C(j). By 
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induction, r E C(i*j’. Since 

C(i) = u C(i,j), 

our claim follows. 0 

In order to simplify matters we will, for the remainder of this section, assume that all 
games under consideration have no dummies. 

Definition 1.2. Let i, z ~52 and i < ~EZI. We shall say that r is the next step following 
i if i and z are of different type and there is no step in [i + 1, z - 11. 

Before proceeding with representation theory we have to shortly discuss two 
mechanisms connected with the replacement of players (sums) by smaller players in 
a homogeneous game. 

To this end, let v be a homogeneous game. 
Consider SEE” and let 1= 1(S) again denote the last player in S. Suppose jES is 

such that 

[j,l]CS, S-j+[I+l,n]EE (I) 

Then j is expendable; we may replace him in S by an interval of smaller players, thus 
generating a coalition 

pj(S) := S -j + [l(S) + 1, t] (2) 

where t is uniquely defined by M( [l(S) + 1, t]) = Mj. This procedure is based on the 
Basic Lemma (Rosenmiiller [lo]), see Sudholter [14]. 

On the other hand, let TEE and suppose that r$ T satisfies 

[r + 1, l(T)] E T. (3) 

Then r is the lust dropout (see Rosenmtiller [lo]) and there is a unique 
t’E[r + l,l(T)] such that 

q(T) := T + r - [t’, l(T)] (4) 

is min-win. That is, cp inserts the last dropout and cuts off an appropriate tail of T as to 
generate a min-win coalition. And thus, pj renders j to be the last dropout if he is 
expendable in S. 

Clearly, if r is the last dropout in T, then (he is expendable in q(T) and) 

~,(cp(T)) = T. 

Similarly, if j is expendable in S then (he is the last dropout in Pj(S) and) 

cP(Pjts)) = S 

holds true. 

(5) 

(6) 

Definition 1.3. Let v be a homogeneous game. A family of representations 

(M(a), W),,n+ + 
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is said to be afine, if there are constants Ai > 0 and Bi > 0 (i E n) such that Mi = Mi(a) 
satisfies 

M. = A.a + Bi + M”‘(P) I I @En), 

Mi = M”‘(S”‘) (i~C), 

A.(a) = M(SO) (where So is the lex-max min-win coalition) 

that is, the jump at every step is a (“positive”) affine function on [w, + . 

(7) 

(8) 

(9) 

Remark 1.4. (1) For a~lW++, (M(a), n(a)) is a homogeneous representation. 
(2) By induction it is easily seen that there are vectors E, FE lR!f such that F > 0 

and 

Mi = Mi(a) = Eia + Fi (i E 52), (10) 

hence 

M(a)(S) = aE(S) + F(S) (SEE). (11) 

Thus, an affine family of representations is equivalent to an affine mapping from [w + + 
into the homogeneous representations of u (regarded as a subset of Ro). 

For short, we shall write (M( .), A( .)) t o indicate an affine family of representations 
(an a.fr.). 

(3) Satellite measures, lex-max coalitions etc. do not depend on a. Therefore, it 
makes sense to state that, for each ~EC, 

(M’i’(‘), Si(‘)) 

is an a.f.r. of the satellite game u(‘) etc. 

Definition 1.5. Let v be homogeneous. An a.f.r. (M( .), A( .)) is said to be monotone if, 
for every inn, the constants Ai and Bi as required by (7) satisfy 

(12) 

A monotone (M( .), A( .)) is strictly monotone “at i E II” if C@) # 0 and (12) is a strict 
inequality for some Jo Cci), thus i is not of the smallest step’s type by Remark 1.7. 

A monotone (M(. ), ,4(. )) is strictly monotone if it is strictly monotone at some i E II 
which is automatically not of the type of the smallest step. 

Note 1.6. For nonnegative reals a, b, c, d with b, d > 0 it is clear that 

a c ( > a+c . ac -- max b,d >b+d>mln b,d 
( 1 

-- 

and, in addition, if one inequality of (13) is strict, then so is the other one. 

(13) 

Remark 1.7. Suppose u has two steps of different types, that is, there is iEll such that 
i and b are of different type. In view of Lemma 1.1, we know that C”’ # 8. It is then easily 
established that there exists a strictly monotone affine family of representations of a. 
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Lemma 1.8. Let v be a homogeneous game and let (M( .), A( .)) be a monotone a&r. Let 
i E Q be such that C(‘) # 0. Then the following two statements hold true: 

(1) 

Ei E(C”‘) 
-a- 
Fi F(C”‘)’ 

(2) For all i,jEQ with i d j, C@) 3 C”’ f 8, 

E(C”‘) E(C”‘) 
> 

F(C”‘) F(C”‘)’ 

(14) 

(15) 

Proof. We proceed by backwards induction beginning with i = b. If i = b, then 
C”’ = 0 and nothing has to be shown. 

