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Abstract 

Homogeneous games and weighted majority games were introduced by von Neumann- 
Morgenstern (Theory of Games and Economic Behavior, 1944) in the constant-sum case. 
Peleg (Illinois Journal of Mathematics, 1966, 10, 39-48; SIAM Journal of Applied 
Mathematics, 1968, 16, 527-532) studied the kernel and nucleolus for these classes of 
games. The general theory of homogeneous, not necessarily constant-sum, games was 
developed by Ostmann (International Journal of Game Theory, 1987a, 16, 69-81), 
Rosenm/iller (On homogeneous weights for simple games, Working Paper 115, 1982; 
Zeitschrift far Operations Research, 1984, 12, 123-141; Mathematics of Operations 
Research, 1987a, 12, 309-330), and Sudh61ter (International Journal of Game Theory, 
1989, 18, 433-469). Peleg-Rosenmfiller (Games and Economic Behaviour, 1992, 4, 
588-605) used it to discuss several solution concepts for homogeneous games without 
steps. A reduction theorem for the nucleolus and kernel of homogeneous games with steps 
was proved by Rosenmiiller-Sudh61ter (Discrete Applied Mathematics, 1994, 50, 53-76) 
and Peleg et al. (The kernel of homogeneous games with steps, Essays in Game Theory in 
Honor of Michael Maschler, 1994), respectively. On the basis of these results, this paper 
shows that the kernel of each homogeneous game without winning players is star-shaped. 
Moreover, each of these games possesses a truncated game that is uniquely determined and 
homogeneous itself. The normalized vector of weights of the minimal representation of the 
truncated game is a center of both of the kernels of the original game and the truncated 
game. Moreover, this preimputation is Lorenz maximal within the kernel and can be 
characterized as the unique minimizer of a social welfare ordering in the kernel. To be 
more precise, the center solution uniquely minimizes a weighted Gini coefficient. Every 
weighted majority game occurs as a reduced game of certain homogeneous games called 
homogeneous extensions. The kernel of a weighted majority game arises from that of each 
of its homogeneous extensions in a very simple way. Moreover, the kernels of partition 
games are shown to be singletons. 
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1. Introduction 

In this section a short survey providing the necessary foundations from the 
theory of weighted majority and, particularly, homogeneous games, as well as 
some motivation, is presented. For a detailed definition, see Sections 3-7. 

Two classes of simple games, the weighted majority games and the subset of 
homogeneous games, are considered in this paper. A simple game is a co- 
operative multi-person game in which each coalition either wins, i.e. obtains a 
fixed positive payoff, or loses, i.e. obtains no payoff. If it is possible to separate 
winning coalitions from losing ones by assigning non-negative weights to the 
players such that the aggregated weight of each winning coalition exceeds, or is 
equal to, a positive level, whereas the weight of each losing coalition is less than 
the level, then the game is a weighted majority game. The vector that consists of 
both, the level and the weights, is a representation of the game. If, in addition, 
there is a representation such that each winning coalition contains a 'smallest' 
winning coalition, i.e. a minimal winning one, with a weight exactly hitting the 
level, then the game is homogeneous. For the explicit definitions, see Section 2. 

The terms 'simple', 'weighted majority', and 'homogeneous' were introduced 
by von Neumann and Morgenstern (1944). However, they were dealing with 
constant-sum games only. Both simple and weighted majority games appear in 
many applications of game theory (see, for example, Shapley, 1962). Concerning 
the structure of homogeneous games, Isbell (1956, 1958, 1959) and Peleg (1968) 
in the constant-sum case, Ostmann (1987a), Rosenmiiller (1982, 1984, 1987a), 
and Sudh61ter (1989) in the general case, should also be mentioned. 

Weighted majority games are used, for example, to model decision problems in 
democratic parliaments. A coalition, i.e. the collection of all members of certain 
parties in the gremium, wins if it possesses the required majority (the 'simple' 
majority or the 'two-thirds' majority, for example). The Shapley and the Banzhaf 
value are frequently used to measure the (relative) power of the parties in the 
parliament (see, for example, Dubey and Shapley, 1978). The problem of finding 
a voting rule that generates a 'small' parliament, such that the game among the 
voters coincides with the game in the parliament (see, for example, Ostmann, 
1983) directly leads to the question of finding a minimal integer representation of 
a given weighted majority game. For the homogeneous constant-sum case, yon 
Neumann and Morgenstern (1944) had already noticed the existence of unique 
minimal representations. Isbell (1959) found an example of a non-homogeneous 
weighted majority constant-sum game that possesses two minimal representations. 
He asked whether there is a canonical representation (a representation that can 
intuitively be justified and that coincides with the unique minimal representation 
in the homogeneous case) for an arbitrary weighted majority constant-sum game. 
Peleg (1968) proved that the nucleolus possesses the desired properties up to 
normalization. Ostmann (1987a) showed that, also, non-constant-sum homoge- 



P. Sudh61ter / Mathematical Social Sciences 32 (1996) 179-214 181 

neous games have a unique minimal integer representation. This representation, 
as in the constant-sum case, is automatically homogeneous itself. With the help of 
this result and more involved methods, Sudhrlter (1989) was able to describe 
homogeneous games by 'incidence' vectors, which can be characterized alge- 
braically. This 'theory of incidence vectors' allows us to give a formula for the 
number of homogeneous n-person games recursively with respect to the number 
of players. Moreover, an algorithm to create all homogeneous games can be 
deduced. 

In the meantime, it turned out that every weighted majority game possesses a 
canonical representation, given by a certain solution concept applied to the game. 
This solution concept is defined on the family of all transferable utility (TU)- 
games and possesses axiomatizations (Sudhrlter, 1996a,b). 

Homogeneity occurs in many places in the literature. This property, together 
with some kind of non-degeneracy, can be viewed as a surrogate for non- 
atomicity in the finite case, as Rosenmiiller (1987b) showed. To come back to von 
Neumann and Morgenstern, they used homogeneity to discuss their 'stable set'. 
Indeed, in the homogeneous constant-sum case, the main simple solution is 
obtained by restricting and normalizing the vector of minimal integer weights to 
each minimal winning coalition. This procedure yields a stable set. Unfortunately, 
this approach cannot be generalized to non-constant-sum games. Peleg (1966, 
1968) was the first person who considered different solution concepts (nucleolus 
and kernel), but, again, for constant-sum games. Peleg and Rosenmfiller (1992) 
used the structural results on the general homogeneous games mentioned above 
to show that the kernel always contains the normalized minimal representation for 
homogeneous games 'without' steps. However, they observed that the least core 
and, thus, the nucleolus, do not necessarily contain the minimal representation. 
The fact that steps play a very dominant role in the homogeneous game makes us 
believe that solution concepts like the nucleolus and the kernel should react 
according to the law, 'steps rule their followers', by giving a considerable 
advantage to players preceding the first step. Indeed, it turned out that the 
nucleolus vanishes after the first step and, hence, the computation of the 
nucleolus of a general homogeneous game can be reduced to the computation of 
the nucleolus of the reduced or truncated game, which is obtained by cutting off 
the players after the first step (see Rosenm/iller-Sudhflter, 1994). Peleg et al. 
(1994) showed the same property for the kernel (see the Reduction Lemma of 
Section 3 for a summary). 

The present paper starts at this point and asks how the minimal representation 
can be characterized within the kernel of a homogeneous game without steps. 
Moreover, the special shape of the kernel is discussed. Though the Reduction 
Lemma is used in several proofs, all results are stated in their general form. 

Section 2 presents the notation, partially adopted from Peleg et al. (1994). 
Moreover, necessary foundations and results concerning weighted majority games 
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and, in particular, homogeneous games, are summarized. The center  solution, 
which is defined, roughly speaking, as the normalized vector of weights of the 
minimal representation of the truncated game, is introduced. The center solution 
coincides with the normalized vector of minimal weights in the case of a 
homogeneous game without steps. 

In Section 3, the main result of Peleg et al. is recalled and some basic properties 
of the prekernel are formulated and proved. The center solution is a member of 
the prekernel with the largest carrier. 

Section 4 presents the Technical Lemma, which is the most important tool for 
all new results. Basically, it is shown that the maximal surplus of one player over 
some other at any prekernel member is attained by some minimal winning 
coalition. Peleg (1966) proved the same assertion for a subclass of the homoge- 
neous constant-sum games, namely the partition games, but his proof cannot be 
generalized to the class of homogeneous games or even to those that possess the 
constant-sum property in an obvious way. The approaches are totally different 
and the characterization of homogeneous games via 'incidence' vectors (see 
Sudh61ter, 1989) plays the central role in the proof of the Technical Lemma. 
Similar to Peleg's approach, star-shapedness of the prekernel is a straightforward 
consequence of this lemma. Moreover, the center solution is a center of the 
prekernel, which means that every line segment connecting an arbitrary element 
of the kernel with the center solution is completely contained in the prekernel. 
Theorem 4.4 shows that the center solution is an extreme point of the convex hull 
of the prekernel, which means (see Section 6) that the prekernel is a cone over a 
union of polytopes all lying in a lower-dimensional hyperplane. For a sketch, see 
Figs. 1 and 2 below. 

An application of these results is presented in Section 5. Peleg (1986) showed 
that the prekernel can be justified by a set of intuitive axioms. The prenucleolus is 
a single valued solution in the prekernel that also possesses an axiomatization 
(Sobolev, 1975). This section is meant to show that the center solution can be 
regarded as a justified proposal on how to share the worth of the grand coalition 
among the players in the homogeneous case. The notion of 'interpersonal 
comparison of utilities' is frequently used in the context of TU-games. With this 
notion, it seems feasible at a first view to propose an arbitrary preimputation of 
the prekernel, since surpluses are balanced at every element of the prekernel. The 
center solution assigns a Lorenz maximal preimputation within the prekernel to 
every homogeneous game. Moreover, it uniquely minimizes a certain weighted 
Gini inequality index that puts 'higher weights to poorer people' and, thus, 
maximizes the social welfare of 'small' players within the prekernel. For the 
theoretical results, see Lemma 4.3 and Theorem 5.1. The notation of this section 
is adopted from Moulin (1988). 

