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Homogeneous Games as Anti Step Functions 

By P. Sudh01ter 1 

Abstract: In this paper the class of homogeneous n-person games "without dummies and steps" 
is characterized by two algebraic axioms. Each of these games induces a natural vector of length 
n, called incidence vector of the game, and vice versa. A geometrical interpretation of incidence 
vectors allows to construct all of these games and to enumerate them recursively with respect to 
the number of persons. 
In addition an algorithm is defined, which maps each directed game to a minimal representation 
of a homogeneous game. Moreover both games coincide, if the initial game is homogeneous. 

1 Basic Notations and Definitions 

A simple n-person game is a pair  (f~,v). Here fl = {1 ..... n} is called the set of  players, 
and v : ~(f~)  --  {0,1], v(0) = 0, is the "characteristic func t ion"  in the  sense o f  Game 
Theory.  A n  element S o f  ~,~(f~), i.e. a subset o f  f~, is a coalition. The coali t ion S is 
often identified with the indicator funct ion 1S . 

A coali t ion S is winning if  v (S) = 1 and losing otherwise. All considered simple 
games are monotonous, i.e. subcoalit ions o f  the losing coalit ions are losing. I f  each 
proper  subcoali t ion o f  a winning coali t ion is losing, this winning coali t ion is called 
minimal It should be noted that  a m o n o t o n e  game is completely determined by its 
minimal  winning coalitions. 

The set o f  minimal  winning coalit ions is denoted by W. or  W.(fl,v), if the 
dependence o f  the game is to be stressed. 

Sometimes the expression "n -pe r son"  is deleted. 
Let m = (m 1 ..... mn) E gq~ and let k E gq. In  the context to be discussed we 

shall call m i player i 's weight and re(S) : = ~ m i the weight of  coali t ion S. Finally 
iES 

k is called the level. This terminology is justified by the following construct ion:  
Assume that  0 < k < m(f~) and define a simple game (fl,v) by 

f l  , i f m ( S )  >_k 
v(S) ( 0 , i f m ( S )  < k, 

1 Peter SudhOlter, University of Bielefeld, IMW, Postfach 8640, 4800 Bielefeld, F.R.G. 

0020-7276/89/4/433-469 $2.50 �9 Physica-Verlag, Heidelberg 



434 P. SudhOlter 

v is also written 

v = l[x,m(9)] o m = v~ 

where 1 T is the indicator function of  T. Intuitively we interpret v ("the characte- 
ristic function") as to represent the power structure of a parliament or committee 
where each member (or rather each party) is commanding a certain number of  votes 
according to its weight. Obviously, various pairs CA, m) may result in the same v. 

Thus a pair CA, m) resulting in a function v as specified above is called a 
representation of (fl,v); we shall use notations like CA,(m 1 ..... ran)) and (X; 
m 1 ..... ran) simultaneously. 

A simple game having a representation is called weighted majority game. 
If a weighted majority game has a representation (k,m) such that all minimal 

winning coalitions are exactly of  weight X, then both the simple game and the 
representation are called homogeneous.  For a special case the terms "simple", 
"weighted majority", and "homogeneous"  were introduced by yon Neumann and 
Morgenstern [13]. Shapley [12] considered homogeneous games in general. Isbell 
[1,2,3], Ostmann [5], Peleg [7] and Rosenmiiller [8,9,10,11] should also be mention- 
ed in this context. 

Following Ostmann [5] each player i of  ~ belongs to an equivalence class F, call- 
ed type o f  i: i - j ,  if there is a permutation ~- of  f~ such that v = v o ~r and ~r(i) 
= j.  Let rbe  the set [ j E f f  I i - j ] .  In the paper just mentioned it is shown that all 
representations of a given weighted majority game (fl,v) are inducing the same order 
of  the types of ~, i.e. for all types t 1 :~ t 2 and all players i 1 E t 1, i2 E t 2 either m i 1 > 
mi2 or rail < mi2 for all representations (k,m). 

Let (fl,v) be a simple game. The relation -( ~ ~2, defined by i~( j ,  if v([i} U 
S)  <_ v({j ] U S)  for all coalitions S with [ i , j  } (3 S = 0, is called desirability relation 
of (fl,v). For this definition we refer to [4]. The simple game (fl,v) is called ordered, 
if its desirability relation is complete, and is called directed, if additionally 1 ~ 2 
~- 3 ~ ' . . .  ~ n is valid. 

Two simple games (fl,v) and (~,v ')  are equivalent, if there is a permutation ~r 
of  fl such that v o 7r = v '. Consequently the equivalence class of  an ordered game 
can be identified with its unique directed representative. As our interest is restricted 
to these equivalence classes of ordered games only, it is assumed w.l.o.g, from now 
on that all considered games are directed. 

Each weighted majority game is ordered and thus directed by the assumption, 
which implies that it has a directed representation, i.e. a representation (k,m) with 
the property m I _> ... _> m n. 

For these definitions and assertions we refer to [6]. 
The representations (k,m) of a weighted majority game are ordered by total 

mass m(t]). Ostmann [5] has shown that there is a unique minimal representation 
of  a homogeneous game, which is automatically homogeneous. Two further proofs 
are contained in [10]. Therefore a homogeneous game is often identified with its 
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minimal representation, which automatically is directed, since in [5] it is shown that 
players of  the same type have the same weights in the minimal representation. 

Let D = D(fLv) = {i E ~1 v(SU {i}} = 0 for all losing coalition S} be the set 
of  dummies. 

The fact that two coalitions S and T do not differ earlier than at i, formally 
meaning S M [i,i-1] = T (1 [1,i-1], is abbreviated by S - i  T. If  i a n d j  are non- 
negative integers, we put [i,j] n := [i,j] fq IN 0 . Sometimes, if a misunderstanding 
is excluded, the lower index "n'" is deleted. 

A player i E ~2 \ D is a sum, iff there are two coalitions S, T E W, such that 
i E S, i~ T and S - i  T, and is a step otherwise. If D (~2,v) is nonvoid, the decreasing 
order of  the weights m i cause the existence of  a first dummy player j ,  i.e. D(~,v) = 
{j ..... n}. 

If  (X,m) is the minimal representation of  a homogeneous n-person game, the 
following assertion is obviously true: 

~0, iff i is a dummy 
mi 

X, iff {i} is a one-person winning coalition 

Lemma 1.1: There are canonical bijections 

f ( ( X , m )  is the minimal representation of  X,m) I 
a homogeneous n-person game ) 

n I X,m) is the minimal representation of  a 1 
U (X'm) I( homogeneous t-person game without dummies 

t = l  

and 

{(1; 1 . . . . .  1)} U 

n-times 

I (X,m) I (X,m) is the minimal representation of  a 
homogeneous n-person game without dummies J 

n I (X'm) is the minimal representati~ 1 
of  a homegeneous t-person game 

U (X,m) [ without dummies and without 
t=2  

one-person winning coalitions 

Proof" Definition of  the first mapping: 
If  (X,m) is a minimal representation of  a homogeneous game, then there is a player 
1 _< i 0 _ n such that D(fLv) = {i 0 + 1 ..... n}. The vector (X;m I ..... mio ) clearly is the 

minimal representation of  a homogeneous game without dummies and the mapping 
(X,m) ~ (k;m 1 ..... mio ) is bijective. 
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Defini t ion o f  the second mapping :  
Distinguish two cases: 

1. (k ,m)  = (1; 1 ..... 1) ~ () , ,m) 

n-t imes 
2. I f  (k ,m)  does not  coincide with some (1;1,...,1), then there is an i 0, i < i 0 < n-l,  

such tha t  m 1 = ... = mi 0-1 = )' > mi O. The  vector ( k ;mio ..... mn) is the min imal  
representat ion o f  a homogeneous  game  wi thout  one-person  winning coalitions. 