Next, pick i,E[l, b - l] and assume that the lemma is true for all iE [iO + 1, b]. 
Again, if CciO) = 0, then we have nothing to prove. Therefore we assume CciO) # 0 

and we proceed by verifying (14). 
Naturally, we distinguish two cases according to whether i0 is step or sum. 
Case 1: iO is step. Then 

Ai,, E(C”“‘) 

Bi, ‘F(C”O’) 

(by (12), (13) and (14)), thus 

Ei,_ Ai, + E(C"") E(C”“) 

Fi, - Bi, + E(C”“‘) ’ F(C”“‘)’ 

Case 2: i,, is sum. Then Ei, = E(S”“‘) and Fi, = F(S”O’) by the recursive definition of 
weights (cf. Definition 1.3 and Remark 1.4). 

If it so happens that S(‘O) = C@O), the proof is already finished. Otherwise, we 
proceed as follows using the induction hypothesis. We have, for all ie SciO) and 
ir = l(,(io)) 

Ei E(C”‘) E(C”“) 
-3- ~ 
Fi F(C”‘) ’ F(C(“))’ 

and hence 

E(pq jqC(il’) 

F(s0 2 F(C’i”) by U3) 

as well as 

Ei,, E(p)) + Jqc”“) E(C”O’) 

Fio ’ F(‘pl’) + F(C”“) = q$r); 

this completes the induction to verify (14). 
Now, in order to verify (15) consider some j, iO < j, such that 

0 + C(j) S CM. 
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It suffices to show (15) for such a j that yields a maximal size 1 C”‘l. 
By definition we can find a coalition SEE(~)(V) such that 

1(S) = min C(j) - 1. 

We claim that [min CciO), l(S)] E S, indeed, otherwise min CciO) < I(cp(S)) < I(S) 
would contradict the maximality of 1 C(j)l. Thus Cci) # 0 (i E [min C@O), l(S)]). 

Using (14) and the induction hypothesis, we have 

E. E(C”‘) 
‘>p 
Fi F(P) 

for i E [min @), 1(S)] and hence 

E(@)) E(C”‘) q 
f-(c(io)) ’ F(cW) 

A monotone a.f.r. enjoys a certain monotonicity property with respect to the 

quotient Ei/Fi (i~s2): essentially the quotients are increasing with weight (i.e., from 
right to left). 

More precisely let 

11 l,..*,lr} = {QS)lSEWYtN 

denote the lengths of min-win coalitions, ordered with increasing index, i.e., 

11 < ... < 1, = b, 

(player b is no dummy!). 
Then, in view of our definition of Cci), we have 

{C(‘)liEQ} = ([lj+ l,b]lj~[l,r]}. 

Define 

G, := E([lj + l,bl) 
J F([lj + l,bl) 

(JECL r - 13, 

then (15) implies that Gj is decreasing in j (i.e., “increasing from right to left”). Also, 

(14) tells us that 

~ 3 Gj (iECU, lj]). 
I 

Thus, we imagine Fig. 2. 

Definition 1.9. Let u be a homogeneous game with steps of different types and let 
(M(.), A(.)) be a strictly monotone a.f.r. A coalition SEW”‘(U) is said to be strictly 
monotone, if l(S) < b and there is a player YES with [i, l(S)] c S such that 

Ei E([l(S) + 1,bl) 
E ’ F([l(S) + 1, b])’ 

(16) 
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Fig. 1. 

Corollary 1.10. Ifv is a homogeneous game with steps ofdiferent types and (M( .), A( .)) 
is a strictly monotone a.$r., then the lex-max min-win coalition S(“) is strictly monotone. 

Proof. Definitions 1.5 and 1.9 imply the existence of a strictly monotone coalition S, 
take L(‘) if r induces a strict inequality in (12) (cf. Fig. 1). 

Therefore it suffices to show that for all strictly monotone S # S(‘), it is always true 
that q(S) is strictly monotone. 

To this end pick a strictly monotone S # S” and pick kES such that 
q(S) = (S + k) - [l((p(S)) + 1,1(S)]. Also pick i,ES satisfying (16) for i = iO. 

Clearly, we have to distinguish two cases according to whether iO has been dropped 
by applying cp or not. 

Case 1: i,Ecp(S). Put 

s’ = C1(q(s)) + l, l(Pio(cP(s)))l 
and 

s2 = [l(S’) + 1,1(S)] 

as well as 

T = [l(S) + 1, b]. 

Observe that E(S1) = Eio, F(S1) = Fi,, thus by definition 

E(S’) Eio E(T) -=->----_. 
F(S’) Fio F(T) 

By (15) and (13), 

E(S2) E(T) 
F(S2) a F(T) 

(cf. Fig. 2), thus 

E(S’) + E(S2) E(T) 

F(S’) + F(S2) > F(T) 
and 

E(S’) + E(S2) E(S’) + E(S2) + E(T) 

F(S’) + F(S2) ’ F(S’) + F(S”) + E(T) 

E(C&(S)) + 1, bl) 
= FKMS)) + 1, bl)’ 



62 J. Rosenmiiller, P. Sudhiilter 1 Discrete Applied Mathematics 50 (1994) 53-76 

Fig. 2. 