Section 6 shows that the prekernel of an arbitrary weighted majority game is 
a 'canonical' image of the prekernels of certain homogeneous games, called 
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homogeneous extensions. Indeed, the prekernel of the original game arises from 
restricting that of each of its homogeneous extensions to the preimputations of the 
original game. In this sense, the preceding result constitutes a new justification for 
considering homogeneous games as a subfamily of weighted majority games. 

In Section 7 it is shown that Peleg's result on partition games can be sharpened. 
The kernel of a partition game is not only star-shaped but a singleton consisting of 
the center solution, which coincides in this case with the normalized minimal 
representation of the game. Finally, some illustrating examples are presented and 
the relation of the prekernel and the kernel is discussed. 

2. Notation, homogeneous games, and the center solution 

During this paper we let I~ = { 1, 2, 3 . . . .  } denote the  universe of players. Finite 
subsets of [~ are called coalitions; intervals are subsets of [~ LI {0} of the form: 

[a, b] = {i E N U {0} la ~<i ~<b}, 

where a, b ~ N U {0}. 
The grand coalition is an interval 12 = O n = [1, n] for some n E I~. If 

o: R, o(0)  = 0 ,  

where ~ ( ,O)=  { S I S C O } ,  is a mapping (the coalitional or characteristic func- 
tion), then (O, ~ ( O ) ,  v) is a (TU-) game (with n persons). Since the nature of O 
and ~ ( O )  is determined by the characteristic function, v is called a game as well. 
A coalition S C_ O is often identified with the indicator function 1 s, considered as 
an n-vector. 

Given a game v, the desirability relation (see Maschler and Peleg, 1966) of v is 
a binary relation on players. Player/" E O is more desirable than i E 12 (written 
i<_j or i<__oj), if v(SU{i})<~v(SU{j})  for all SC_O\{i,j}.  Note that < is a 
relation with respect to players, which can be generalized to coalitions (see, for 
example, Einy, 1985). If i - j  (i.e. i <  j and j < i ) ,  then i and j are interchangeable 
or equivalent in v. The game v is ordered if its desirability relation is complete. 
An ordered game is a directed game if, additionally, 

n<_n- l<. . .<__l  

is valid. We always assume that ordered games are directed, since this can be 
enforced by just renaming the players. For every coalition S the length of S is 
defined to be 

l(S) = max S .  

Note that in a directed game I(S) is the 'weakest ' ,  'smallest', or 'the last' player of 
coalition S. 
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A game v is simple, if it is monotonic (i.e. v(S)<~ v(T) for S C T C ~ )  and 
satisfies v(S) ~ {0, 1} for S C_/2. A coalition S is winning (in a simple game v), if 
v(S) = 1, and losing, otherwise. In this case, the set of winning coalitions is 
abbreviated by W v. Simple directed games are discussed in Ostmann 
(1987b, 1993), and Krohn and SudhSlter (1995). In a simple game, all subcoali- 
tions of losing coalitions are losing as well. If each proper subcoalition of a 
winning coalition is a losing one, then this winning coalition is called a minimal 
winning (rain-win) coalition. It should be noted that a simple game is completely 
determined by its set of min-win coalitions, denoted by W~. To simplify matters 
we exclude the 'degenerate' simple games having no winning coalitions at all. 

A weighted majority game v (with n players) is a simple n-person game having a 
representation (A; m), i.e. a level A E ff~>o, and a vector of weights - a measure - 
m E Rio, such that 

{10, ifm(S)~>A, 
v(S)= , i f m ( S ) < A .  

Here, we use re(S)= F~ie s m i (S C_ g2) and call re(S) the weight of coalition S. 
Since a weighted majority game is automatically ordered, it is directed by the 
assumption. Therefore, we can choose the components of m to be non-increasing- 
ly ordered. Moreover, the aggregated weight of the grand coalition exceeds the 
level, i.e. m(~)~> A. Additionally, A is assumed to be maximal, which means that 
there is at least one minimal winning coalition S of v satisfying re(S)= A. Note 
that every weighted majority game possesses an integer representation (i.e. 
m ~ N  0, A ~ N )  with the preceding properties. A weighted majority game is 
homogeneous if it has a homogeneous representation, i.e. a representation (A; m) 
satisfying the property that every coalition S E W o possesses a subcoalition T with 
re(T) =A. 

Let v be a directed simple game. There is a unique min-win coalition with 
minimal length. This coalition is an interval of the form [1, t] and the lexicographi- 
rally maximal (lex-max), rain-win coalition of v. Player i E ~Q is a nullplayer if 
v(S 0 {i}) = v(S) for all S C_ J~. Clearly, nullplayers are equivalent. A player is a 
vetoer if she is a member of every winning coalition. The equivalence classes or 
types of players (e.g. vetoers, winning and nullplayers) establish a decomposition 
of O. 

There is another decomposition of ~ ,  in the case of a homogeneous n-person 
game v, into sets of players of equal character. Let (A;m) be a homogeneous 
representation of v. There are three characters, called 'sum', 'step', and 'null- 
player'. The definition of a nullplayer was given above and remains unchanged. 
So the two others have to be defined. We fix a non-nullplayer i 6 ~ and consider 
the minimal length of min-win coalitions containing i, say, 

l (') = min{l(S)li E S E W'~}. 
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The domain  of i is 

C (i) = [l (iJ + 1, n]. 

Player i is a s u m  if 

m, <~ m(C(i))  , 

and otherwise i is a step. 

A sum can be replaced in at least one min-win coalition by a coalition of 
smaller players, the weight being exactly the sum of the weights of these smaller 
players by the homogeneity of (A; m). However, 'steps rule their followers', i.e. 
whenever a smaller p l a y e r - a  player with a larger index- i s  a member of a 
min-win coalition, any preceding step also is a member. 

Therefore, the characters (nullplayer, step, sum) form a partition of /2. A 
homogeneous game may have no nullplayers or sums (e.g. the unanimity game of 
the grand coalition) but steps are always present. The smallest non-nullplayer is 
always a step. 

Remark 2.1. (1) A homogeneous game v has a unique minimal representation- 
i.e. an integer valued (A; M) representing v such that M(/2) is minimal among all 
integer representations of v - w h i c h  is automatically homogeneous itself (see 
Osmann, 1987a, and Rosenmfiller, 1982). Moreover, M i = M i, iff i and j are 
equivalent (i, j E/2) .  The normalized vector of weights of this minimal repre- 
sentation is abbreviated by r e ( v ) =  M / M ( / 2 ) .  

(2) Let (A; m) be a homogeneous representation of the homogeneous game v 
and S E W~. The set 

{i e / 2  Il(S ) > i ~ S }  

is the set of dropouts  of S. If S is not the lex-max, min-win coalition, then S 
possesses dropouts. In this case, the last dropout is denoted by 

r(S)  = max{i E/2  l i is a dropout of S}.  

Clearly, there exists a unique t • Jr(S) + 1, I(S)] such that 

~p(S) = S U {r(S)  } \[t, l(S)] 

is a min-win coalition. That means that q~ inserts the last dropout and cuts off a 
tail of S to generate a min-win coalition. The aggregated weight of this tail 
coincides with the weight of player r(S)  by homogeneity. If a is the number of 
dropouts of S, then q ~ ( S ) -  i.e. the a iterate of q~ applied to S -  coincides with 
the lex-max, min-win coalition. 

To define the 'inverse' map, suppose j E S is such that 

[j, I(S)] C_ S and S\{]} O [I(S) + 1, n ]E  W o .Then we say that j is expend-  
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able in S, i.e. replaceable by a 'tail' [I(S) + 1, t]. To be more precise, t is defined 
to be the player such that 

pj(S) = S \ ( j }  o [l(S) + l, t] 

is a min-win coalition. Again, the aggregated weight of the tail coincides with the 
weight of j. Note that there is a unique min-win coalition that does not possess 
expendable players at all. This is the lexicographically minimal ,  min-win coalition. 
Clearly, 

Pr(Sj(¢(S)) = S ,  if S is not lex-max, 

and 

¢p(pj(S)) = S ,  if j is expendable in S .  

(3) Let k be a player of the homogeneous game v such that all persons 
1 , . . . , k  are sums. Then there exists a sequence of min-win coalitions, 
S l . . . . .  Sk+ 1 E Wo m, such that the following conditions are satisfied: 

(i) S~ is the lex-max, min-win coalition. 
(ii) S]+ 1 : pj(Sio ) for each j E [1, k], where i 0 is minimal such that Sio ~ S i and 

I(Si o) = m i n { l ( S ) l S  ~ S t } ,  where S t = {S~ l i ~ [1, j], j ~ S~}. 
This assertion follows directly from Theorem 2.3 and Definition 2.4 in 

Sudh61ter (1989). Moreover; let j E [1, k + 1], r o = l(S~), and r~ > . . -  > r~ = 0 be 
defined by" 

{r;li ~ [1, a - 1]} 

is the set of dropouts of coalition S t. Then 

I(~ ' (S t)) = man {I(S) I r, +, s w T, l(S) } 

= min{l(S)lra ~ S ~ WT}  

for each /3 E [1, ot - 1]. For a proof, see the same paper. 

In Section 4 it will be shown that the prekernel of a homogeneous game is 
star-shaped. Here,  a subset A of some real vectorspace is called a star if it 
contains an element c such that for every a ~ A the line segment with endpoints a 
and c is contained in A. A vector c satisfying this property is a center o f  A .  We are 
going to define the center solution that is a center, and frequently the unique 
center, of the prekernel (see Section 4). 

Definition 2.2. Let v be a homogeneous n-person game with representation 
(A; m). 

(1) Let ~'(v) denote the last player that is equivalent to the first step of v, i.e. 

l"(v) = max{r E O I~- ~ min{i ~ O li is a step}}. 
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Note that ~-= r(v) is a step. 
! 

(2) The truncated game of  v is the z-person weighted majority game v 
represented by (A - m([r  + 1, n]; mt~.,i), i.e. 

v ' ( S ) = v ( S U [ ~ ' +  l , n ] ) ,  fo rSC_g] , .  

Note that v' is the reduced game of v with respect to g2, and any vector x E R a 
satisfying x i = 0 for i > z. For the definition of reduced games, see Davis and 
Maschler (1965). 