The  inverse funct ion is constructed as follows: 
I f  (k ,m)  is the min imal  representat ion of  a homogeneous  t -person game  with- 
out  one-person  winning coalitions, define the image  of  this funct ion as 
(k ;  k ..... k, m I ..... mt), otherwise (1; 1 ..... 1), i.e. if 

(n-0- t imes n-times 

(k ,m)  = (1; 1 ..... 1). q.e.d. 

n-times 

In  view o f  the last l e m m a  only homogeneous  games  wi thout  dummies  and 
wi thout  one-person winning coali t ions are being considered in the following presen- 
tat ion.  

Let (t2,v) be a directed n-person game.  The  matr ix  with n columns 

X :  = X ( 9 , v )  : = s 

s e w ,  

with lexicographically ordered rows is called incidence matrix of  (f~,v). 
Let (f],v) be a homogeneous  n-person game wi thout  dummies  and one-person  

winning coalitions. F rom O s t m a n n  [5] we know the following a lgor i thm,  which 
generates the min imal  representat ion o f  this game: 
I f  i is a sum, let S(i), T(i) be the lexicographically first pair  in W. such tha t  S(i) - i  
T(i), i E S(i), i ~ T(i). 
I f  i is a step, define hm(i) := max  {m(/-/) ] H E {[i,n] \ S ] i E  S, S E  I~.]}, m E IN n. 
Def ine  

mi:= I 
m(T(i) \ S(i)), if  i is a sum 

l+hm(i ) , if  i is a step, 

k -- m(S),  where S is the lexicographicaUy first min imal  winning coalit ion. 
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It  follows 

Lemma 1.2: (X,m) is the minimal representation of  (f],v). 

Remark L3: 

1. (X,m) is well defined, since it can be calculated successively by starting at n: 

m n = 1 + hm(n ) = 1 + m(0) = 1. 

2. It is not necessary to use the lexicographically first pair S(i), T(i), in case i is 
a sum, to construct the minimal weights, only the fact S(i) - i  T(t), i E S(i), 
i r T(i) is needed. 

3. In the following all games considered are assumed to have no one-person winn- 
ing coalitions, unless otherwise specified. 

In order to classify homogeneous games without dummies we can restrict our 
attention to those "wi thout"  steps, i.e. with just one step, since player n always is 
a step. Indeed, if  IH n denotes the set of  minimal representations of  homogeneous 
n-person games without dummies, steps and one-person winning coalitions, the 
following assertion is true. 

Lemma 1.4: There is a canonical bijection from 

l H n + l t ~  i ( X ' m ) i s t h e m i n i m a l r e p r e s e n t a t i ~ 1 7 6  1 
homogeneous n-person game without dummies 

Proof." ( X; ml , . . . ,m n + 1) -- ( X; m 1 ..... mn) has the desired properties: ( X; m 1 ..... ran) 
is a homogeneous representation of  a simple game and the above algorithm shows 
the minimality - note: m n = 1 if (k; m I ..... mn+ 1) has no steps. On the other hand 
the algorithm also shows that 

(k; m 1 ..... mn) ,-* (k, m 1 ..... mn,1) 

maps homogeneous games to those without steps. This map is obviously inverse to 
the first, q.e.d. 

By using the identification of  homogeneous games with their minimal represen- 
tations, we also identify IH n with 

[(•,v) [ (f],v)has a representation (X,m) E IH n] 

and denote this set again by lHn. 



438 P. Sudh61ter 

2 The Incidence Vector of a Homogeneous Game 

The incidence matrix of a simple game is frequently of a respectable size. It is 
desirable to select an appropriate submatrix which allows for a unique identification 
of the game. Given the incidence matrix of a homogeneous game without dummies 
and steps we are going to show that there exists an n x n submatri x which completely 
determines the game. The n rows defining the submatrix are chosen in such a way 
that for each player i :/: n there exist at least two rows S, T with i E S, i ~ T and 
S - i  T. 

At first some notation is needed. Let (fl,v) be a directed game, not necessarily 
homogeneous and without dummies and steps. 

Definition 2.1: For a nonempty coalition let l(S) be the length of S, meaning the one 
player of  S who has the highest index, i.e. 

I(S) := max [j  I J E S}. 

I f S  = sx 1 �9 is a matrix of  coalitions, define l(S) = (I(S1) ..... l(St) ). 
St 

Given S E W., let j be such that [j, I(S)] c S. 
If S \ {j} tO [I(5)+ 1, n] is winning, define 

pj(S) := S \ [ j }  U [l(S)+l,t], 

where t is minimal such that S \ {j} tO [l(S)+l,t] is winning. 
For a minimal winning coalition T, which is not the lexicographically maximal 

one, define 

~o(T) := T U {r} \ [t,l(T)], 

where r = max [j  ~ T ] j < I(T)} and 

t = min {t' I T U {r} \ [ t ' ,  I(T)] is winning}. 

Player r exists, since Tis not lexicographically maximal, and player t exists, since 
(f~,v) is directed�9 
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Remark 2.2: 

(i) pj (S) is the lexicographicaUy next minimal winning coalition to S, in which 
j is substituted by players of smaller or equal type. 

(ii) With the above notations the following holds true: 

(iii) 

pr(~(T))  = T, ~(pj(S))  = S. 

From the "Basic Lemma" of  Rosenmfiller ([8,9]) we know the following: If  
(X,m) is homogeneous, then 

mj = m([ l (S )+l , t ] ) ,  

m r = m([t, I(T)]), 

The existence of  n rows of the incidence matrix with the desired properties is 
a direct consequence of  the following 

Theorem 2.3." Let (fl,v) be a game of  lI-I n and S 1 be the lexicographically maximal 
minimal winning coalition. 

If  S 2 .... ,S k are minimal winning coalitions and k < n, such that for all j  E [2,k] 
there is an i < j with 

pj_l(si) = s j ,  

then there is i 0 E [1,k] such that 

Sk+ 1 := Pk(Sio ) 

is defined. 
Note that the property Pj_l(Si) = Sj can be replaced by ~o(Sj) = S i (see Remark 

2.2 (ii)). 

Proof" Assume the contrary. 
For each coalition S define 

r(S) = max ({j I J ~ S , j  < /(S)} U {0]). 

Let S be a c~176 in I S  [ S is a minimal winning c~176 and l p k ( S )  is defined 

- which is indeed nonempty, since (f2,v) has no steps except n - ,  such that r : = r(S) 
is maximal, thus r _ 1, since S cannot he the lexicographically maximal minimal 
winning coalition S 1. We distinguish two cases. 
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1. l(Sr+l) < l(5). Then l(Sr+l) < k, otherwise Ok(St+l) would be defined. 

Therefore 

Pk(S U {r} \ [l(~(Sr+l))+l , l(Sr+l)]) 

. 

is defined, contradicting the maximality of I". 

l(Sr+l) >_ I(S). Then it is obvious that l(Sr+l) > I(S) and l(~(Sr+l) ) < k, 
otherwise pk(Sr+l) resp. pk(~O(Sr+l)) would be defined. As a direct conse- 
quence 

~q:= Sr+ 1 U {r} \ [ I ( r  I(S)] 

is a minimal winning coalition with [k- l , / (S)]  A S = 0. 