This implies that i0 satisfies (16) suitably changed to i0 and q(S). 
Case 2: io$cp(S). Put S’ = [l((p(S)) + 1, I(S)], thus ie~S’ and E,/Fi, > E(T)/E(T) 

where T is defined as in the first step. Using (13) we obtain: 

W’) E(T) 
F(S’)‘F(T) 

and 
E(S’) E(S’) + E(T) 

P(S’) ’ F(S’) + E(T)’ 

Again by (15) (see Fig. 2) our claim follows. 0 

Theorem 1.11. Let u be homogeneous and (M( .), A( *)) an a&r. Dejne 

Q:R+++ R 

Q(a) = 3. 
M(a)@) 

(1) Zf(M( .), A( .)) is monotone, then Q is a monotone increasing function in a. 
(2) Zf(M( .), A( .)) is strictly monotone, then so is Q. 

Proof. Clearly (omitting the argument a) 

M(S(“‘) aE(S’“‘) + F(S’“‘) 
-= Q(a) = M(OJ 

aE(C2) + F(a) 

In order to show that this is (strictly) monotone, it suffices to show that 

E(S’“‘) > E(S2) - - 
F(S’“‘)(-)F(SZ) 

(17) 

(18) 

(19) 

holds true. 
But this inequality is a direct consequence of Lemma 1.8, (13) and (15). For the strict 

inequality we have in addition to invoke Corollary 1.10. 0 



J. Rosenmiiller, P. SudhBlter / Discrete Applied Mathematics 50 (1994) 53-76 63 

2. The nucleolus preliminary results 

From now on we shall always assume that any homogeneous game under con- 
sideration has no dummies. 

Therefore, the smallest player is always a step (Remark 0.1(l)). Following the 
tradition of Sudholter [14] and Peleg and Rosenmiiller [9] we speak of a homogene- 
ous game “without steps” if the smallest player is the only step. Note that for games 
“without steps” the representation is unique up to a multiple and that constant-sum 
games are games “without steps”. 

Definition 2.1. 

x* = x*(Q) = (xdPIx(f2) = l} (1) 

is the set of pre-imputations. Also 

x=x(Q)={xEx*(Q)~x~o} (4 

is the set of pseudo-imputations. 

The nucleolus of a game was introduced by Schmeidler [12], see also Maschler, 
Peleg and Shapley [S]; usually, it is defined with respect to a set of payoff vectors. 
Tentatively, the pre-nucleolus J”*(v) is meant to be the one defined with respect to X * 
and the pseudo-nucleolus M(v) is meant to be defined with respect to X. 

In [12] it is shown that the pseudo-nucleolus consists of a unique pseudo-imputa- 
tion v = v(v) (also called “the pseudo-nucleolus of v”). 

Note that in our context of homogeneous games, we assume neither superadditivity 
of v nor do we exclude singletons to be winning coalitions. However, even if single 
players form winning coalitions (“are winning”), we do not encounter additional 
problems, for Jlr* and Jf are equal, as is stated by the following lemma. 

For any game v on Q and x E [WR let us use the notation e(S, x) = v(S) - x(S) to 
denote the excess of x (at S). Also let 

p = .LL(X, u) = max{e(S, x) 1 SEE} (3) 
and 

JZ = &(x, 0) = {S EP ( e(S, x) = ~(x, u)}. 

Now, we have 

(4) 

Lemma 2.2. Let v be a homogeneous game. Then J*(v) = J(v). 

Proof. Since X c X*, it suffices, given any x* E X * with negative coordinates, to 
construct x E X such that 

&, v) < I*(x*, v) 

holds true. 

(5) 

To this end, fix x* E X* and define 

P := {iEQ(x: > Oj, N := {iEQ;2xf < 01, (6) 
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we assume N # 8. Pick x E X such that the following conditions are satisfied 

0 < xi < xi* (iEP), (7) 

O=xi (iE52-P). (8) 

Now consider SE&(X, u). If P E S, the 0 2 e(S, x) = ~(x, u) is verified at once. As 
e( {i}, x*) > 0 (i E N), we are done, since (5) holds obviously true. 

If, on the other hand P E IS prevails, then let S := S u N. Clearly 

v(S_) 3 v(S) (9) 

since any homogeneous game is monotone (actually, monotonicity is sufficient!). 
Moreover 

x*(S -) = x*(S n P) + x*(N) 

= x*(S n P) + x(P) - x*(P) 

(since x*(N) + x*(P) = 1 = x(P)), and thus 

x*(s -) = x(P) - x*(P - S) 

=(x - x*)(P - S) + x(PnS) 

= (x - x*)(P - S) + x(S) 

< x(S) 
(observe (7) and (8)). Combining (9) and (10) we obtain 

e(S-, x*) = u(S) - x*(S) 

3 u(S) - x*(s -) 

> u(S) - x(S) = e(S, x), 

which proves (5). 0 

According to Kohlberg [4], a collection 

?J = {&J, . ..> &>’ & s p (4 = 0, . ..YP) 

of systems of coalitions is called a coalition array if E, contains only singletons and 

El+ . ..+B =p =P = 

holds true. 
Given a homogeneous game u on 52 and a pseudo-imputation x E X, a coalition 

array Q(x, u), i.e., 

,Bo = E,(x), E1 = B,(x,u), . ..‘$ = B,(x,u) 

is specified as follows: 

gOlx) = {Ii> I xi = O>, 
e(S,x)=const (SEEj(X,U))(j= l,..., p), 

e(S,x) < e(T,x) (SEEj(x,u)z TEij-l(x,u)) (j = 2, . . ..P). 