Without proof we state a result of Rosenmfiller and Sudh61ter (1994, Lemma 3.7 
and Corollary 3.9). 

Lemma 2.3. Let v be a homogeneous game and ~ = ~'(v). Then v' is a homoge- 
neous game without nullplayers and without non-equivalent steps. 

A homogeneous game without nullplayers and without non-equivalent steps is 
called a homogeneous standard game. Now the center solution ¢(v) can be defined, 
For every homogeneous game v let 

C(v) = (m(v') ,  0 . . . . .  0 ) ,  

n -.:- 7 

i.e. c(v) is the vector that arises from the normalized vector of weights of the 
minimal representation of the truncated game by adding sufficiently many zero 
components. In the standard homogeneous case, c(v) is the normalized minimal 
vector of homogeneous weights 

Example 2.4. For simpler reading, the parentheses in an integer representation 
(it; M) are omitted. The characters are indicated by o" for sum and ~- for step. For 
n = 7 :  

19; 7 7 5 2 2 1 1 
T 7 O" T T IT T 

is a minimal representation of a homogeneous game v with ~-(v) = 2, and thus v' is 
the two-person game represented by 8; 7 7 or by 

2; 1 1 
T T "  

Therefore,  c(v) = (1, 1, 0, 0, 0, 0, 0)/2. 
Let u he represented by 

13; 7 6 3 3 1 1 1 
Or" IT IT IT Or" O" T 
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Then the center solution of u coincides with (7, 6, 3, 3, 1, 1, 1)/22. If w is the 
game that arises from u by dropping player 7, i.e. w is represented by 

13; 7 6 3 3 1 1 
O" O" T T Or T '  

then w t possesses the minimal representation 4; 2 2 1 1, and thus c(w)= 
(2,2, 1, 1 ,0 ,0) /6 .  

In a homogeneous game, equivalent steps occur in every min-win coalition 
either simultaneously or not at all (by 'steps rule their followers', see the games v 
and w of the preceding example). Therefore, the truncated game either possesses 
a unique step, namely the last player (see u = u'),  or the set of steps consists of all 
players equivalent to the last player (see, for example, v', w ' of Example 2.4). 

Ostmann (1987a) describes an easy method to compute the minimal representa- 
tion of a homogeneous game. For homogeneous standard gamds, this algorithm 
assigns weight 1 to all players equivalent to the last player. All other players are 
non-nullplayers and, thus, sums. Sums can be replaced by a tail of smaller 
players. Therefore, the minimal vector of weights can be determined recursively. 
For a non-standard homogeneous game, the vector of minimal integer weights 
assigns zero to all nullplayers and the weight of the domain is increased by one to 
every step. All sums are treated analogously to the standard case. 

3. Preliminary results about the prekernel 

This section serves to recall some definitions, some results, and to prove some 
elementary properties of the prekernel, which are needed in what follows. 

Definition 3.1. Let o be an n-person game. (1) The set of preimputations o f  

(Pareto-optimal payoffs o f )  o is denoted by 

X*(v)  = X* = { x E R  ~ l x ( a )  = 1}. 

Note that a preimputation may have negative entries. 
(2) For different players i, j E O we write 

z,j= {S c_Ol jg;S ~ i} , 

and for every coalition S C N: 

e(S, x, v) = e(S, x) = v(S) - x(S)  , 

denotes the excess o f  S at x E R" (with respect to v). The maximal excess of x ~ R" 
is 
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/z(x) =/z(x, v) --max e(S, x ) ,  

and 

su(x ) = su(x, v) =max e(S, x) 
S E Tii 

is the maximal surplus o f  i over j. 
(3) The corresponding systems of coalitions reaching maximal excess or 

maximal surplus are given by 

~(x)  = ~(x ,  v) = ( s c_ o J e(S, x)  = t~(x)} 

and 

~u(X) = ~u(x, v) = {S ~ Tule(S,x)  = s,i(x)} . 

(4) The prekernel o f  v is given by 

~Y((v) = {x E X* [sii(x ) = si,(x)(i, j E g2, i ~ k)}.  

A vector x ~ R" is balanced if su(x ) = su(x ) for i, j ~ 12 satisfying i ~ j .  
(5) The kernel is the set: 

~(v)  = {x E X* Ix i >I v({j}) and (su(x) <~ sji(x ) or xj = v({j})), i, j E g2, i ~ j}. 

A vector x ~ R" satisfying xj ~> v({j}) for j E g2 is individually rational. 
The kernel was introduced by Davis and Maschler (1965), see also Maschler et 

al. (1979), Maschler and Peleg (1966, 1967), and Peleg (1966). Both the kernel 
and the prekernel respect the desirability relation, i.e. i ~o J implies x~ ~ x  i for 
every element of the (pre)kernel. 

It is obvious that a game that arises by dropping some or all nullplayers inherits 
the directedness, the weighted majority property, and the homogeneity, respec- 
tively. Moreover, the (pre)kernel of the new game arises from the original one by 
dropping the corresponding zero components of each element. A solution concept 
with this property is said to satisfy the strong nullplayer property. 

For a weakly superadditive game v (i.e. a game satisfying v(S tO {i})~> v(S)+ 
v({i}) for all i E~O and S Cg2\{i}) prekernel and kernel coincide. This means 
that the kernel and prekernel of a directed simple game coincide unless there is a 
winning player. If exactly one winning player is present, then the kernel consists 
of the unique vector that distributes one to the winning player and assigns zero to 
any other player. In the case where there are multiple winning players, the kernel 
is empty because there is no individually rational Pareto-optimal payoff at all. 
Therefore, we restrict our attention to the shape of the prekernel and recall some 
'reduction properties' (see Peleg et al., 1994, Corollary 2.7, Theorems 3.1, 3.2, 
5.2, and 5.4) without proofs. 
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Reduction Lemma. Let v be a directed simple n-person game. 
(i) I f  v processes vetoers, then the (pre)kernel consists of  the unique vector that 

distributes v(J2) equally among the vetoers, i.e. 

~yC(v) = ~C(v) = ((1 . . . .  , 1 , 0 , . . . ,  0 ) / p ) ,  
~-....~.L ~. ~.-.....,,...-~ 

p n - p  

where p is the number o f  vetoers. 
(ii) I f  v possesses p > 0 winning players and other non-nullplayers, then 

~ r ( v )  = {(O "x, . . . .  Ot x , X 1 . . . . .  Xn_p)[(1 + pot x) I x E [~i~r(W)} , 

P 

where tr x = min{x(S)I S ~ Ww} for x E R "-p and w is the (n -p)-person game that 
arises from v by dropping all winning players, i.e. w is the game defined by 
w(S) = v ( {p  + s Is ~ S}), for S C_ g~,_p. 

(iii) I f  v is homogeneous and ~" = 7(v) denotes the last player equivalent to the 
first step, then the prekernel o f  v arises from the prekernel o f  the truncated game v' 
o f  v by adding zero components for players not belonging to v', i.e. 

~ X ( v )  = ((x,  . . . . .  x , ,  0 . . . . .  0)  Ix ~ ~yC(v ' )} .  

n - - T  

The Reduction Lemma, together with Theorem 5.2 of Peleg and Rosenmiiller 
(1992), yields the following result: 

Theorem 3.2. I f  v is a homogeneous game, then the center solution ¢(v) is a 
member of  its prekernel. 

The main reason for the fact that ¢(v) ~ ~Y[(v) for any homogeneous game is that 
the maximal surplus of one player over a non-equivalent other player is attained 
by a minimal winning coalition and coincides with the maximal excess as long as 
both players belong to the carrier of c(v). Indeed, all minimal winning coalitions 
possess the same weight according to the center solution, by construction. Peleg 
(1966) shows that for every element of the kernel of a partition game, the 
maximal surplus is attained by a min-win coalition. He then uses this fact to prove 
that the kernel must be star-shaped and that the center solution is a center of the 
kernel. The idea of the present approach is similar. The next section is devoted to 
the proof that the maximal surplus is attained by a min-win coalition in a more 
general context. In order to verify the assertion of the Technical Lemma of 
Section 4, the following results will be useful. 

Lemma 3.3. I f  v is a directed simple game without vetoers and x E ~Y{(v), then 
~(x) c_ wo. 
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Proof. Since the prekernel satisfies the strong nullplayer property, assume v does 
not possess nullplayers. By Peleg et al. (1994, Lemmas 2.4 and 2.5), see also 
Peleg (1989), we know that x t> 0 and x t ~>...~>x, holds true. Assume, on the 
contrary, that ~(x) contains a losing coalition, say T. For each winning coalition S 
we have 

e(S, x) >t 1 - x (O)  = O, 

and 

e(T, x) = - x ( T )  <- 0 

Thus, 

e(T, x) = O, 

and x~ = 0 for all i E T by the assumption. Moreover, the excess of S must vanish. 
Thus, x(S) = 1 for each S E Wo. Consequently, each player i with x~ > 0 must be a 
member of each winning coalition; thus, i is a vetoer that is excluded. Q.E.D. 

In the case where vetoers are present, Lemma 3.3 is false (see the Reduction 
Lemma, part (i)). For the next lemma the absence of vetoers is also needed. 

Lemma 3.4. Let i and j be different players o f  the directed simple game v without 
vetoers and x E ~ { ( v ) .  Then 

(a) s~j(x) >- I~(x) - x i and 
(b) s#(x) is attained by a min-win coalition or by a coalition o f  the form S U {i}, 

where S E W~  is a coalition with maximal excess and l ( S ) <  i; formally written: 

~ij(X) n (W? U {S U {i}lS ~ ~(x) n W m, l(S) < i}) # 0. 

Proof. (a) Take any minimal winning coalition T with maximal excess. By 
Lemma 3.3 such a T exists. If j ~  T, then 

e(T U {i}, x) >>- tz(x) - x i , 

thus assertion (a) is true. If j E T, then take any k E O\T,  g2XT # ~1, since v is 
assumed to have no vetoers, and observe that there is a coalition S ~ ~(x) with 
k E S and j , ~ S  by the balancedness of x. Lemma 3.3 guarantees that S is 
winning. We can assume without loss of generality that S is a min-win coalition 
(otherwise take any min-win subcoalition of S). Then, again. 

e(S tO {i}, x) >t ~(x) - xi 

holds true. 
(b) Take any winning coalition T E ~j(x) and define 

7~= TO[1,  i -  11. 