A simple computation shows that 

pk(r +l-k (E)) = r (E), 

but r < k-l, a contradiction to the maximality of r. Let us illustrate this situation 
by an example: 

r k I(S) l(Sr+ I) 
I I I I 

= (x * 0 I ~. I 0 O) 

l II I l I 
Sr+l = (* * 0 1 1 4 0 O) 

l II I I I ?(~) = (*---* I I o o) 

I II I L I I 
?(St+ I) = (* * 1 1 0 0) 

I II t I I i I 
= (* -- I 1 0 0 1 i 0 O) 

I II I I I 
l(S)-k(~)= (*----* I.-- ,i 0 0 i--I 0 ...... O) 

I I 
I(~(S)) l(?(Sr+l)) 

q.e.d. 
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With  the help o f  the last impor t an t  theorem we will define a unique sequence 
o f  min imal  winning coali t ions recursively. 

Definition 2.4: 

(1) For each vector  l = (l 1 ..... ln) E ~qn we define I I l =  'tIIll'""IIi~n" and co / = 

co I , l~ by I-i / = rain [(/] j < k < lj ], c o / =  min  [ j  [ /j = l-I/}, if  the cor-  
1 , . - . ~ / , / j  - -  __ 

responding sets are nonvoid,  and I-I / = co/_- O, otherwise, for  all k E [1,n] n. 

(2) Let (fl,v) be a game  in IH n and S 1 be the lexicographically max imal  min imal  
winning coali t ion.  

I f  S 2 ..... S k (k < n) are already defined and l = (l(S1),. . . , l(Sk)),  then 

sk+l  := pk (Sio), 

where 

(3) 

l io = co k . [Sl] 
~v = " is the characterizing incidence submatrix of  (i~,v). 

In  view of  Theo rem 2.3 the characterizing incidence submatr ix  o f  (~],v) is well 
def ined and hence unique. Besides note that  it may  be useful to compare  this pro-  
cedure with the context  o f  section 5, pp. 324-327, in [10]. 

Corollary 2.5: The  funct ion 

lI-I n - ( 3 ( ~ ) )  n,  

defined by 

(fl,v) ~ ~v 

is injective. 

Proof" Let (f~,v) be a game  with the desired propert ies  and ~v = EI I 
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Define successively 

m n = 1, m i = m ( S i +  1 \ Sio ), 

where ~p(S i ) = Sio , 

and X = re(S1). 

With  this no ta t ion  it can be shown analogous ly  to L e m m a  1.2 that  
(X;m I ..... mn) is the min imal  representat ion o f  (f~,v). q.e.d. 

Corollary 2.6: The  m a p p i n g  

IH n - -  { ( l  1 ..... In) E INn], 

(~ ,v)  ~ l (~V) 

is injective. 

Proof" From l := I(S v) the matr ix  ~v can be reconstructed successively: 

S 1 = { iE~2  I 1 < i<_l l } ,  

if S 1 ..... S k are already constructed,  then 

Sk+ 1 = Sio \ {k} U [lio + 1, Ik+l]n ,  

where 

i 0 = r 
q.e.d. 

In  the following it will be shown that  the image of  the mapp ing  given in Cor-  
ol lary 2.5, i.e. the vectors (I(S 1) ..... l(Sn)), can be characterized by algebraic means.  

L e m m a  2.7: I f  (~2,v) is a homogeneous  n-person game  without  steps and dummies  
and ~v is as def ined before, then 

(i) l(Si)  > IIl(~v) for all 2 _< i ~ n 
i-1 

(ii) l(Si+l) <_ l(Si),  i f I I / (~" )  _> i. 
i-1 
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Proof." Asser t ion (i) is a direct consequence o f  the successive cons t ruc t ion  o f  the se- 
quence S 1 ..... S n. 

The  order  of  the min imal  weights, i.e. m 1 _>... _~ m n for  ( X;m 1 ..... mn) being the 
min imal  representat ion o f  the game, directly implies assert ion (ii). 

q.e.d. 

We show now, roughly  speaking,  tha t  the converse is also true, i.e. every vector 
which fulfills (i) and (ii) o f  the last l e m m a  is o f  the fo rm l (S  v) for some homoge-  
neous game  (fl,v). Thus,  a new character izat ion o f  this class o f  homogeneous  games  
is obta ined  as soon as a p r o o f  o f  the theorem,  containing the above ment ioned  asser- 
t ion, is provided.  

The  following nota t ion  simplifies the fo rmula t ion  o f  this impor t an t  result. For 
technical reasons n _> 3 is presumed.  

Definit ion 2.8: 

(1) A vector l = (ll ..... ln) E [2 ..... n} n is called an n-person incidence vector, i f f  - 
for  all i E [2,n] - 

(i) l i > I l l  1 

(ii) li+ 1 < li, ifI-l~_ 1 > i. 

(2) The  m a t r i x ~ l  = Sn , d e f i n e d b y S  1 = [1, ll] n , S k + !  = 

Sio \ {k} U [lio + 1 , / k + l ] n  , where i 0 = o f f ,  is called associated to I .  

(3) l generates M l : = (X;m 1 ..... mn) via 

m n = 1, m i = mi0+ l  + . . . +  mli+l  

where i 0 = I I [ ,  X = m(SVl). 

(4) Let I n denote  the set o f  n-person incidence vectors. 

In  order  to illustrate the last def ini t ion we give an explicit example: 
The  vector  l = (3,7,6,5,7,7,7,8) is an 8-person incidence vector. 
The  associated mat r ix  o f  coali t ions is 
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i 
st= (i i I ooooo) 

~ s 2 (~ i i I i i I o) 

f s (I o 1 1 1 1 o o) 

S 4 (1 1 0  1 1 0  0 O) 

S 5 (1 1 0 0 1 1  1 0 )  

~ . . . ~ ,  s 6 (i 1 0 1 0 1 I o) 

s 7 (1 0 1 1 1 0 1 o) 

~-..--) s8 = (o 1 1 I i lO I) 

The coalition at the origin of  each arrow is needed to construct the coalition 
at the top of the arrow. 

The generated representation turns out to be 

(15; 6,5,4,2,2,1,1,1). 

R e m a r k  2.9: 

(1) A direct consequence of  the definition of  an incidence vector I is that both the 
matrix ~t and the generated vector M ! are well defined. 

(2) I f  (~2,v) is a homogeneous game in some IH n , then by Lemma 2.7 the vector 
l := ICS v) is an incidence vector, ~v is associated to l and l generates a tupel 
(k,m), which is - this can be shown analogously to Lemma 1.2 by the way - 
the minimal representation of (~,v). 

The main result of  this chapter is stated in form of the following 

Theorem 2.10." Each homogeneous n-person game without dummies and steps can 
be identified with some n-person incidence vector and vice versa, formally: 

L n : IH n --  1 n 

(~,v)  ~ I(S v) 

is bijective. 
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P r o o f "  The  injectivity is a l ready shown. So it is enough to prove tha t  the vector  
(k ;m 1 ..... ran),  generated by an incidence vec tor / ,  is the min imal  representat ion o f  
some homogeneous  game  wi thout  dummies  and steps. The  associated mat r ix  ~l,  
the member s  S i of  which mus t  then be min imal  winning coalitions, guarantees  that  
there cannot  be dummies  or  steps and  tha t  (X,m) is a min imal  representat ion,  if  it 
is a representat ion o f  a homogeneous  game  at all. 

First o f  all, the order  o f  the weights, i.e. m 1 _>... _> m n, is shown by induct ion 
on n-i:  

m n = 1 < m i f o r a l l l  _< i_< n. 

Assume  m i >_ ... >-- m n ,  then 

mi_ 1 = m i 0 + l  + . . . +  m l i ,  

where 

i o = I I [ q .  