(11.1) 

(11.2) 

(11.3) 
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A coalition array has property I if, for all 4 E [ 1, . . . , p] and y E RR satisfying 

Y(S) 2 0 (12) 

Y(Q) = 0, (13) 

it follows that 

holds true. 
A coalition array has property II if, for all 4 E (1, . . . ,p} there is a system of 

coefficients es > 0 (SEC;= 1 &) and cs 2 0 (SE &) such that 

c csls = 1,. (14) 
sEu:=o”, 

This means in particular that uy=, Bj is weakly balanced. 
The above exposition follows Kohlberg [4]. For our purpose we quote some of his 

results as follows. 

Theorem 2.3 [4]. If v is a homogeneous game, then 

N(v) = {x E ?X ( 39(x, v) has property I> 

= {x ~9” 1 W(x, v) has property II}. 

Again, it should be noted that the assumption v({i}) = 0 (iEs2) (i.e., there are no 
winning players) can be dropped without destroying the proofs. 

Theorem 2.4. Let v be a homogeneous game and let 

rc=max{iEQ({i}E~} 

be the smallest winning player (max@ = a - 1). 
(1) 1f~ = b then 

(n := b - a + 1). 

(2) If IC < b, let v” denote the homogeneous game on 6 = [JC + 1, b] which is obtained 
by dropping the winning players. Also, let C = v(C) and 

d := 1 - /L(C, v”), 

2 := (E )...) E,i&++l,..., fb)/((k + 1 - a)E + 1). 
I / (15) 
K+l-atimes 

Then v(v) = R. 

In other words, the pseudo-nucleolus of v is obtained by computing the one on 6, 
then assigning d to the winning players and finally resealing. 
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Proof. The cases K = b and IC = a - 1 are trivial; so we have to concentrate on the 
second case for a < K < b. 

Consider the coalition array a(X, u), we would like to show that it enjoys property I. 
To this end, fix 4 E [ 1, p] and let y E IWo satisfy (12) and (13). 

First of all note that yj > 0 for Jo [a, rc]. For, in view of e(m, {j}) = 1 - Zj = 
1 - (1 - p(G, V”)),((k + 1 - a)E + l), it turns out that {j} EB~(Z?,U); Thus, y is non- 
negative on [a, rc]. 

Next, if y( [a, K]) = 0, then clearly y(S) = 0 for all SECT= 1 Bj(x”, 0); this follows by 
the fact that G is the nucleolus of 6. If 6 is the unanimity game then obviously 
y( [k + 1, b]) 3 0, thus y( [a, k]) d 0; th_erefore we assume that v” is not the unanimity 
game. In this case, if 0 < ~([a, K]) =: /I, then define 

B 
Yrc+l + b_Ic'-vyb + (16) 

It is not hard to see that J indeed satisfies (12) and (13) with respect to the game v” and, 
say, 4 = 1. This is a contradiction to Theorem 2.3, since ij is the nucleolus of v”, hence 
this case cannot occur and we have finished our proof. 0 

The last theorem shows that we may disregard the case that winning players are 
present. 

Hence, from now on we shall assume that all homogeneous games under considera- 
tion have no winning players (i.e., Mi < A (i~sZ) for any representation (M, A) of 
some u). 

Consequently, the prefixes “pre” and “pseudo” may be omitted, thus 6E is the set of 
imputations and v = v(u) the nucleolus. 

Remark 2.5 (Kohlberg [4, Theorem 1.41). Let K denote for the moment the last player 
who gets a payoff with the nucleolus, i.e., 

K=IllaX{iESZ~Vi>O}. (17) 

Then {S n [a, K] 1 SE A(x, u)} is strongly balanced. 

If v is a homogeneous game “with steps of different type” (other than the smallest 
nondummy), then it can be inferred easily, that Em cannot be strongly balanced (see 
also Remark 5.4 in Peleg and Rosenmiiller [9]). 

Now, in view of the exhibition presented in Section 1, we can easily show that @‘“’ 
cannot be weakly balanced. In fact, we show a bit more: 

Corollary 2.6. Let v be a homogeneous game with steps of different type (no dummies, no 
winning players). Then lo is no linear combination of (ls)sew-. 

Proof. Let (M( .), A( .)) be a strictly monotone a.Er. and suppose that, for some system 
of coefficients (c~)~~~,,,, we have 

c csls = 1,. 
SEW- 
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Then 

M(a)(Q) = c c&f(a)(S) = A(a) 1 cs. (18) 
.ssEm s EW” 

Now, Ccs is a constant, thus (18) contradicts Theorem 1.11, which states that the 
quotient ~(a)/(M(a)(Q)) is a strictly increasing function. 0 

3. The nucleolus for games with steps 

As we have mentioned, we will from now on only deal with homogeneous games 
without dummies and winning players. 