If 7 ~ E Wo, then choose any minimal winning subcoalition S of 7: and observe that 
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e(S, X) - x i = e(S U {i}, x) >i e(T U {i}, x) >I e(T, x) >I Ix(x) - x i , 

Thus S ~ ~ ( x )  N W m, l(S) < i, j ,~  S and the proof is completed. 
If l" ,~Wo,  then there is a min-win coalition T U {i} C S C T and e (S , x )  

e (T , x ) ;  thus, the proof is finished. Q.E.D. 

4. Star-shapedness 

It is the aim of this section to show that the prekernel of a homogeneous game 
is star-shaped. This assertion will be a consequence of the Technical Lemma, in 
which it is shown that the maximum surplus of i over j (i, j 6 12, i # ] )  is attained 
by at least one minimal winning coalition for any homogeneous standard game 
unless both players are equivalent steps. This is true for the center solution, which 
assigns equal weight to every min-win coalition. Recall that a homogeneous 
standard game is a homogeneous game without non-equivalent steps and without 
non-nullplayers. Recall that if i and j are equivalent steps, then they appear in 
every min-win coalition either simultaneously or not at all ('steps rule their 
followers'). In the case of a homogeneous standard game, all steps are equivalent 
to the last player. That means that i or j has to be a sum in this case. 

Peleg (1966) showed the same assertion for certain pairs (i, j)  in the constant- 
sum case. However, his approach cannot be generalized to arbitrary homoge- 
neous games and the 'theory of incidence vectors' (see Sudh61ter, 1989) is 
strongly used in this paper. The center solution assigns equal weight to all 
min-win coalitions of a homogeneous standard game, since it coincides, up to 
normalization, with the vector of weights of the minimal homogeneous repre- 
sentation. 

Technical Lemma. Let  v be a homogeneous standard n-person game, x ~ ~ ( v ) ,  
and let i and j be different players such that at least one o f  them is a sum. 

(i) Then sij(x ) is attained by a min-win coalition. 
(ii) I f  the last component  o f  x is positive, then sit(x ) > Ix(x) - x i. 

Proof. If vetoers are present, then every player is a step and is equivalent to the 
last player. Therefore, there is no pair of players that satisfies the desired 
properties in this case. Thus, both assertions are trivially valid. We assume from 
now on that vetoers are absent and (i, j)  is a pair of players with i # j  and 
min{i, j} is a sum. 

(i) Assume, on the contrary, that s~j(x) is not attained by a min-win coalition, 
i.e. 

n w 7  = (1) 
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Therefore,  

s,i(x) = I~(x) - xi , (2) 

by Lemma 3.4. Let t be the index of the last non-vanishing component  of x, i.e. 

t = m a x { / ~ / 2  Ixi > 0}.  (3) 

For each coalition S E W v there is a unique t(S)~. S such that 

S O [1, t(S)] is a min-win coalit ion, (4) 

i.e. this rain-win coalition arises from the winning coalition by dropping 'superflu- 
ous' small players. 

For each T E W m let a ( T ) E  N U {0} be minimal such that ~oa(r)(T) has no 
dropout  k > max{j,  t}. Define 

S =  ~o°(sn|'"(S)l)(s O [1, t(S)I) 

for each S ~ W v. We conclude that 

e(S, x) = 1 - x(S) <~ 1 - x(S n [1, t(S)]) (by (3)) 

= 1 - x(S)  (by (3)) 

= e(S, x ) ,  (5) 

and thus, 

= { S E ~(x)  n w ~ ' l a ( S  ) = 0} ~ I~ (by (5) and Lemma 3.1). (6) 

Two subsets of ~ are defined as follows: 

- = { S E ~ l [ m i n { i ,  j } , n ] n S = ~ } ,  

d/÷  = {S E ~t I [min{i, j ) ,  max{j,  t}] C_ S} .  

Step 1. d / =  d , / - U  d,/+ and ~ - ~  ~ # ~ *. Indeed, as soon as the equality is 
shown, it is easy to deduce the second part of the assertion. Take S ~.,///. If 
S ~ +, then there is a dropout k , ~ S -  since S cannot be the grand coalition by 
the absence of vetoers. In this case, the balancedness of x applied to (k, 
min{i, j}) ,  i.e. Sk rain{i, j} = Smin{i,j}k',.,guarantees the existence of  T E @(x) with 
k ~ T, mini/,  j } ,~  T. By definition, T E rig; thus, T E d,/- holds true. In each case 

- is non-empty. But ~ ÷ ~1~ is valid as well, which can be seen by dis- 
tinguishing two cases: if t < min{i, j} ,  then take S ~ d,/with maximal length I(S). 
Clearly, l(S) >~ t holds true. The case S E ~ - cannot occur since then T = pt(s)(S) 
exists and e(T, x) >>- e(S, x) =/z(x);  thus, I(T) > I(S), T E ~ ,  a contradiction. 

If t>~min{i , j } ,  then take S ~ . ~ / -  and observe that there is T E ~ ( x ) ,  
min{i, j} E T, k ,~  T for each k E S. Clearly, 7 ~ E ~ + 

To show that ~ = ~ + O ~t - if suffices to verify that there is no coalition S E 
such that 

S O [min{i, j},  n] # t~ ~ [min{i, j} ,  maxi j ,  t}]\S (7) 
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is satisfied. Assume, on the contrary, there is a coalition S E d~ with property (7). 
Four cases are distinguished: 

(a) i < j , t < j .  I f i ~ S ,  t h e n j E S  by (1). Since t < j  there is k E [ i ,  j] with k ~ S  
by (6). Then S O {k}\{j} is winning (since j<_k) and contains a min-win coalition 
T containing i (see (4)). 

Now 

x(T)  <-x(S) + x k <~x(S) + x~ (by (3)) 

holds true, a contradiction to (1). 
If i ~ S  and j ~ S ,  then the observation that S U {i}\{j} is winning yields a 

contradiction in the same way as before without using t < j .  
If i ~ S  and jfi~.S, then there is k ~ S n [i + 1, n] (by (7)). Again, a contradic- 

tion is obtained by considering S U {i}\{k} without using t < j .  
(b) i < j  <~ t. We can assume, without loss of generality, that i ~ S, thus j E S, 

since all other cases can be treated in the same way as in (a). Again, there is 
k E [i + 1, t]\S by (7). 

Since Sjk(X) = Ski(X), it follows that ~k~(x) C @(x), thus ~kj(x) n d / ~  ¢J (by (5), 
(6) and x k > 0). 

Take T E ~k~(X) n d / a n d  observe that in the case where i,~ T a contradiction is 
obtained analogously to the last subcase of (a). The case i E T cannot occur since 
then 

e(T, x) = Ix(x) > tz(x) - x, = s~j(x) (by (2) and x, > 0) .  

(c) t < j < i .  Property (7) directly implies j , ~ S ,  [ j +  1, I(S)]C_S, I (S)>-j+ 1; 
thus, l ( S ) < i  (by (1)). Take T E ~ ( x ) N W ~  with l ( T ) < i  such that I(T) is 
maximal with these properties. Since all s teps -  they are interchangeable- either 
occur as a block or do not occur at all in a fixed min-win coalition (by 'steps rule 
their follo~cers'), the last player l(T) of T must be a sum. Clearly, l(T) < n, by 
definition. Therefore, l(T) is expendable in T and a min-win coalition: 

R = pl(r)(T) 

is obtained. It is obvious that 

Ix(x) = e(R, x) (by l(T) > t) ; 

thus either i ~ R -  a contradiction to ( 1 ) - o r  l ( R ) < i -  a contradiction to the 
maximality of l(T).  

(d) j < i  and j <~ t. If jyES,  then there is k > j  with k ~ S (by (7)) and without 
loss of generality k ~< t + 1, since [t + 1, I(S)] C_ S whenever l(S) > t by (6). If 
l(S) > i (implying t >~ i), then the consideration of a min-win coalition contained in 
S U {i} \{ l (S)}  again yields a contradiction. If t <<-l(S)< i, then we can proceed in 
the same way as in the last subcase of (c) by choosing any T E ~ ( x ) n  W~ with 
l (T)  < i, j , ~  T such that l (T)  is maximal. If l(S) < min{i, t}, then assume that l(S) 
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is maximal with these properties and take any T ~ ~ with I(S)# T, I(S) + 1 ~ T. 
There exists k ~ T, k > I(S), such that 

R= TU(I(S)}\[k, n l E W  7 (see (4)).  

Thus, 

Xt~s)>~x(Tn[k,n]) (since T E E ) .  (8) 

But, by homogeneity, 

a := S\{I(S)} u (T n [k, n]) ~ W m 

holds true. Consequently, (8) is, indeed, an equality and Q E ~ ,  l(Q) > l(S). 
Clearly, Q satisfies (7) and thus l(Q)>1 min{i, t} is impossible, as shown above. 
But l(Q) < min{i, t} contradicts the maximality of l(S). 

I f j ~ S ,  then there is k E [ j +  1, t]\S; thus, there is S E.,//, k E S ,  /',~S, which 
is impossible by the first part of (d). 

From now on, let i and j be chosen in such a way that i + j is minimal with the 
desired properties. Moreover, write k = min{i, j}. 

Step 2. Let S ~ ~ ÷ with r = r(S) maximal. Then 

l(~(S)) =r and ~ ( S ) ~ - .  (9) 

Recall that r(S) denotes the last dropout of S, which exists because S cannot be 
the lex-max, min-win coalition. Since r < k is valid, i.e. r + j  < i +] ,  there is a 
min-win coalition TE~rj(X) by the minimality of i +j .  By the balancedness 
property of x, namely ~(x)=  S~r(X ) = Srj(X ), coalition T has maximal excess; thus 
T ~ -  by Step 1. 