Two cases are distinguished: 

1. l i > i 0 _> i : Then  m i = m i o  + 1 + . . .  + m l i +  1 and l i+  I <- l i  

(see Defini t ion 2.8, (ii)), thus m i .  1 >. m i . 

= > m i . 2. i 0 i-1 : T h e n  mi_ 1 = m i + . . . +  m l i  - 

Referring to Def ini t ion 2.8 (i) the case i o > l i cannot  occur, thus the induct ion 
is finished. 

The  first par t  o f  this p r o o f  implies tha t  (k  ;m) is a representat ion o f  some simple 
game  (f~,v). It  remains to show the homogene i ty  o f  (f~,v): 

Let I{ll ..... In} I =:  r for some 2 < r _< n-1 and  write 

[11 ..... In} = {I 1 . . . . .  l 1"} 

such tha t  

l 1 = l l  < . . . <  I r = In = n , l  0 : =  0. 

It  is enough to show per induct ion on 0 _< i < r-l: 
i f  S E W.(~2,v) with l i < I ( S )  <_ l i + l ,  then I ( S )  = I i + l  and m ( S )  = X .  

For i = 0 the assert ion is immedia te ly  implied,  since S~ is the lexicographically 
first min imal  winning coal i t ion in (f~,v). 
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Let S o be a coalition in {S E W, I l(S) = min {I(T) I T ~ w, and l(T) > li}], 
such that r := r(So) is maximal, where r(S) is defined as in the proof of Theorem 
2.3. Define l 0 := l(So). Observe that l 0 <__ l TM. 

It can be remarked, that r > 0 since S O cannot be the lexicographically first 
coalition in W,. 

The inductive hypothesis implies 

I(r  ) <- I i, m(r  ) = X.  

Let lj be minimal with/ j  > r, thus r E S J -  otherwise/g. > l(r >__ r. The 
minimality of lj shows that 

0 < I(r 

thus 

max {I(S) [ S E IV,, I(S) < I(SJ)} < r. 

If lj = l(•(So)) nothing remains to be shown, because of the definition of 

Sr/+l . Therefore, assume lj < l(r and define 

SO = Sj "/ \  {r} U {l(r ) +1 ..... I(So)}. 

With this notation 

I(So) = I(So) and re(So) = re(So). 

Since additionally 

r < l(r  ) ~ gO, 

this assumption contradicts the maximality of r. q.e.d. 

The proof of this theorem also implies the following 

Corollary 2.11: Let (fl,v) E IH n, S 1 ..... S n the members of ~v and S E W, (f~,v). 
Then there is a j  E [1,n], not necessarily unique, such that 

l ( s j )  = l ( s ) .  
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R e m a r k  2.12: The identification L n of  homogeneous games and incidence vectors 
permits us to provide an upper bound for the number of  these n-person games: If  
l E I n, then l 1 is determined by the other components of  the vector, since Definition 
2.8 (i), (ii) guarantees that 

l 2 ->. . ._  l/1+1 < Ii1+2, 

showing that 

l 1 = m a x  {t [ 2 <_ t <_. n,  l 2 >_ ... > I t ] -1. 

Additionally the just mentioned definition implies 

3 <_ l 2 <_ n , k  <_ l k <_ n f o r a l l k @  [3,n]. 

Therefore 12 can run through at most n-2 values and l k can run through at most 
n - k +  1 values. This implies 

[ IH n [ -< (n-2) I (n-2) < (n-l)  I 

So far the number (n-l) ! was the smallest known upper bound for the cardinali- 
ty of  the set of homogeneous n-person zero-sum games (see [3]). Clearly this set is 
by comparison a very small subset of  the considered class of  simple games lHn; 
hence it would seem that the preceding result is certainly an improvement. However, 
in the next chapter it will turn out, that we can achieve much more: We will construct 
an explicit recursive formula for the number of incidence vectors. 

3 Geometrical Description of Incidence Vectors as Anti Step 
Functions, Providing a Recursive Formula for the Number 
of Homogeneous Games 

It is the aim of  this chapter to enumerate the homogeneous games without dummies 
and steps recursively w.r.t, the number of  players. This will be done by partitioning 
the corresponding class of  n-person incidence vectors into certain subsets which will 
be defined later on. 
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We assume n _> 3, unless otherwise specified. 

Definition 3.1: Let l = (ll ..... ln) be an n-person incidence vector. We identify I I l  with 

the quadratic n-person step function 

Ql:  [0, n-l]  - [0, n-l],  

def ined by 

Ql(O) = O, Ql(x) = 1-IJ for all x E ( j - l ,  j ]  a n d j  E [1, n-l] n. 

I f  k 1 < ... < k r are the values of  a quadrat ic  n-person step funct ion Ql  and  k 0 
:= 0, it can easily be seen by Defini t ion 2.8 tha t  k 1 _> 2, k r = n-1 and tha t  Ql can 
be redefined: 

Ql (0) = O, Ql(x) = k i for all x E (ki_l, ki], if  i E [1,r] n. 

Let Qn denote  the set o f  vectors 17 l, I E I n, i.e. 

On = [ n t l  l E In]. 

The incidence vector  l is identified with the n-person anti step function 

A l : [0, n-l] --  (0, n-l],  

def ined by 

Al(O) = II[, Al (x)  = li+ 1 for  all x E (i-1, i], if i E [1, n-l] n. 

For 11 E Qn define I (11) = {l E I n [ I I  l = I-I]. 

Remark 3.2: 

(1) The  denota t ion  "quadra t i c "  reflects the obvious fact tha t  each step of  a 
quadrat ic  step funct ion is as high as long. 

(2) The  step funct ion A lis called " an t i "  step function,  since Defini t ion 2.8 directly 
implies tha t  A I is - not  necessarily strictly - decreasing on sections where Ql 
is constant ,  i.e. 

All(ki_l ' ki ] is not  increasing for  all i E [1, r] n. 
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(3) Two further properties of  Q/, A l should be noted here: 

(a) A/([0, n-l l)  : (Q/([0, n-l])  \ {0}) U {n}, 

(b) Al(x) > Ql(x) for all x E [0, n-l]. 

Example 3.3: The following sketches illustrate the graphs of  the quadratic step func- 
t i o n f  = Q/and the anti step function h = A l, where 

l = (3,14,14,7,13,12,10,10,14,14,13,13,13,14) 

is a 14-person incidence vector: 

f {x~ 

12 

9 

6 

. . . . . .  ~ ] �9 

' ' ~ ' ' ~  . . . . .  i , '  0 9 
I 

o 

x 

Fig. 1. 

|0 

~ - -  

. . . . . . . .  

. . . . .  . . , , . �9 . . . .  w 

5 10 x 

Fig.  2. The lines ". . . . . . .  " represent the graph o f f .  
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In  the following we often use the identif ications l -- A 1, l -- QI, since the cor- 
responding graphs can be nicely illustrated as shown above. 