The behavior of the nucleolus for games “without steps” has been described in Peleg 
and Rosenmiiller [9]. Here, we want to tackle the same problem when steps are 
present. 

There is an inductive procedure involved in our method which (unlike the method 
of satellite games as explained in Section 0) uses a truncation procedure cutting off 
smaller players. To explain this version of “truncated games” we have to shortly recall 
the theory of the incidence vector of a homogeneous game (without steps), as de- 
veloped by Sudholter [14]. 

To this end we fix 52 = [l,n] (!) throughout this section and focus our attention 
(initially only) on a homogeneous game v without steps. Let (M,A) be its unique 
minimal representation so that v = vy. 

Next, recall the replacement procedures as described in Section 1: Player j E S E r 
is expendable in S, if 

Cj, 11 c S, S-j+ [1+ l,n]Er, (1) 

where 1= l(S); replacing him yields a coalition 

pj(S) I= S -j + [l(S) + l,t] (2) 

with suitable TV [l(S) + 1, n]. And if r$ TEE, such that 

[r + 1,&r)] G T (3) 

then I is the last dropout; inserting him yields 

q(T) := T + r - [t’, l(T)]. (4) 

The relations 

p&(T)) = T 

and 

cP(Pj(s)) = s 

are immediate consequences (cf. Section 1). 
According to Sudholter 1141 we have 

(5) 

(6) 

Lemma 3.1 (cf. [14, Theorem 2.3, Definition 2.41). Let v be a homogeneous game 
(without dummies and winning players). Assume that v has no steps. Then there is 
a unique sequence S1, . . . , S, of min-win coalitions dejined by the following procedure. 
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(1) s1 = S’“‘. 
(2) For every ke[l,n - 11, the system & := {Sili~[l,k], k is expendable in Si> is 

nonempty. 
(3) Among all Si E& with minimal length l(Si), let Si, be the one with smallest (first) 

index. 

(4) sk+ 1 = PktSioh 

Definition 3.2. Let S 1, . . ., S, be given by Lemma 3.1. Then 

1 = l(O) = (11, . ..) 1,) := (l(SI), *. . > GJ) 

is the incidence vector of v. 

The incidence vector characterizes v uniquely [14, Theorem 2.101. (The term 
“incidence vector” can be defined abstractly.) 

Given the incidence vector, the game u can be obtained by “reversing” the proced- 
ure of Lemma 3.1. In other words, the sequence S1, . . . . S, can be constructed in 
a unique way and, since we are dealing with a game without steps, the unique minimal 
representation is obtained at once. 

Let us shortly describe this “reversal procedure”. 
Given 1 = l(“) = (II, . . . . l,), the staircase corresponding to 1’“) (and hence to v) is the 

vector 

n = 7c(V)E N” 

given by 

nk=min{ljlj< k< lj} (k= l,...,n) (7) 

(with the convention that mine = 0). If 71 is regarded as a function of k, then it is 
monotone and can be identified as a “quadratic step function” since the heights of 
jumps and the length of plateaus are equal (see [14, Section 31). E.g., if 1 equals 

1 = (3,7,6,5,7,7,7,8) 

then 

7.c = (3,3,3,5,5,6,7,8). 

(8) 

Thus 71 appears as a staircase with square steps that vary in height and width 
simultaneously (and with appropriate view, 1 decreases on the plateaus of rc but 
dominates 71, cf. Fig. 3). 

(On the other hand, zk denotes of course the minimal length of a coalition in Sk, if 
we view Lemma 3.1.) 

Now, define the selector to be the vector w = c#“) = w(“) which is given by 

Cok=min{jIlj=7rk} (9) 

(again min 8 = 0). Then o selects the appropriate index iO in the formulation of 
Lemma 3.1. More precisely, given 1, the sequence S1, . . . , S, as specified by Lemma 3.1 
is given by 

S1 = CLl11, (10.1) 

Sk+1 = S,,- k + Clw, + L4+11 = PGLJ. (10.2) 
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E.g., in the example suggested by (8), we obtain 

w=(l,1,1,4,4,3,2,8) 

telling us that, e.g., in the fifth step of the construction suggested by Lemma 3.1 we 
have to render player 4 to become the last dropout in Sq. 

Remark 3.3 (Sudholter [14]). Let (M,A) be the minimal representation of a homo- 
geneous game with steps; assume 52 = [l, n] and write M = (M,, . . . , M,). Let 
M:= (I$,, . . . . M,, 1). Then vy is an ((n + 1)-person) homogeneous game without steps 
and (M, A) is its minimal representation. 

Intuitively, if we add a player of weight 1, then his weight can just be used to close 
the “jumps” that appear at a step (cf. Section 0). 

Definition 3.4. Let 52 = [ 1, n + l] and let 1 be an incidence vector (of a horn game for 
n + 1 players without steps). Let K E [2, n]. The truncation of 1 at IC is the vector 

i = icK)e NjK+l given by 

I 

li, ii d Icy 

ii = Ic, K<li<Iz, 7T-l<lC, (11) 

Ic+ 1, otherwise. 