If l(T)>r, then there is R ~ ( x )  with I(T),~R, k E R ,  since T ~ ( x ) n  
~t~r)k. Again, by the minimality of i + j  and l(T) + k <i +j, we can assume 
w.l.o.g, that R E W~ and R E .~  ÷ is valid. Now, the existence of R contradicts 
the maximality of r. Therefore, l(T) = r. We conclude 

X r ~ X ( [ t ( ~ [ ~ ( S ) )  + 1, /(S)]) (by S ~ ~.)  

and 

X r <~x([l(~p(S)) + 1,/(S)]) (by T E ~  and homogeneity), 

thus the assertion (9). 

Step 3. Now the proof can be completed. Let S be the coalition of Step 2 and 
again r = r(S). Moreover, let r 0 = l(Sk÷l) and 

k = r ~ > . . . > r ~ = O  

be defined via {r t . . . . .  ra_i} is the set of dropouts of Sk÷ ~ - for the definition of 
Sk+~, see the third part of Remark 2.1. By construction and this remark we have 
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ra+t,~ ~oa(Sk+t) ~ r a , (10) 

and 

l(~o ~ (S k +1 )) = min {l(S)lra ÷l,~- S E W"~, I(S) > r e ÷t } 

-- min{l(S) lr a ~ S ~ W~'} , (11) 

for all/3 E [0, a - 1]. 
L e t f  be defined by rf÷~ <r<<.r I and let 

T =  q~f-l(Sk+l). 

Three cases are distinguished: 
(a) f + 1 = c~. Then 

r <- l(~o(r)) = I(S,) (12) 

holds true, where S~ is the lex-max, rain-win coalition. 
But l (S t )=  min{l (S)[S E W~"} <~1(~o(S))= r (by (9)); thus (12) is an equality. 

Consequently, l(S) is minimal such that k E S, and thus k is expendable in S by 
Sudh61ter (1989), a contradiction to the Step 1. Therefore, we assume f + 1 < a 
from now on. 

(b) ri+tggS. Then r t E ~ ( S  ) and l(~(T))>-ri>~r. 
By the minimality of l(q~(T))- see ( 1 1 ) -  and (9) we obtain r; = r. N o w -  by 

h o m o g e n e i t y - l ( T )  has to coincide with l(S), thus k E T. By (11) k must be 
expendable in T, thus in S, a contradiction. 

(c) r f + ~ S .  If r I=r ,  then we obtain a contradiction analogously to (b). 
Therefore,  r I > r is assumed. Choose R E.,ff with rI+~yi(.R, r E R. The  existence 
of R is guaranteed by the minimality of i + j and the balancedness 

= % + , r ( x )  = ( x )  . 

R cannot be a member of .,ff-, since otherwise - b y  l(R)>~ l ( T ) >  r (see (11) ) -  
there is a coalition containing k and not l(R) with maximal excess, which can be 
chosen to be rain-win by k + l ( R ) < i  +j .  This contradicts the maximality of r. 
Therefore,  R E . i f  + holds true. Let (A;M) be the minimal representation of v 
(see Remark 2.1). 

Now we have 

M([r + 1,/(S)]) = M r ~ M o ;  b <~r (by (9) and Remark 2.1) 

and 

Mr+l~>Mk (by Remark 2.1).  

Since k is not expendable in S, we conclude that 

M([l(S) + 1, n]) <Mr+ , ; 
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thus I(~(R))<~ r is valid. Therefore, rI+ I cannot be a dropout of tp(R) (by (11)). 
Since rf is expendable in ~(T) but not in R, then the inequality 

r >1 l(~(R)) > l(~p2(T)) 

is satisfied. Thus, 

M([I(~(T))  + 1, I(R)]) = M([I(~2(T))  + 1,/@(R))])/> M , ,  

but 

M([I( tp(T))+ 1,/(R)I) ~< M([I(~p(T)) + 1, nl) 

<<- M([r + 1, n]) - M,+ 1 

= M([r + 1, I(S)]) + M([I(S) + 1, nl) - M,+, 

< M r + M k - M,+ t 

~<M r , 

a contradiction. 

(ii) To verify this assertion, a part of the proof of (i) has to be repeated: start 
again with Step 1 -  only parts (b) and (d) have to be taken into considerat ion-  
and observe that all constructed contradictions to (1) are also contradictions to 
(2), if t = n. Steps 2 and 3 can be left unchanged. Q.E.D.  

This section is concluded by formulating and proving the explicit results 
concerning the star-shapedness of the prekernels of homogeneous games. 

Proposition 4.1. The prekernel o f  a homogeneous game v is star-shaped with center 
c(v). 

Proof. By the Reduction Lemma, parts (i) and (iii), we can assume that v does 
not possess vetoers, nullplayers, and steps of different types. Let c = c(v) be the 
center solution of o (which coincides with the normalized vector of minimal 
integer weights, since o is assumed to be a standard homogeneous game). 
Moreover,  let ~" be the index of the first step, i.e. ~- = min{i E O l i is a step}. Then 

C r = O r +  1 : • • , __  C n 

is valid by construction (see Remark 2.1(1)). By Theorem 3.2, c' is a member of 
the prekernel of v. Let x E ~Y{(v). 

It suffices to show the following: if i, j E I2, i ~ j ,  and min{i, j} < ~', then 

so(px + (1 - p)c) = O "so(x) + (1 - p)- s0(c ) , for all p E R with 0 ~< p ~< 1. 

Lemma 3.3 implies that /~(c)= e(S, c) for all S E W m. The Technical Lemma 
directly shows that 
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S,j(C) = 

and, thus, 

~ i j ( C )  ~__ W m . 

Take any min-win coalition S attaining so(x ). In view of the Technical Lemma, 
such a coalition S exists. Then 

si~(px + (1 - p)c) = e(S, px  + (1 - p)c) = p .sit(x ) + (1 - p) . si j(y ) . Q.E.D. 

Two examples are now presented that will demonstrate the 'typical' shape of 
the prekernel. In what follows it turns out that the center solution is not only a 
center of the prekernel but also an extreme point of the convex hull of the 
prekernel (see Theorem 4.3). The examples are superadditive, and hence weakly 
superadditive. Therefore, the prekernel and the kernel coincide. A game v is 
superadditive if, for every pair (S, T) of disjoint coalitions, v(S)  + v ( T )  <<- v(S U 
T) holds true. 

Example 4.2. (1) Kopelowitz (1967) gave examples of weighted" majority games 
with disconnected kernels. Here is one six-person game v, given by the repre- 
sentation (10; 5, 4, 3, 2, 2, 2) or (A; M) = (20; 10, 8, 6, 4, 4, 4). Kopelowitz com- 
puted the kernel of this game and came up with ~(v) = {x t, x2}, where 

xt = (2, 1, 1, 1, 1, 1)/7,  x 2 = (1, 1 ,0 ,0 ,0 ,0 ) /2 .  

The 19-person homogeneous standard game u, minimally represented by 

(A;M) = (32; 10 ,8 ,6 ,4 ,4 ,4 ,  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), 

is a homogeneous game that inherits many properties of v (see Section 6). The 
kernel of u can be computed as ~(u) = CH{~ l, c} U CH{,~ 2, c} (see Fig. 1), where 
'CH' means 'convex hull of', ¢ = c(u)= M / M ( O ) ,  and 

~' , . . . , 0 ) / 7 , £  2 (1,1,0,  . , 0 ) / 2  x = ( 2 , 1 , 1 , 1 , 1 , 1 , 0 ,  = . .  . 

xl  X 'i 

9((v) x* 2 ~2 

¢ 

Fig. 1. Kernels. 
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Clearly the kernel of u possesses a unique center, namely c. 
(2) The second example shows that the nucleolus is not necessarily a center of 

kernel of a homogeneous game. The prenucleolus of a game v is the unique 
preimputation of o that lexicographically minimizes the non-increasingly ordered 
vector of excesses. The nucleolus is obtained by the same procedure restricted to 
individually rational Pareto-optimal payoffs. Let v be the homogeneous standard 
17-person game, minimally represented by (A; M), where 

(A;M) = (39; 12, 12, 9 , 6 , 6 , 3 ,  1 . . . . .  1) .  
p 

11 

With c = c(v), x ~ = (1, 1, 1, 0, 0, 0)/3,  x 2 = (1, 1, 1, 1, 1, 0)/5, x 3 = 
(4, 4, 3, 2, 2, 1)/16, and .,7 i = (x", 0 , . . . ,  0), the kernel can be described as 

11 

~r(V) = c n { . ~ l ,  .~ 3, ¢} t..J CH{~2, .~ 3, c} .  

Hence a member of the kernel is a center if and only if it belongs to the line 
segment CH{~ 3, ¢} (see Fig. 2). For more details concerning this example, see 
Section 6. Indeed, in this section it is shown that .~t, which clearly is not a center, 
coincides with the nucleolus of v. 

An extreme point x of a convex subset of some Euclidean space is an element of 
this set that is not a convex combination of two elements of this set both differing 
from x. To show that the center solution is an extreme point of the convex hull of 
the prekernel (see Theorem 4.4), as suggested by the preceding examples, the 
following result will be helpful. Moreover, the assertion is also used in Section 5. 
The idea to prove Theorem 4.4 is very simple. If it can be shown that every 
element x of the prekernel, which possesses a last component not exceeded by the 
last component of c(v), coincides with the center solution for every homogeneous 

c 

Fig. 2. A 'roof-shaped' kernel. 
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standard game, then ¢(o) clearly has to be an extreme point by star-shapedness. A 
generalization of this fact is presented in the following lemma: 

Lemma 4.3. Let F: Rn--->R ~ be defined by F~(x) = F , j ~ x j . ( j  + 1 - i ) !  for x E R  ~ 
and i E O. 

Let ¢ = c(v) be the center solution o f  the homogeneous n-person game. 
(i) Then F(x) <~ F(c) componentwise for every x E ~ ( v ) .  

(ii) I f  x E ~ r ( v )  and F/(x) = F,.(0 for some i E [1, r(v)], then x = c. 

Proof. For simplicity we assume that v is a standard game, which can be done by 
the Reduction Lemma. It suffices to show that F,(x)/> F~(c) for some t E 12 implies 
x = c. Take x E ~ ( v )  and suppose that there is t E / 2  satisfying F~(x)I> Ft(c ). 
Moreover ,  take the maximal t with the desired property. 