Lemma 3.4: 

(1) 
I There  is a natural  r and II i  E IN, i@ [1,r] n such that  2 < k l l  = ] 

Qn 11 E IN n < ' " < k r =  n-1 a n d Y l = ( k  1 ..... kl ,k2, . . . ,k2,  .... kr,.7!kr, n ) 
J 

kl t imes  (k2-kl)t imes (k r- 
kr_l)times 

and l Qn ] = 2n-3" 

(2) I f  1-1 E Qn, then 

n [liliE[1,n]]-{IliliE[1,n]},(li > H i  1, if iE[2 ,n ] ) ,  
 INI - - 

I ( I I )  = I /  l l=i l l , ( l i  < li_x, i f i i i_ l=Hi_2foral l iE[3 ,n])  1 

Proof" ad (1): One inclusion of  the first par t  o f  assert ion (1) is trivially satisfied. For 
the other  inclusion take a vector I I  with the desired propert ies  and observe that  

l = (k l , k  2 ..... k 2 ..... k r ..... kr, n ..... n) 

k 1 t imes (kr_l-kr_2) (kr-kr_l)times 
t imes 

is an n-person incidence vector with I I  l = 1-[ . 
The  assert ion concerning the cardinali ty of  Qn is verified by induct ion on n : 

It  is clear that  Q3 = {(2,2,3)}. 
F rom a vector 11 E Qn two vectors 1-I 1, 17 2 E Qn+l  are constructed,  namely  

H 1 = (k 1 ..... k r , n , n + l )  

and 

I I  2 = (k 1 ..... kr_ 1, n ..... n, n + l ) .  

(n-kr_l) t imes 

The  maps  H --  H 1 and H --  H 2 are injective and have disjoint  images.  It  is ab- 
vious tha t  the union o f  these images contains Qn + 1, thus this par t  o f  the p r o o f  is 
finished. 

Asser t ion (2) is a trivial consequence o f  Defini t ion 2.8 (1). q.e.d. 
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In  order to enumera te  the homogeneous  games  the set o f  incidence vectors will 
be decomposed  into subsets, the member s  of  which having a c o m m o n  proper ty  call- 
ed type. To begin with some nota t ion  will be needed. 

Def in i t ion  3.5: Let  l E I n. Then  I E I(YI) for some I-I E Qn with values k 0 = 0 < 
k 1 <. . .  < k r = n-1 (see Defini t ion 3.1). 
Define 

Cei := I{J E IN I J E (ki_l,ki] and lj+ 1 = n ] l .  

Then  there is a chain 

i 1 <. . .  < i t 

for  some t E IN such tha t  

{il ..... it} = {i E IN [ Cei --/: 0 and i E [1,r]}. 

Since Ce r :~ 0, this last set must  be nonvoid.  The  vector  (Cei i ..... Ceit ) is called ceil- 
ing of  l. 

Wi th  this no ta t ion  (2,2,1) is the ceiling of  the incidence vector 1, given in Exam-  
ple 3.3, since (2,0,2,0,1) = (cq, t~ 2 ..... Ce5). 

L e m m a  3.6: It /3 = (/31 ..... /3t) is the ceiling of  some n-person incidence vector and 
t t 

/~ = (/~1 ..... ~ t )  E IN t is a vector  such tha t  i=1 ~ /3i = i--~l/~i, then there is a canonical  

bi ject ion f rom 

to 

{l E I n t the ceiling o f  l is/3} 

{l E I n I the ceiling o f  I is ~}. 

Proof" Let  l be an incidence vector  o f  ceiling/3, let us say l E I ( I I )  for  some H with 
values k 0 = 0 < k 1 < . . . <  k r --" n-1 and let a = (cel ..... cer) and (Ceil ..... Ceit ) be 
defined according to Defini t ion 3.5, implying 

/3 = (etil ..... ceit ). 
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We put 

:= I 0, 

, i f  k =  i j f o r s o m e l  

otherwise 

< _ j < _ t  
; l  <_k <_r 

and 

k j : =  kj - cLj - C % l - . . . -  eq + &j+...  + &l, 1 <_ j <_ r. 

Conclude that 

k i - k i - 1  = k i - k i - 1  + & i - ~ i  >- &i 

and thus 

ki - ki-1 - & i  = k i - k i - 1  - ~ i .  

Observe that li+ 1 = n is equivalent to i E [k j+l ,  kj+c~j+l] n for s o m e j  E 
[O,r-1] n and define analogously 

li+ 1 := I 
n, i f /  E [k j+ l ,  kj+&j+l]  n for some 0 _ j _< r-1 

~:r, if i = Icy + &j+ 1 + s _< kj+ 1 for some j and s, such that 

Ikj+aj+l+S+ = k r . 

A simple computation shows that 7 is an incidence vector of ceiling ~ and 7 C 
I(fl) ,  where I'I is the vector of Qn with values 0 < k 1 <. . .  < kr = n-1. 

The inverse mapping can be defined analogously by interchanging the r61es of 
and ~. q.e.d. 

The following example graphically represents the preceding canonical bijec- 
tion: Let 

/3 = (2,2,1), ~ = (1,1,3) 

and l be the incidence vector given in Example 3.3. 
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With  the n o t a t i o n  used in the above p r o o f  we get 

453 

(c~ 1 ..... O~r) = (2,0,2,0,1), (&l, . . . ,ar)  = (1,0,1,0,3) 

and  

(~:l,...,~:r) = (2,6,8,10,13). 

Figure 3 illustrates the anti  step funct ions h = A l and h = A 7. 

h c~ 
.] ~ ~ 

~-] : ~ -  

5 

f - - . 4  . . . . . . .  " 

I 

S ~.o x 

lO 

:-J t---i 
t----J ( 

| , t  
" l ~ ~  . . . .  

p . . . .  

S 10 .~ 

Fig. 3. The lines ". .... " represent the underlying quadratic step functions. 

Definition 3.7." Let I be a m e m b e r  o f  I n with ceiling (ill ..... ~t). 
Then  (t,p) is called type of  l, if  

t 
p =  Z ~ i - t .  

i=l  

The  subset  o f  I n, whose elements are o f  type (k,p), is denoted by Ikn,P and,  in 
addi t ion,  the cardinali ty o f  this set is abbreviated by akn,P, formally:  

Ikn,P = [l E In lh is of  type (k,p) ], akn,P = [Ikn,P I. 

Note  tha t  if  akn,P ~ 0, then  k E ~N, p E g~l 0. 
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The  rest o f  this chapter  will be used to give a recursive descript ion of  the car- 
dinalities akn,P and starts with the following impor tan t  

Theorem 3.8." Let n >_ 3. Then  the following assert ions are valid. 

(i) al,0 = ~ E a~,P; 
~n+l  k>_l p>_0 

(ii) ,,k,O = E (kkl)  ~ a~,P - akn-l,O if k _> 2; 
~n+l  ~>k-1 p>O 

(iii) ak,p. = akn, P-1 �9 p+k-1 , i f p  _> 1. 
n+l  p 

Proof" The  canonical  identif icat ion o f  incidence vectors with anti  step functions 
may  help to illustrate the fo rmal  arguments .  

a d ( i ) : I f l i s a m e m b e r o f  U U Ik, P then 
n k_>l p>_0 

(ll  ..... l n , n + l )  E I1, O n+l  �9 

Conversely, if 7 E i1,0 then n+l  ' 

(/1 ..... ln) E U U Ikn,P. 
k>_lp>O 

These considerat ions induce a funct ion and its inverse and thus verify asser- 
t ion (i). 

ad  (ii): I f  l E I ~  1 , then  l has the ceiling (1 ..... 1). 

k t imes 
v l I f  k l  < " .  < kr  = n are the alues o f  this anti  step funct ion A (exept n + 1), then 

kr_ 1 = n-1 and  the vector (0,k 1 ..... k r )  defines a quadrat ic  step funct ion QII,  such 
tha t  l E / ( I - I ) .  Def ine  

li+ 1 := rain {/i+1, n} for  all i E [0,n-l] n . 