(7CEN ‘+I is the staircase corresponding to l!) 

Remark 3.5. icK) is an incidence vector. 

Proof. This follows immediately by the observation that @) enjoys a corresponding 
staircase, namely 

7P) = (K A 71[I,,.],K + 1) (12) 

where “min” (= A ) has to be taken coordinatewise. 0 



70 J. Rosenmiiller, P. Sudh6lter / Discrete Applied Mathematics 50 (1994) 53-76 

Definition 3.6. Let v be a homogeneous game (with steps) on Q = [I, n]. Let K E [2, n]. 
The truncation of v at K, tJ@) is defined as follows. 

(1) Let (M, A) be the minimal representation. Let (6, A) be obtained by Remark 3.3 
and let 1 be the incidence vector of B =py. 

(2) Let jE lWK+l be the truncation of 1 at K as defined by Definition 3.4. 1” generates 
a homogeneous game fi on [l, K + l] with minimal representation (A%, a), &E lWK+r. 

(3) ?P’ IS the game which is (minimally) represented by 

n;i := (kr, . ..) ti,) = K&& 

;i := a. 

Note that homogeneous games without steps indeed attach weight 1 to the smallest 
two players (w.r.t. the minimal representation). Of course the one-to-one correspond- 
ence between homogeneous games and incidence vectors is heavily used (cf. The- 
orem 2.10 of Sudholter [14]). 

Our first aim is to obtain some insight into the structure of the truncated versions. 
The following lemma is an attempt to describe the min-win coalitions of some P. 

To this end, let us slightly augment our notation: 
If SE F”‘(v) and Y $ S, r < I(S) (Y is any dropout), then: 

q&(S) := (S n [l, r - 11) + [r, t’] E H/(v). (13) 

Thus, q,(S) is the lexicographical first min-win coalition among all coalitions T with 
Tn[l,r-l]=Sn[l,r-11. 

Lemma 3.7. Let v be a homogeneous game (on Q = [l,n]) and let K E [2, n]. Then 17~~) 
has the following properties. 

(1) Zf i E [ 1, rc] is a step of I?(~), then i is a step of v or i -B~X~ K. On the other hand, if 
i E [l, K] is a step of v, then he is a step of v@). 

(2) Zf S E [l, K] and SE Em(v), then SE ~“(IY”‘). 

(3) If S G [ 1, K] and SE F$‘“(v”‘“‘) - r(v), then K ES and S $ H/(v). 
(4) Zf S c [l, K] and SE w(i?“‘), then S + [K + 1, n] E E(v). 
(5) Ifs 2 [l, K] and SE B/“(v), then [l, K] E Ff"(fi(")) and fiCK) is the unanimous game 

O!CL~l. 
(6) If SE Em(v), S G I[~,K], S z I[~,K], and, with r = l([l,rc] nSC), q,(S) 

E [l, K - 11, then S n [l, K] E Wm(dcK)). 

Proof. (1) Given v, let i~lY”+l be defined via Definition03.6(2). In view of [14, 
Chapter 21, it is known that player i is a step w.r.t. G(K) iff li+ 1 = K + 1. In view of 
Definition 3.4, this leaves two alternatives for li+ 1: either li+ 1 = n + 1, in which case 
i is a step of v. Or else rci > K. But then (see (12)) rcjK) = K and i - a~~, K. 

The reverse statement is seen analogously. 
(2) To prove the second statement, assume that, on the contrary, for some 

s g [l, K] it turns out that SE FI/‘[v) and s$ ~“‘(~‘“‘). 
Clearly, since in this case II = 11, S is not the lex-max min-win coalition of v. 

Hence, there exists the last dropout of f, say r $ S, r < l(S). 
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Now, among all S with this property collect those with minimal length I(S). And, 
among all those with minimal length, choose a one with maximal last dropout r. Call 
these now S and Y again. 

Define 

T := q(f). (14) 

Then, because l(T) < l(s) holds true, it follows from our choice of S that 

TE F”‘(zI) n F’“(EcK’). (15) 

Next, we know that the procedure indicated by Lemma 3.1 (and [14, Theorem 2.31) 
yields two min-win coalitions of v, say Si, and S,+ i such that player r is expendable in 

Si, and 

Sr+ 1 = Pr(Sio), cPCsr+ 1) = sio. (16) 

More precisely, 

l(Si,) = min{1(S) 1 S3r, SE Em(v)} = 71, (17) 
and 

1(S,+,) = min{I(S)IS$r, S3r + 1, SE Em(v)} = I,+i 

while 

(18) 

Sion[l,r-l]=S,+in[l,r-11 (19) 

is also true. Clearly, S,E Em(P)) in view of (17); in fact it follows from (17) that 
l(Si,) d I(T). However, I(Si,) < l(T) IS impossible in view of our choice of Sand r. But 
r(Si,) = I(T) implies via application of cp (cf. (14) and (16)) that 1(S,+ i) = r(S) holds 
true. 