Claim 1. x(S) >~ c(S) for every coalition S C_ [t, n] satisfying t ~ S. 
Let  S C_ [t, n] with t E S and f 1 E  R n be defined by f ~  = Fj(ek), where e k is the kth 
canonical unit vector o f  R ~, i.e. 

( k + l - j ) ! ,  i f  k >~j , 
f Jk = O, otherwise. 

Clearly, the set (fJlj~O} is a linear basis o f  R" and, thus, I s is a linear 
combination of  the f i ,  let us say: 

ls  = ~_, pj. f i ,  for some pj E R .  
]=1 

By construction, pj = 0 for j < t and Pt = 1. With the help o f  an inductive argument, 
it can be shown that Pi < 0 for j >~ t + 1. Indeed, suppose pl < 0 for every j E [t + 
1, k] is already verified for some k E [t, n - 1], and assume, now, that j = k + 1. By 

O<<-E o, f ~ =  , i f  k e S  
i=, , otherwise ' 

i.e. 

• k 

O ~ < ( k + l - t ) ! +  ~ p i ( k + l - i ) ! < - l ,  
i = t + l  

the equality 

k k 

P i f k ÷ l = ( k + E - t ) f ~ +  ~ p i ' f ~ ' ( k + 2 - i )  (13) 
i~t  i~ t+l  

is valid. In the case where t = k (13) becomes E~=, i - Pifk+l = 2 ,  hence p j < 0  in this 
case. I f  k > t, then we come up with 
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k k 
E i ~ t 

i=t i=t 

thus, again, pj < O. The observation 

x(s> = . , .  i '  x - -  , , .  
j= !  j= t  

>i ~ Pi " Fj(C) (by pj < 0 for  j > t and p, = 1) 
j=t 

= c(S) (14) 

finishes this part o f  the proof. Note that (14) contains a strict inequality in the case 
where t < n. 

Cla im  2. xj >i ¢j for  j E [1, t]. For ] = t this claim follows immediately f rom Claim 
1. For j < t we proceed recursively. In the case where j is a step, j is equivalent to n 
and, thus, to t, by the standardness assumption. The prekernel respects the 
desirability relation, hence x i = x, >I c, = cj. Therefore, assume that j is a sum and 
xi ~ ci for  i E [j + 1, t]. Take any min-win coalition S that attains maximal surphts 
f rom  t over j at x, i.e. S E W~ tq ~,j(x). Indeed, by the Technical Lemma,  S exists. 
Then S U {]} \{ t}  contains a rnin-win coalition T. Clearly, player j is a member  o f  
T, thus e(T, x)<<-e(S, x) by the balancedness o f  x. Therefore 

xi >~ x(S fq [j + 1, n]\ T)  = x(S A [j + 1, t - 1 ] \ T )  + x(S N [t, n]k T)  

>I c(S tq [] + 1, t - 1 ] \ T )  + c(S fq It, n ] \ T )  (by assumption and Claim 1) 

= c(S N [j  + 1, n ] \ T )  = c i (by the definition o f  c) 

implies Claim 2. 

Claims  1 and  2 show that  x([1,  t - 1])/> c([1, t - 1]) and x([t, n] ) />  c([t, n]) ,  thus 
x (O)  ~ c(O). H o w e v e r ,  x and c are p re imputa t ions ,  thus x(1"2) = c(12). T h e r e f o r e ,  
x~ = c i for  j < t. I t  is sufficient to show that  t = n holds true.  Indeed ,  in the case 
whe re  t < n  inequal i ty  (14) is strict, thus x([ t ,n] )>c([ t ,n] )  and x ( . O ) >  
c(12). Q . E . D .  

T h e o r e m  4.4. The center solution o f  a homogeneous game is an extreme point o f  
the convex hull o f  the prekernel o f  the game. 

Proof .  By the Reduc t ion  L e m m a ,  we assume,  for  simplicity,  that  v is a 
h o m o g e n e o u s  n - p e r s o n  s tandard  game .  Let  c = c(v) be the cen te r  solut ion.  I f  c is 
wr i t t en  as a convex  combina t i on  ¢ = px + (1 - p)y for  some  p E I~ with 0 ~< p ~< 1 
and  x, y E ~ ( v ) ,  then  x,  >t c, or  Yn ~> c, ,  let us say xn I> c..  Th.cn F,(x) >I F,(c) ,  
and  hence  x = c. Q . E . D .  
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5 .  T h e  c e n t e r  s o l u t i o n  as  a u n i q u e  m i n i m i z e r  o f  a w e i g h t e d  G i n i  i n d e x  

To a utility vector x E R~0 its Lorenz curve L(x) = y E R~, o, defined by 

yk=min{x(S)lSC_12 and Isl = k } ,  for k E 1 2 ,  

is attached. A collective utility function is a continuous map W: R~0--->R that 
satisfies: 

(i) Anonymity: W(x)= W(y), if y arises from x by a permutation of the 
components. 

(ii) Unanimity: W(x) >>- W(y), if x ~>y. Moreover, W(x) > W(y), if x i >y~ for 
i E 12 for x, y E R~0. A collective utility function W is said to reduce inequality if 
it respects the Lorentz order, i.e. if x, y E R~0 are such that L(x)>! L(y)  and 
Lk(x ) > L k ( Y  ) for some k E/2 ,  then W(x) > W(y). A map G: R~0---~ R is called an 
inequality index if there is a collective utility function W reducing inequality such 
that 

G(x) = 1 - (n. a(x)) /x(O),  for x ¢ 0 and G(0) = 0 ,  

where a ( x ) =  cr E R is uniquely determined by the condition W(tr. (1 . . . . .  1)) = 
e 

h 
W(x) (recall that W is assumed to be continuous). In this case we say that G is the 
inequality index induced by W. Note that G is non-negative and G(x)= 0 iff 
x~ =x i  for i, j ~ 12. Moreover, for x(12)= y(12) it is well known that L(x)>t L(y)  
and L(x) ~ L(y)  implies G(y) > G(x). 

For this notation, more details, and interpretations, see Moulin (1988). For any 
vector w = (w~ . . . . .  wn) with increasingly ordered positive components that add 
up to 1, i.e. w , < . . . < w n  and w(O)= 1, the map W, defined by WW(x) = 

" • * where x* arises from x by ordering the components of x non- "i=l Wi Xi~ 
increasingly, is a collective utility function, since x ~<y, x ~ y  implies x* ~<y*, 
x * ~ y * .  Moreover, W w reduces inequality. This can easily be verified by 
observing that Lk(X ) = x*([n + 1 -- k, n]). Indeed, 

W W ( x )  = Wltn(X ).-[- ~ (w i -  Wi_l)Zn+ l_i(x ) 
i=2 

holds true. The inequality index G w, induced by W w, is called a weighted Gini 
index. This function can be redefined as 

• for x ~ 0 (15) GW(x) = 1 -n /x (12) .  w i .x  i , 
i=1 

Note that the 'classical' Gini index occurs as a weighted Gini index with weights: 

w ~ = ( 2 i - 1 ) / n  2, f o r i E 1 2  

(see Moulin, 1988). 
The Gini index takes the surface between the 'straight line', i.e. the Lorenz 
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curve of the 'equal treatment vector' (x(/2) . . . .  , x(12)) /n  and the Lorenz curve of 
x as a measure of the inequality of x. Weighted Gini indices may put different 
weights to different parts of the Lorenz curves (see Fig. 3). 

The prekernel on the class of all games can be characterized by intuitive 
properties (see Peleg, 1986). Therefore, this solution concept possesses a 
theoretical justification. There is a single valued solution concept in the prekernel, 
namely the prenucleolus, which was axiomatized by Sobolev (1975). To show that 
the center solution constitutes another justified proposal as to how to distribute 
the worth of the grand coalition in a homogeneous game, we present a weighted 
Gini index that has the center solution as a unique minimizer. Within the 
prekernel, the center solution is not only Lorenz maximal but it also uniquely 
maximizes a certain collective utility function that reduces inequality. 

Theorem 5.1. Let  v be a homogeneous  n-person game  and w E R n be defined by 

) W i ~ -  (i! j[ , f o r  i E 0 . 

Then  the center solution ¢ = c(v)/s the unique m in imi ze r  o f  the weighted Gini  index 
G w within the prekerne l  o f  v. 

Proof. Recall that WW(x) = E~= I w i . x  i for x~Y~C(v),  since x = x * .  Indeed, x 
possesses non-increasingly ordered components because the prekernel respects 
the desirability relation. Inserting the concrete w we come up with 

WW(x)  = h . ~ i ! . x ,  = h .  F~(x) , 
i = 1  

where h = 1/~i"= t i! and F is defined as in Lemma 4.3. The application of this 
lemma proves the assertion. Q.E.D.  

The difference between the classical Gini index, G, and the weighted Gini 
index, G w, can be explained with the help of an example. Let w be defined as in 
the preceding example, let x = (14, 2, 2), and y = (9, 9, 0). A straightforward 
computation shows that with respect to W, y is preferred to x, whereas x is 
preferred to y with respect to G w. The shaded areas of Fig. 3 represent the Gini 
indices (left part of the figure) and the weighted Gini indices, respectively, up to 
normalization. The horizontal distance between consecutive players i and i - 1  
equals w~- wi_ ~. This can be seen in general by rewriting (15) for x ~ 0  as 

GW(x) = (n /x( l2  )) . ~ (w i - w i_ l )  . ( (x(O ) . (n + 1 - i ) ) / n  - x * ( [ i ,  n])) .  
i=2 

In our special case, w~-  w~_~ is proportional to i - i ! ,  whereas all differences of 
consecutive weights for the classical Gini index coincide. Hence,-G w puts 'larger 
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Fig. 3. Lorenz  curves. 

weights to poorer people'. Thus, small players are treated as well as possible 
within the prekernel from the center solution. 