Let QI~ be the quadrat ic  step funct ion defined by the vector  of  values 
(O,k l .... ,kr_l) and observe tha t  
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I f  (/31 .... ,/3t) is the ceiling o f  7, then it is clear tha t  

t 

i=1 
/3i --- k-1 and t _ k-l ,  

since {i <_ n I li+l = n + l }  _ {i _< n I l i+1  = n}. 

t 
As there is at  least one player i such that  l i = n = 7# the case E /3 i = k-1 = 

t cannot  occur, i= 1 
For the converse let / = (I1 ..... In) define a m e m b e r  o f  Ikn,P o f  some ceiling 

([31 ..... /3s such tha t  

p + f ~ > k , k > > _ k - 1 .  

Let 0 < k 1 <.. .  < k r = n-1 define the quadrat ic  step funct ion QH such tha t  
l E I ( I I )  and  put  

~  = I[J E gql /j  = n and ki_ 1 < j-1 < ki] [ 

(the vector  (cq ..... ar )  has already been constructed in Defini t ion 3.5). 
Following this defini t ion there is an increasing subsequence (il  ..... i/?) o f  

(1 ..... r )  such that  

(/31 ..... /3k) = (~il  ..... ~i~)" 

Let T be an arbi t rary  subset o f  {1 ..... kT} o f  cardinali ty k-1. 
Def ine  

l~" :=  I 
n + l ,  if  i=kis_ 1+1 for  s o m e s  E T o t  i = n + l  

li, otherwise 

To verify tha t  l r = (11 T, .... IT+ 1) is an incidence vector in lnkfl is s t ra ightforward 
and therefore skipped here. 

Note  that  the case /~ = k-1 and p = 0 must  be excluded, since then T 
au tomat ica l ly  coincides with {1 ..... k-1 } and  l T cannot  be an incidence vector (I nT+ 1 

= n + l  = min  {/jT ] 1 < j < n, /jT _.> n}, thus condi t ion (i) o f  Defini t ion 2.8 is 
violated).  
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With the above nota t ion the following assertions are valid: 

(i) l T = l, 

(ii) For each l E I k,O there is a unique T c {1 ..... /~} o f  cardinality k-1 such that  n+l  
/'T = l and/" E I k ,  P. 

/ /  

From combinatorics  it is known that  the binomial  coefficient  (k  _k ) describes 

the cardinali ty o f  the set of  subsets of  {1 ..... /~} containing k-1 elements, thus asser- 
t ion (ii) o f  the theorem is shown. 

Figure 4 illustrates per example how the map l --  l T works. 
ad (iii): The  mapping 

(/31 ..... /3k) --  {/31,/31 + t32 ..... /31 + ""+/3k-1 } 

yields a bi ject ion from 

k 
{(/31 ..... & ) l  ~ 

i=1 
/3i "k = P, /3i E IN} -- Tk,p 

to 

{M c_ {1,...,k+p-1} [ [M[ = k-l} 

for  each k E IN, p E IN, 
thus 

t k+p - l~  
I T k ' p l  = ,  k-1 "" 

Analogously  it can be shown: 

tk+p-2~ I {(/31 ..... /3k) E T k,p I /3k >- 2} I = , kq  ' 
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L e t / b e  a member  o f  Ik,+P 1 with a ceiling (/31 ..... /3k) such that/3k -> 2. Then  define 
for e a c h l  _ < i _ < n  

I I i ,  i f  I i < n-2 

l/ = n-l, if  l i = n 

n ,  if l i = n + l  

The  case I i = n-1 cannot  occur since/3k > 2 directly implies {i < n + 1 I l i  = 
n-l} = 0. It is clear (see Defini t ion 2.8) that  f -- ( l  1 ..... In) is an incidence vector, 

thus f E Ink,p'l. 

Fur thermore  the funct ion 

[ l has the ceiling (/31 ..... /3k) with/3k -> 2] -- Ik,P -1 
n 

is bijective, because it is obvious how to define the inverse mapping.  
Combining the above observations and definitions, and using Lemma 3.6, we 

k 
get: Fix a ceiling/3 = (/31 ..... /3k) such that  ~ /3i-k = p > 1, then 

i=1 

[ [l E lk'P'n +l [ l has the ceiling/3] ,( k+p-lk.1 ) = akn'+Pl 

t k + p - 2 ~  = [ { I E I k ,  P.n+j I I has the  ceiling /3] [ �9 , k-1 ' 

] { / E  I~,+P 1 [ / h a s  the ceiling (~1 ..... ~k) with ~k -> 2]I = ak'p-1. 
n 

Consequent ly  

k+p-1  
( k-1 ~ p + k - 1  akn,+P 1 = akn,P-l " - -  - akn,P-l " q.e.d. 
( k+p -2~  p 

k-1 " 

The following example illustrates the maps l --  l Tconst ructed  in par t  (ii) o f  the 
preceding proof.  
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Example3.9: Let n = 7, k = 3, and l = (3,7,7,5,7,6,7)�9 Then  l E 13,1, since (2,1,1) 
is the ceiling o f  l. There are exactly 3 subsets o f  {1,2,3} with two elements,  namely  

T 1 = {1,2}, T 2 = {1,3], T 3 = {2,3]. So we have to construct  l Ti, i = 1,2,3�9 
Since l E 1(1-I), where QII is the quadrat ic  step function,  def ined by the values 

(3,5,6), we get: 

l T 1 = ( 3 , 8 , 7 , 5 , 8 , 6 , 7 , 8 ) ,  

l ~ =(3 ,8 ,7 ,5 ,7 ,6 ,8 ,8)  

l ~ =(3 ,7 ,7 ,5 ,8 ,6 ,8 ,8) .  

These incidence vectors are sketched in the following diagrams (as graphs o f  the 
corresponding anti  step functions)�9 

] - . - (  ' ] "C 

( , ] . . . .  

t ~J . . . . . . . .  

] 

( 

. . . . . .  ~ . . . . . . . .  (, 

I ( ~ - . -  

( ] . . . .  

( ] . . . . . . . .  

T, b 

( 3 ( ] . . . .  

C. ] . . . .  

3 . . . . . . . .  

IT= 

. . . . . . . . . .  { ~ ' - - (  l 

] . . . .  

Fig. 4. The  lines " .  . . . .  " represent  the  under ly ing  quadra t ic  step funct ions .  

1T3 
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Corollary 3.10: 

1,n-3 = 0 (i) a n 

(ii) Let ( k , p )  -r (1,n-3). Then ak, p --/: 0 if and only if the following holds true: 

(a) k _< [ 2] 

(b) p + 2k_< n. 

(c) (k,p) E ~ x iN U {0}. 

These assertions can be verified by induction on n: 

Since (2,3,3) is the only 3-person incidence vector, the corollary is valid in the 
case n = 3. The last theorem directly completes the proof. 

Let us introduce the following notation: D n = {(k,p) I ak 'p  --/: 0]. 
The next assertion is a direct consequence of  the last corollary. 

Corollary 3.11." 

1 4 1  = I 
n2_5 
T ,  if n is odd 

n2-4, if n is even. 
2 

Since the number of  homgeneous n-person games without dummies and steps 
equals al'0n+l by Theorem 3.8 (i), it is very useful to eliminate the "n~k'P , p > O. 
Define 

ank := ak'On 

and for technical reasons 

a12:= 1. 

With these notations the following recursive formulae are valid. 

Theorem 3.12: 

. 2 k  . 2  

k=l p=O n-p p=O k=l 



460 E Sudh01ter 

+ 
(ii) a k = S, 

n+l /~=k 
~ [ ~ ]  ~ n-2/~ /~+p-1  

s ( 
n kT= k-1 p=l  n-p P ) 

n-2k+2 

p=0 
( k l )  (k 1) n-p n ' /?=k-1 PP as - ak l  

. n + l ,  i f2_< k_< [ ~ ] .  

The proof of this theorem will be postponed, as we shall have to apply the 
following formula which describes akn, P in terms of some a k . 