In this case, (18) shows that SE I, and we have completed our proof of the 
second statement. 

(3) The third statement is verified by a sequence of analogous arguments. 
(4) Follows from the definition of 1. 
(5) A trivial consequence. 
(6) Follows from Definition 3.6 and from (1). 0 

We are now in the position to tackle the nucleolus of a homogeneous game with 
steps. To this end, in what follows z = z(u) denotes the first (largest) step of a homo- 
geneous game v, i.e., 

2 = min(iESZliEfl(21)). (20) 

Similarly, r = z(v) is the smallest player of the type of z, i.e., 

z=max{iEQli~~}. (21) 

Note that [z, r] consists of steps that appear as block in any min-win coalition if they 
appear at all. Of course I = z will frequently happen. 

Theorem 3.8. Let v be a homogeneous game on 52 = [l, n] and let z = z(v) be the 
smallest player of the largest step’s type. Let v = v(v) be the nucleolus of v. Then 
V 7+1 = ... = v, = 0. 
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Clearly, we have to treat the case of a game v with steps of different type only. Then, 
Corollary 2.6 shows at once that v, = 0 is necessarily true. The problem is that 
Corollary 2.6 cannot be employed immediately in order to prove that all players 
behind the first steps get zero at the nucleolus, here we have to fall back on 
a truncation. 

Proof. Assume that, on the contrary, there is K E [z + 1, n] such that 

v,+1 3 ... 2 v, >o = v,+1 = ... = v,. 

The proof proceeds by treating various cases separately. 
Case 1: Assume that there is a coalition SE dl(v, v) such that z E L?, [z + 1, JC] c 1% 
This case is of course easy: define an imputation x E X via 

i 
vi, iE [l, z - l] u [K + 1, n], 

i = 7, (22) 

I vi 
T, iE [z + l,rc], 

and observe that ~(x, v) Q ~(v, v) while s$~Y(x, v). 
Because “steps rule their followers”, no min-win coalition has larger excess at x than 

at v and s has a smaller one, this contradicts the fact that v is the nucleolus. This 
finishes our proof for Case 1 at once. 

We may now assume that no $ of the kind treated already exists. 
Then JH = &(v, v) allows for a partition, say 

JH=WK+UH+ 

such that 

(23) 

A%_ := {SEA!I[Z,U] ES’}, 
(24) 

_/H+ := {SEAR [z,rc] E S} 

holds true. 
Both sets are nonempty since the nucleolus of a game is contained in the kernel [12]. 
Now, we turn to the truncation ficK) of v at K which, for short, we abbreviate by 

fi := $0. 

By Lemma 3.1, we know that z is a step w.r.t. v” and, “in v”“, r may or may not be of 
the same type as IC (see Lemma 3.7(l)). 

Accordingly, the next two cases treat these two possibilities. The easier one, in 
which r and K are of different type, is considered first. 

Case 2: Let us treat the case that z + cu. 
This means in fact that z is the smallest player of the largest step’s type also in v” (see 

Lemma 3.7( 1)). 
First of all, let us define a mapping 

* : Jz + p-yu) (25) 
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separately for S E &_ and S E A+. 
(1) For S E .&_, define 

13 

s* := s n [l,r]. (26) 

Indeed, S* E IJJm(u) is true since “step r rules his followers”, thus the smaller players to 
the right of r (of K, since SE JZ _ ) cannot appear in a min-win coalition without r. 
Hence a min-win coalition has to be contained in S *. It cannot be properly contained 
since SE .&. 

(2) For SE Jz’+ , define 

S* is the lexicographically first coalition in y*(v) which 
satisfies S* n [l, r] = S n [l, r]. (27) 

Because of the decomposition (23) and (24), S* cannot cut into [r, rc], thus 1(S*) > K 
and [r, l(S*)] c S *. 

From our definition of S* we conclude: 

s* l-l [l, K] E T(G). (28) 

Indeed, for SE Jll_ this follows from Lemma 3.7(2), and for SE Jll, this follows from 
Lemma 3.7(6). 

Furthermore, it is seen that 

Sn[l,rc] =S*n[l,~] 

for all SE&. 

(29) 

The final conclusion is straightforward: By Kohlberg’s result (Remark 2.5) we 
obtain a set of nonnegative 

1 CS1Sn[l,Kl = l[I,Kl. 
SE”.42 

BY (29), 

real-numbers (cs)sE~ such that 

(30) 

c csls* rT[l,lc] = l[l,K]. (31) 
SE”& 

This, in view of (28), means that 1 (l,K1 ([1, JC] is the grand coalition in a!) is a linear 

combination of(ls)SEWm(;j. Since v” has steps (at least r), this contradicts Corollary 2.6. 
Case 3: Now we &at the case that z N ;K. 

Again, we want to construct some contradiction between Remark 2.5 and Corol- 
lary 2.6; however, as we are not in the position to claim that v” has steps, the pro- 
cedure of the case has to be modified. We will eventually consider the truncation 
u’ = rY?‘+ ‘) for some K’ > K and in this truncation (30) and (31) will have appropriate 
analogues. 