In Example 4.2(2) the center solution ¢(v) in Lorenz-maximal within the 
kernel, but it is not a Lorenz-maximum. Indeed, L14(~2)=3/5>35/59 = 
L14(c(v)). Moreover, this example shows that the nucleolus (i.e. ~l)  of v is not 
even Lorenz-maximal, since it is strictly Lorenz-dominated by both £2 and the 
center solution. In many other examples the center solution is the unique 
Lorenz-maximal preimputation of the prekernel of a homogeneous game, but a 
classification of games with this property is not known. 

Finally, it should be remarked that c(v) is the unique minimizer within the 
prekernel of the mapping that assigns the negative weight -x~(o) of player r(v) 
(the last player equivalent to the first step) to any preimputation x. Unfor- 
tunately, this mapping only weakly respects the Lorenz order. Moreover, it 
depends on the game v (i.e. on ~'(v)), whereas G w is defined independently of the 
game. Only the number of players has to be known. 

6. The general weighted majority case 

It is the aim of this section to show that the prekernel of each weighted 
majority game is strongly related to the prekernels of certain derived homoge- 
neous games, called homogeneous extensions. This yields a new justification for 
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considering the special and small subclass of homogeneous games within the class 
of arbitrary weighted majority games. Theorem 6.6, the main result, is based on 
the following: 

Lemma 6.1. Let v be a homogeneous n-person game, ¢ = c(v) its center solution, 
and x ~ ~SY(v) be a further element o f  the prekernel. I f  ¢ ~ x, then there exists a 
unique £ E ~ r ( o )  on the straight line intersecting x and c with £~o~ = O. 

Proof. By the Reduction Lemma, we assume that v is a homogeneous standard 
game, i.e. ~" = n. In view of Lemma 4.3, we know that x,, < cn. Let p > 0 be the 
real number,  which is defined by ( l + p ) . x n - p . c  n = 0 ,  i.e. p = x ~ / ( c ~ - x , ) .  It 
suffices to show that x ~ =  (1 + a ) . x - a  .¢ belongs to the prekernel of v for 
0 ~< ot ~< p. Let a be maximal such that x ~ ~ ~ r ( v ) .  Clearly, a ~< p. Therefore, it 
remains to show that ot = p is valid. Suppose, on the contrary, that ot < p. Then all 
components of x ~ are positive; thus, by the Technical Lemma, part (ii), s~j(x ~) > 
/x(x ") >/~(x ~) - x ~  for every pair (i, j)  of different players that are not both 
equivalent to n. Therefore, ~ij(x ~) C_ W~ and, thus, there exist e > 0 satisfying 
~ii(x ~+~) = ~ij(x~); hence, x ~+" ~ ~ ( o )  by the balancedness of this vector. The 
last observation contradicts the maximality of a. Q.E.D. 

Remark 6.2. It is well known (see, fore example, Maschler and Peleg, 1966) that 
the prekernel of a game is a finite union of polytopes (i.e. compact convex 

r polyhedral sets) O j ~  pi.  If v is a homogeneous game, then Pi  can be chosen to 
contain the center solution as one extreme point (see Proposition 4.1 and 
Theorem 4.4). The preceding lemma shows that any other extreme point (if it 
exists) can be replaced by an extreme point with a zero component at r(v) (see 
Fig. 4). To be more precise, let x be any extreme point of PJ other than c = c(v). 
Then x can be replaced by £ as defined in Lemma 6.1, i.e. CH PJU {£} is a 

S 
z / 

¢ 

Fig. 4. A polytope. 
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subset of the prekernel. Indeed, for y E PJ and Z • C H { ~ ,  y}, there is z • 
CH{x, y} such that ~? is on the straight line intersecting z and ¢; thus ~? is a 
member of the prekernel by Lemma 6.1. For a sketch, see Fig. 4. 

For the sake of completeness, it will be shown that the prekernel of a 
homogeneous game is related, in an easy way, to that of a certain homogeneous 
game without steps. A homogeneous game is said to be a game without steps if 
only the last non-nullplayer is a step. This derived game arises from the truncated 
game (in which only one equivalence class of steps is present) by collecting all 
steps into one player. The precise formulation of this reduction result is the 
content of the following theorem: 

Theorem 6.3. Let v be a homogeneous n-person game and ~= z(v) be the last 
player equivalent to the first step z of  v. Let w be the z-person game defined by 

( ) . , , ,,~'v(SO[4+l'n])' i f z , ~ S f o r S C [ 1 ,  r] 
w ' S ' = t v t S U t z +  l, n l ) ,  i f  r • S  

o 

(i) w is a homogeneous game without steps and without nullplayers. 
(ii) ~5~(v)= { x • R " l x ~ =  . . . .  x~,xi=O for j 

• [? + 1, n], (x, . . . . .  x,_ 1 , x([z, ?])) • ~X(w)} . 

Proof. Assertion (i) is valid, since all players z . . . .  , ? occur in every minimal 
winning coalition of v either simultaneously or not at all (by 'steps rule their 
followers'). This means, if ()t; M) is the minimal representation of the truncated 
P-person game v', then 

(A; m 1 . . . . .  m ,_ , ,  m([z, 71)) (16) 

is the minimal representation of w. By the Reduction Lemma it can be assumed 
without loss of generality that v is already standard, i.e. ~ = n. The following two 
assertions are valid: 

(i) If x • ~2((v) and x,  = 0, then (x t . . . . .  x,) • ~ ( w ) .  
(ii) If x • ~g((w) and x, = 0, then (x, 0 . . . .  ,0 )  • ~ ( v ) .  

n - - z  
A proof of these assertions is straightforward and therefore skipped. By (16) 

c(w) = (c1 . . . . .  c,_~, c([z, n] ) ) ,  

where c = c(v). In view of Lemma 6.1 

~C(v)  = t2 CH{x, c}, 
xE,~9/'(v) 

xn~O 

and 

~Yf(w) = [,_J CH{x,c(w)}. 

Xr=0 
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Thus the proof is finished. Q.E.D.  

Definition 6.4. Let u be a weighted majority n-person game. A homogeneous 
k-person game v is a homogeneous extension of u, if the following conditions are 
satisfied: 

(i) k > n , n +  l ~  . . . .  ~k, 
(ii) v(S) <~ u(S n 12) (where O = [1, n]) for S C_ [1, k], and 

(iii) u(S) = v(S U [n + 2, k]) for S C_/2. 

It should be remarked that a weighted majority n-person game u is a reduced 
game of each of its k-person homogeneous extensions with respect to 12 and all 
preimputations x of v satisfying xn+ ~ . . . . .  x k = 0. Indeed, 

u ( S ) = v ( S U [ n + 2 ,  k])~< max v ( S U Q ) = v ( S U [ n + l , k ] )  
Q~[n+ 1. kl 

~<u(S), f o r S C O .  

The proof of the following lemma is constructive and shows that it is very easy 
to construct a homogeneous extension of a weighted majority game in the case 
where a representation of this game is given. 

Lemma 6.5. Every weighted majority game possesses a superadditive homogeneous 
extension. 

Proof. Let (A, M) be an integer representation of the weighted majority n-person 
game u. Recall that A=min{ i~t (S) ISEWu} is presumed. Let r be the last 
non-nullplayer of u. Define M • I~" by M i = 2" n • i~4~ for i ~< r, M,. = 2 for i > r, 
and A = 2 . n . , ~ .  Then (A;M) is another integer representation of u. This 
representation only possesses even components. With k = M ( O ) -  A + n + 1 
define (A; M) by 

(A;M)  = (M(O);M,  1 , . . . ,  1) .  
L p 

k - n  

Clearly, (A; M) is a homogeneous representation of a weighted majority game v. 
The following observation shows that v is superadditive: 

Ai([n + 1, k]) = k - n = M(/2) - A + 1 < M(.Q) (since h is even) 

The homogeneous game v is a homogeneous extension of u. This fact is a direct 
consequence of Definition 6.4 and the construction of v. Q.E.D.  

Note that the homogeneous extension v of u described in the proof of Lemma 
6.5 is a game without nullplayers, in the case where u possesses at least one 
non-nullplayer that has no vetoer. In the case where u does not possess any 
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vetoers at all, v is a game without steps (since every player i E O can be replaced 
by a tail within the lex-max, min-win coalition of v; moreover, any player i with 
n < i < k is contained in a min-win coalition that does not contain k; hence, i can 
be replaced by k using this coalition). The prekernel of a directed game with 
vetoers is well known by the Reduction Lemma. Therefore, we restrict our 
attention to weighted majority games without vetoers. 

The prekernel of any homogenous k-person extension of a weighted majority 
n-person game u without vetoers arises from that of u by taking the convex hull of 
the center solution and every point of the prekernel of u. Here,  the prekernel of u 
is considered as a subset of R k by considering R" as the canonical n-dimensional 
subset of R k. The precise statement is given in 

Theorem 6.6. Let v be any homogeneous k-person extension of the weighted 
majority n-person game u without vetoers. Then 

~2((v) = I._J CH{(x,O . . . . .  0), c(v)}. 

k - n  

The assertion of Theorem 6.6 can be written as 

 X(u) = {x R" I(x, 0 , . . . ,  0) 

k L n  

Proof. Let (A; M) be the minimal integer representation of the homogeneous 
k-person extension v of u. By Definition 6.4 (A; M), where A = A4(O) - k + n + 1 
and M is the restriction of M to /2, represents u. It is straightforward (even 
without use of the reduced game property of the prekernel) to show that if 

= (x, 0 . . . . .  0) ~ ~ ( v ) ,  then x E ~ ( u ) .  It remains to verify the converse: if 

k'---n 
x ~ ~Y/'(u) and ,,7 = (x, 0 . . . . .  0), then ~ E ~Y{(v). By Lemma 3.4, sij(x, u) is 

k-:n 
attained by a winning coalition S C_ 12 for i, j E /2  with i ~ j .  By Definition 6.4: 

e(S, x, u) = e(S U [n + 2, k], ~, v) ; 

thus s~j(x, u) <~ s#(~, v). For any coalition T C_ O k: 

e(T, ~, v) <~ e(T N g2, x, u) , 

thus sij(x, u) >>- sii(.~, v). Hence, ~ balances i and j. For i , j > n  and i ~ j ,  
balances i and j because ,,7~ = :~. = 0 and i ~v J. Therefore, it suffices to show that 
for i E g2, j > n the maximal surplus from i over j and the maximal surplus from j 
over i at .,7 with respect to v coincides with the maximal excess/~(JT, v). Notice 
that /~(~, v)=/~(x,  u) is trivially satisfied. Take any min-win coalition S ~ W m 
satisfying e(S, x, u) = I~(x, u). If i {~ S, then there is a coalition T E W m satisfying 
e(T, x, u) = I~(x, u) and i {~ T. This is true by the absence of vetoers and by the 
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balancedness of x. In each case there are min-win coalitions of maximal excess 
such that one of them contains, and the other does not contain, i. Assume without 
loss of generality i E S and i,~ T. The observations 

e(S U [n + 1, k]\  {/},,,,7, v) = e (S , x ,  u) = ~(x ,  u) = ~(.~, v) 

and 

e(S U [n + 1, k], ~, v) = e(S, x ,  u) = I~(x, u) = I~(~, v) , 

complete the proof. Q.E.D. 