Lemma 3.13: 

akn'P = akn -p (kp  p - 1 ) f O r a l l k  -< [2 ] ' p -  n-2. 

Proof  (by induction on n): 

In the casep = 0 nothing remains to be shown. Since (2,3,3) is the only 3-person 
incidence vector, we have 

a 1,1 = 1 =  a 1. 

If  p ___ 1, then by Theorem 3.9 (iii): 

ak,P = akn,P_ 1 ( p+ ; -1 )  
n+l 

k+p-2~ +~-_______11) (by inductive hypothesis) = ak,0 ( (P 
n-p+l p-1 J 

= ak,O ( k +p-1 ). q.e.d. n+l-p / - I  

We now proceed by proving the theorem: 
It is straightforward - by interchanging the summation indices - that the second 
equality of (i) resp. (ii) holds. 
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The first equalities are shown by induction on n: 
by Theorem 3.8 (i) resp. (ii) we get 

a 1 = l resp. a 2 = 1 

which coincides with 

1 1 1 1R 1 k 7 ~ (k+pp-1)ak_presp. F. ( ) a  k + E ( ) ~  ( k  -1)ak .p .  
k=l p=O k=2 k=l p=l  

Assume the validity of  the assertions for some n. 
Then this assumption, Lemma 3.13 and Theorem 3.8 (i) resp. (ii) imply 

n+l n+l 
[ ~ ]  n+l-2k [ ~ ]  n-2k 

a l + 2  = ~ E akn'+Pl = ~ ~ ak + 1-p (k+pp-I) 
k=l p=0 k=l p=0 

resp. 

n+l 
[2--]  - n + 1 - 2 / ~  

aln+2 = ~ ( i f _ l )  /~= k-1 p=0 

n+l 
[--2---] z- _ ~ - 

= S, -K- , -  n('~')a~+l + s 

if k _ 2 .  

~ 

1-  a'-I n+l 

[ 2 ] : 1  n+ 1-2/? (kS+p-1 ( ) ~ a ~ ) 
/~=k-1 p=l  n+l-p - p ' 

q.e.d. 

A sketch of  the recursive development will be given in the following figures. We 
restrict our attention to the case that n is even and k is at least two. The other three 
cases can be treated analogously. We presume that all aJ t < n-I, are already 

t ' - -  

known. 
The element in the j - th  row and l-th column of  Figure 5, which is often deleted 

n l for clearness reasons, shall represe t a: .  1 
Figure 6 is Pascal's triangle, rotated to the left by 1~ .right angles. Thus the ele- 

ment in the j - th  row and l-th column shall represent ( J j  1 ). 

The marked areas of  Figures 5 and 6 cover each other and the distances of  the 
vertical axes are equal. The binomial coefficients of  the first column of  the marked 
area of  Fig. 6 have to be multiplied with the first element in the weak marked (k- 1)-st 
row, the second column with the second element and so on. 
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The number auk will be obtained by summing up all the products of the coeffi- 
cients in the marked areas of Fig. 5 and the modified coefficients of the marked 
area of Fig. 6 (elementwise). 

I 

I 

! 

2k'+11 L 

\ 

\ 

\ 
\ 

\ 
~  �9 

Fig. 5. 
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I . . . . . . . . . . . . . . .  
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,~-1 ~ ~ . . . . . . .  iii _- 
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3 1 ~t . . . . . . .  

1 1 2  
o 1 1  . . . . . . . . . . . .  ~ . . . . . . .  
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4 T e s t  o f  H o m o g e n e i t y  

In this chapter  an a lgor i thm is constructed which enables us to decide whether a 
directed game is homogeneous  or  not .  

[n the following the homogenei ty  o f  a directed game (9, v) is tested. 

Definition 4.1: Let (9, v) be a directed n-person game without  one-person winning 
coalit ions and let S 1 be the lexicographically maximal  minimal  winning coalition. 
I f  S 1 .. . . .  S k are already constructed and l = (I(S1) ..... I(Sn)), define 

~" pk(Sio), where io = "X' if ~L ~ O, 
Sk+ 1 

0, otherwise 
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n 
~= S i is called set of pseudo-dummies. If Si+ 1 = 0 and i is not a pseudo- ~ \ i  1 

dummy then it is called pseudo-step. Let {k 0 + 1 ..... n] be the set of pseudo-dum- 
mies. Then (l 1 ..... lko+ 1) is an incidence vector, where 

I I(Sj), i fS j  r 0 

- k 0+ 1, otherwise 

If (k,m) is the minimal representation, generated by (l 1 ..... lk + 1) (for the ex- 
pression "generated representation" Definition 2.8 is referred to~, define 

fff~,v) = (k; m 1 ..... mk0, ~ ) .  

(n-k0)-times 

A straigthforward consequence of this definition, Remark 2.9 and Theorem 
2.3 is the following 

Theorem 4.2: Let (~, v) be a directed n-person game without one-person winning 
coalitions. 

Then t(fl, v) is the minimal representation of a homogeneous game, where ex- 
actly the pseudo-steps resp. pseudo-dummies of (~, v) are the steps resp. dummies 
of ~(f~, v). 

Additionally, if (~, v) is homogeneous, then c(~2, v) is the minimal representa- 
tion of the same game. 

Proof" The first part is obvious from Corollary 2.11 and Lemma 1.4. As the chain 
S 1 ..... S n constructed in the last definition, does not depend on the representation 
but only on the game it can be started with a minimal representation, which is itself 
automatically homogeneous, if the game is. Thus, the second part again is implied 
using the just mentioned assertions, q.e.d. 

Remark: It is obvious how to generalize the preceding definitions and assertions to 
directed games containing one-person winning coalitions. 

Corollary 4.3: A directed game (fl, v) is homogeneous, iff the incidence matrices of 
(fl, v) and fffl, v) coincide. 

A practicabel, slightly modified test of homogeneity, which already has been 
implemented on a computer, is presented in what follows. 
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Let (fl, v) be a directed game. A minimal winning coalition S is called shift- 
minimal, if S U { i+ 1} \ { i} is losing for all players i such that i E S, i+ 1 ~ S. (For 
this notation we refer to [6]). The matrix 

x*  := x*(a ,  v) = 

S shiftminimal 

with lexicographically ordered rows is called shiftminimal matrix of  (9, v). Ostmann 
[6] has shown X*(fL v) uniquely determines (9, v) and that neighboring players i, 
i+ 1 are of  different type (for the definition of  the term " type"  we refer to section 
1), iff  there is a shiftminimal coalition S with i E S, i+ 1 ~ S. The term " type"  can 
easily be generalized to coalitions: S and S'  have the same type - S - S '  - ,  iff  there 
is a permutation a- of  fl such that a-(S) = S'  and a-(i) - i for all i E 9. With this 
definition it is obvious that all coalitions of  one type are winning resp. minimal win- 
ning if only one does. In the homogeneous case this notation trivially implies: each 
minimal winning coalition S corresponds to a unique shiftminimal coalition S = 
: SH(S) satisfying S - S. In the general case SH(S) is to be defined as the lexi- 
cographically last coalition such that SH(S) - S. 

Lemma 4.4: If  (12, v) is a homogeneous n-person game, not necessarily without dum- 
mies and steps, and S 1 ..... S n are constructed according to Definition 4.1, then the 
following assertions are equivalent. 

(i) i § i+ 1 

(ii) There is a j ,  1 ~ j _< n, such that {i, i+1} f'l SH(Sj)  = {i]. 

Proof." We only have to show that (i) implies (ii). 
Assume i § i+ 1. IfSi+ 1 = pi(Sj) for somej  ___ i, then i E SH(Sj)  by definition. 