To this end, let us proceed by several steps. The first is to define the “critical 
player” K’. 
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Step 1. As r is the smallest player of his type “in v”, there is FE Em(v) such that 
rEF,r+l@. 

Smce r - ;lc, it follows necessarily that rn [K + 1, n] # 8, otherwise T would be 
min-win in r? (Lemma 3.7(2)) and separate r and r + 1. 

Now, choose T to be lexicographically maximal with the above properties (i.e., r E T, 
r + 1 $ T, Tn [K + 1, n] # 0, TE W”(v)). Then we have, in addition 

[z + 2,1(T)] E T (32) 

and 

1(T) > K. (33) 

Again, among all coalitions with these properties, choose the one with minimal length. 
Define 

K’ := l(cp,+r(T)) = min{l(S)ISEV/(v), r + 1~s). (34) 

Now, K' 2 K holds true. Indeed, otherwise r - ; K would be violated by Lemma 3.7(6). 
Consider now the truncation of v at K' + 1, say 

v’ = $K’+ 1). 

By Lemma 3.7(6) and (34) it follows that Tn [l,~’ + l] E r(v’), and as z + l$ r, 
r and z + 1 are of different type in u’. 

Thus (see Lemma 3.7(l)) it turns out that z is the smallest player of the largest steps 
type w.r.t. u’, i.e., 

Z(d) = z(v) = z. 

Therefore, we shall now concentrate our efforts on u’ and try to imitate the procedure 
of Case 2. 

Step 2. Consider any coalition S^E A+ such that [K + l,/(g)] E i. Such coalitions 
exist: we may generate them from arbitrary elements of A+ by successively involving 
the last dropout. We claim: 

l(s^) > K' for all s^ with S^E &‘+ , [K + 1,1(i)] G ,?. (35) 

Indeed, if for some i, (35) is violated, then consider 

&= s^- {Z + l} + {K' + l,...,/(T)}. 

This is a winning coalition of v which satisfies 

v(i) = v(s^) - VT+1 < 49 < 1 - Pb,4, 

contradicting the fact that v is the nucleolus of v. 
Step 3. We can now repeat our argument, as presented in Case 2, but for v’. 
Again define * : A (v, v) + ym(v). 
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For SE_,&: 

15 

s* := Sn [l,r] (36) 

and S* E w”‘(u) follows exactly as in Case 2, while S* n [l, K’ + l] = S n [ 1, rc’ + l] is 
trivial. 

For SE&+, choose S* E pm(v) to be lexicographically maximal with 

S*n[l,z] =Sn[l,z]. (37) 

Then S* n [K’ + l] = S n [K’ + 11 follows from (35). Again, in view of Lemma 3.7(2) 

and (6), 

{S* n [l, K’ + l] I SE&} E Em(u). 

Next, by Remark 2.5, we find coefficients (c~)~~~ such that 

(38) 

But for SE A- it is clear that S* n [l, rc’ + l] = S n [l, rc] (cf. (36)). 
Fortunately, for SE..&+, (35) and (37) yield S* n [1,x + l] 2 [K + 1,~’ + 11. 

Thus, from (39) it follows that 

c cl -1 s S*n[l,K'+l] - [l,K'+l]. (40) 
SEA 

But, in view of (38) 

Corollary 3.9. With 

(v(fY”), 0, . . . ) 0) 
\ I 

n - * times 

is the nucleolus of v. 

(40) contradicts Corollary 2.6. q 

the notation of Theorem 3.8 the vector 

Proof. By Theorem 3.8, Vj = 0 for all j > r. Thus v is the nucleolus of the game 
u~_:_,(t,+ l,nlj (where v = uy). This game obviously coincides with the truncated game 
i?(‘) with n - z additional dummies. 0 

Example 3.10. Consider the pair 

(M,1)=(12,10,5,3,2,2,1,1;22) 

and the game v = vy. Put a = 1, b = 8, i.e., Q = { 1, . . . . 8). Then it is easy to see that 
players 3 and 8 are the steps of v. Thus, according to Theorem 3.8, we have z(u) = 3. 
Writing coalitions as O-l vectors is instructive, thus from the following sequence of 
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min-win coalitions (cf. Lemma 3.1) 

Sr = (110000000) 

&=(011111000) 

&=(101110000) 

&=(100111111) 

&=(101011100) 

&=(101101000) 

&=(011110110) 

&=(101011010) 

sg=(011110101) 

The coalition S3 at the 
origin of this arrow is 
used to construct the 
coalition S6 at the top 
of the arrow via p5(S3). 

we obtain the incidence vector I^of D = I$ (cf. Definition 3.6): 

1^= (2,6,5,9,7,6,8,8,9). 

Now the truncation of f at 3 is (2,3,3,4), which generates (1, 1, 1,l; 2), thus the 
truncated game I?~) can be represented by (1, 1,l; 2), showing that all players are of the 
same type. Corollary 3.9 at once enables us to write down the nucleolus of LX 

(3,3,f,o,o,o,o,o). 
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