If  i+ 1 ~ SH(Sj) ,  nothing remains to be shown. In the other case i+ 1 E S j ,  thus 

Si+ 2 = Pi+ l(Sj)  (see Definition 2.8). Consequently SH(Si+ 2) f') {i, i+1} = {i}. 

If  Si+ 1 = 0, two cases may occur: 

1. None of  the coalition S 1 ..... S i contains player i. Then i and thus i+1 are 
pseudo-dummies of  (fl, v). Since t(fl, v) represents (fl, v), both players are dum- 
mies and consequently of  the same type, which contradicts assumption (i). 

2. Player i is a pseudo-step of  (fl, v), thus a step. The fact that L(9, v) = (k; 
m 1, ,m k , 0 ..... 0) is the minimal representation of  (12, v) implies m i > mi+ 1 

" ' "  0 
(see section 1) and thus - by Definition 2.8 - the existence of  t such that iE  S t , 
i+ 1 ~ S t. Then SH(St) satisfies property (ii) by definition, q.e.d. 
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l_emma 4.5: Let X* be the shi f tminimal  m x n matr ix  of  a homogeneous  game. Then  
the following assert ions are valid: 

(*) 
(i) I f  t < l (X] . ) ,  t ~ X~I . ,  then t - l(X~l .) 

(ii) I f  t 0 : :  min  {j I J e XT/ . , j  ~ X~+I �9 } < t < I(X~/+I �9 ) '  

t ff X~/+I . ,  then t - I(XT/+I .), for all 1 ___ i < m. 

Proof" 

ad (i): The  fact that  X~I . = SH(S), where S is the lexicographically maximal  
min imal  winning coali t ion,  directly implies (i). 

ad  (ii): Again  ~/+1 �9 = SH(~ directly implies (ii). q.e.d. 

Definition 4.6." Let X* be a shi f tminimal  mat r ix  o f  a directed n-person game  (9, v), 
satisfying condi t ion (*). Let i 1 < ... < i r = n be the last players of  the different 
types o f  the game  and i 0 0. Let STv be the first row o f  X* I f  STv ~Tv = " 1 ' " " ~ k  are 
already constructed and k < r, define 

sTY 
k+l  

= [ O,Stt(Pik(STv)), if  j=min{j<ik[JE{t<_kll(STv)>ik}l  l [ik +l,n]nSTtvl 
minimal}} 

the preceding set is nonvoid  and Pk(S Tv) exists 

otherwise 

Analogous ly  to Defini t ion 2.8 (3) the mat r ix  

sTv 

sTY 
s 

generates a vector ( k ,m)  via 

m k o + l  . . . .  = m n = O, where k 0 = max  {I(S Tv) I 1 < i < r], let us say 

k 0 = ito; mito_ 1 = ... = mit 0 1. I f  mit+l .... ,m n are already constructed for 

some t < t o and  t _> 1, define 
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mit_ 1 + 1 = ' "  = mi t = 

X := m(S Tv ). t 
m([ i t+l ,nJNST~_l \STv  ), if St+ --/:0, where S H  pit (STv) 

Tv 
= St+ 1 

1 + m([i t + 1,n] \ sTy) ,  otherwise where i t E STv and 

[ S T v 0 [Ei t + 1,n] [ is minimal with this property. 
J 

Lemma 4. 7." Let (~, v) be homogeneous. Then the representation ~(~2, v) coincides 
with the vector (X,m) generated by STv. 

Proof" Let S 1 ..... S n be defined according to Definition 4.1 Then it is obvious that 
S 1 ~ S Tv . Using an inductive argument we easily see that SH Sit.l +1 \ [1,it-l] = 

StTV \ [1,it. 1] for all t, 1 _< t _ r. It is straightforward to finish the proof by com- 

paring Definitions 2.8 (3) and 4.6. q.e.d. 

Summarizing the preceding notation and assertions we get 

Theorem 4.8." Let (f], v) be a directed game, whose shiftminimal (m x n) matrix X'* 
satisfies condition (*). 

([2, v) is homogeneous, iff the following conditions are valid: 

(i) i 4- i+1, iff there is a t such that i E sTtv, i+1 ~ STv.  

(ii) m(S) = X for each row S of X*, where (X,m) is the vector generated by ~Tv. 

(iii) L e t j E  [1,m]n. I f i E A ~ j . , i  t o =  m i n { t l t E A ~ j . , t ~ X ~ j + l . ] , i + l  4-i4-  

t O , where A~m+l . is the empty coalition, then m([i+l,n] \X~ j . )  < m i and, if 
/./ * j = m, m([ t0+l ,  ] \ X m . )  < mto" 

Proof" Assume fit, v) is homogeneous. Assertion (i) is a direct consequence of Lem- 
ma 4.4 and the proof of Lemma 4.7 and again Lemma 4.7 implies (ii). Condition 
(iii) follows from the fact that SH(S) is shiftminimal for each minimal winning coali- 
tion S. 

Conversely if X* satisfies (*), the matrix ~S Tv is well defined and generates the 
minimal representation (X,m) of a game (fl, 9). Each winning coalition w.r.t, fit, v), 
does win w.r.t. (~, v'), since for each shiftminimal coalition S the equality m(S) = 
X holds true. Assume there is a losing coalition S w.r.t, fit, v) which wins w.r.t, fit, v'). 
W.l.o.g. let S be shiftminimal w.r.t. (~2, v). Then there is a uniquej  E [1, m] such that 
X~j. is lexicographically greater than S is greater than X~j+I . Define r =  rain{t[ t 

E Affj., t ~ S} and i = max [t[ t - /'}. Then it is obvious that i t 0, thus i - t o 

by condition (iii). Consequently, Affj+ 1 �9 has a proper subcoalition S with m(S) = 

X, thus l(Aff/+__ 1 �9 ) is a dummy w.r.t. (X,m). By (i) we have i := l(X~j+ 1 �9 ) -< to '  i 4- 

to, which contradicts (iii). q.e.d. 
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The following 3 examples show that  none  of  the condit ions (i), (ii), (iii) can be 
deleted in Theorem 4.8. The shif tminimal matrices of  the considered games, which 
all are weighted major i ty  games, given in terms of  representations, have proper ty  
(*). Since it is s traightforward to verify the relevant properties o f  these games, the 
concerning proofs  are skipped. 

The game (fi, v) represented by I 
(7;5,3,3,1,1,1) 
(10;5,5,2,2,2,2,2) 
(29;19,12,12,5,5,5,2,1,1) 

('(i), (ii) 
satisfies conditions ]( i) ,  (iii) 

(,riD, (iii) 

((iii) 
but not ~(ii) 

{,(i) 
respectively 

The  following diagram illustrates some properties of  these games. 

representation of representation, satisfied 
(f~, v) X* (fi, v) ~Tv generated by ~ Tv conditions 

V 1010007 [ 101000"] 
(7;5,3,3,1,1,1) | 100011| / 0110011 (5;3,2,2,1,1,1) (i), (ii) 

l_ o11ool] 1 lOOO11] 

[ 1100000"] [ 11000001 
(10;5,5,2,2,2,2,2) | 01001111 (6;3,3,1,1,1,1,1) (i), (iii) 

LOOll l l lJ  [_0100111] 

(29;19,12,12,5,5,5,2,1,1) i~176176176176176176 00011000[ 
11001000[ 
011111001 
0111101~ 

101000000q 
011001000 I 
1000110001 
0000000001 
000000000] 

(5 ;3,2,2,1,1,1,0,0,0) (ii), (iii) 
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