An example of a weighted majority game u with nullplayers, and a homoge- 
neous extension as constructed in the existence proof, is as follows. Let u be the 
three-person majority game with two additional nullplayers, i.e. u can be 
represented by (A; M ) =  (2; 1 1 1 0 0). The representations (A; M) of u and 
(A; M)  presented in the proof of Lemma 6.5 are given by 

(20; 10 10 10 2 2) and (34; 10 10 10 2 2 1 . . . 1 ) ,  
F 

13 

respectively. The nullplayers 4 and 5 of u are no longer nullplayers of the 
homogeneous extension o. Note that the kernel of u consists of the unique 
member (1 ,1 ,1 ,0 ,0 ) / 3 ,  whereas the kernel of v is the convex hull of 
(1, 1, 1, 0 . . . . .  0) /3 and c(v) = M/49. Note that a homogeneous extension cannot 

1"7 
coincide with u even for a homogeneous u (as in this case) because a homoge- 
neous extension must possess strictly more players. Moreover, it should be 
remarked that there are infinitely many homogeneous extensions of a given 
weighted majority game. This can be seen as follows. If (A; M) is constructed 
according to the existence proof, then (A + r; A~, 1 . . . . .  1) is a minimal repre- 

r 
sentation of a homogeneous extension for r E [~. In our special example there are 
further homogeneous extensions, e.g. (2; 1 1 1 0 0 0). 

To give a non-homogeneous example, look at the four-person game minimally 
represented by (3; 2 2 1 1). Then the game represented by (8; 4 4 2 2 1 1 1) 
as well as (12; 4 4 2 2 1 1 1 1 1 1 1) is a homogeneous extension. The second 
one is the homogeneous extension constructed in the existence proof. 

Going back to Example 4.2(1) it is obvious that u is a homogeneous extension 
of v (though not the one constructed in the existence proof). Therefore, the 
kernel of u arises from the kernel of o as sketched in Fig. 1. 

To compute the kernel of v in Example 4.2(2), again, Kopelowitz's list can be 
used. Indeed, v is a homogeneous extension of the game u represented by 

(15; 12 12 9 6 6 3) 

and minimally represented by 
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(5; 4 4 3 2 2 1) .  

Kopelowitz computed the kernel of u as 

~ (u )  = CH{x I , x 3 } I.J CH{x 2, x 3 } , 

and the nucleolus as x 1. In view of Theorem 6.6, the nucleolus of v is either .,7 t or 
a convex combination of this vector and the center solution, since the other 
extreme points of the convex hull of the kernel possess larger maximal excesses. 
By ix(:7 ~, v) = 1/3 and t~(c, v) = 20/59, it is clear that the nucleolus of v coincides 
with £~. 

7. Remarks and examples 

Peleg (1966) showed that the kernels of certain homogeneous constant-sum 
games (a game o n / 2  is a constant-sum game if o(S) + o( /2 \S)  = 0(/2) for S C_ O) ,  
called partition games, are star-shaped. Partition games were introduced by Isbell 
(1956, 1958). He observed that a simple constant-sum game (without nullplayers) 
has at least as many min-win coalitions as players. And,  up to one famous 
exception, the partition games are exactly those with this minimal number. The 
exception is the projective seven-person game, introduced by Richardson (1956). 
This game has a very symmetric kernel with equal treatment of the players in the 
c e n t e r - t h e  center being no extreme point of the convex hull. 

In this paper it will be shown that the prekernel of a partition game is not only 
star-shaped, by homogeneity,  but a singleton. We start by recalling the definition 
of partition games. Let n I> 4 in this section. 

Definition 7.1. The game v is an n-person partition game if its minimal repre- 
sentation (A; M)  satisfies the following conditions: 

(i) M,_~ = M, = 1, M 2 = M3, M~ = 1 + M([4, n]), and 
(ii) M i E {M,+~, 1 + M([i + 2, n])} for i • /2 \{1 ,  2, n - 1, n}. 

Note  that there are precisely 2 "-4 partition games. The following list shows the 
minimal representations of all seven-person partition games: 

(6; 5, 1, 1, 1, 1, 1, 1) (9; 5, 4, 4, 1, 1, 1, 1) 

( 1 0 ; 7 , 3 , 3 , 3 , 1 , 1 , 1 )  ( 1 1 ; 7 , 4 , 4 , 3 , 1 , 1 , 1 )  

( 9 ; 7 , 2 , 2 , 2 , 2 , 1 , 1 )  ( 1 2 ; 7 , 5 , 5 , 2 , 2 , 1 , 1 )  

( 1 1 ; 8 , 3 , 3 , 3 , 2 , 1 , 1 )  ( 1 3 ; 8 , 5 , 5 , 3 , 2 , 1 , 1 )  

Theorem 7.2. The (pre)kernel o f  a partition game is a singleton. 

Proof. Let v be a partition game with n persons and (A;M)  its minimal 
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representation. Then ¢ = ¢(v) = M/M(12) is the center solution of v. It suffices to 
show that x = ¢ for every x E ~(v).  To do this, let x E ~(v)  and break /2 into 
successive disjoint intervals T~ . . . . .  T r of cardinalities t~ . . . . .  t r such that the 
intervals represent the equivalence classes of players, i.e. 

T I = ( 1 } , M i = M j ,  fori ,  j E T k  a n d k E O r ,  

and 

M i > M j ,  f o r i E T p  and j E T k ,  f o r p < k .  

For any S C_ O define S E ~" by 4 = I S t~ Til. Isbell showed that S E W~, iff 

g E ~  = {~Jl j  = 1 . . . . .  r ) ,  

where 

{t~, i f j - i - - O m o d 2 a n d i < ~ ] ,  
S~= , i f ( j - i = l m o d 2 a n d i < j )  o r i > j + l ,  

, otherwise. 

Define ~ = {SIS E ~(x) f3 WT). 

Claim. ~ = ./R. 

As soon as this last equality is shown, the proof is finished, since ¢ is the unique 
vector x for which both x(S)= constant for S E W~" and x ( O ) =  1. Indeed, a 
homogeneous constant-sum game does not possess different steps. 

Note that all players of T i are interchangeable and thus obtain equal weights 
according to x. By the star-shapedness of the kernel, x,  > 0  can be assumed 
without loss of generality (otherwise replace x by a non-trivial convex combina- 
tion of x and c). 

Since x, > 0, there is S E ~ with S, > 0, but ,~r-~ and S" are the only elements 
of (gE tlL>0}. - ' - '  - r - i  ~r-1 If S E ~ ,  then s~j(x)=l.t(x) for t ET ,_ ~ ,  j E T ,  since 
St_ ~ > 0 and S, = 1 < t r hold true. By the balancedness of x we have s,(x).. = 
/~(x), implying the existence of S E ~  w/th S~>0,  S',_l<t,_ 1 and thus S = S r .  
Therefore,  in each case, S ' E  ~ is valid. 

Now, s~j(x)=lz(x) shows that there is . ~ E ~  with ,.~,_~>0, S , < T , ;  thus 
~ r - I  ~ r - 2  - ~ r - 2  . ~ --  

E {S , S }. Assume that S = S (Le. r >~ 3); thus, S, 2 > 0 and S~ = 0. As 
a consequence, we obtain 

sq(x) = /z (x ) ,  for i E 7",_ 2, j E T, ,  

and, by the balancedness, so(x ) =/x(x). We conclude that there is S E ~ with 
--  ~ ~ _ - - - r - t  - - r - I  

S, 0, S r 2<tr 2; t h u s S = S  . Up to now we have p rovedS  , S ' E @ .  
Assume S ' ,  S'-~ . . . . .  S " + ~ E ~  from some a < r - 2 .  I f a  = 0 ,  then the proof 

~'a+l . ' a + l  
is complete. Therefore, assume a I> 1. Again, since ~ , . 2  > 0 and S.  = 0 there is 
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S ~  with S ~ > 0  and , ~ + , < t ~ +  2. Observe that g ~a . = S , if a = 1. Therefore,  
assume that a > 1. Then, clearly, g E {S~, g~ + t } is valid. Assume that g = S~-  ~" 
thus S~_ I > 0 and S,, + 1 = 0 and, by balancedness, there is T ~ ~ with T~ + t > 0 
and T~-I <t~_~. Consequently,  T = S ~  holds true. Q.E .D.  

Finally, some examples are presented showing the following assertions. 
(i) The kernel of a homogeneous constant-sum game need not be a singleton 

or even convex. 
(ii) An element of the kernel of a homogeneous game, even in the constant- 

sum case, need not satisfy the condition that the maximal surplus of player i over ] 
coincides with the maximal excess, even for non-interchangeable players i and j. 

(iii) The least core of a homogeneous game need not be contained in the 
kernel of the game.  The least core of a game is the convex set of preimputations 
that minimize the maximal excess of non-trivial coalitions. 

(iv) An element of the kernel of a weighted majority gam e need not satisfy the 
property that the maximal surplus of player i over player j is attained by a 
min-win coalition for non-interchangeable players i and j. 

Note that a possible example showing (iii) has to be a non-constant-sum game, 
because otherwise the least core is a singleton consisting of the nucleolus as Peleg 
(1968) showed. Nevertheless, this assertion may be surprising because prekernel, 
nucleolus and least core behave in the same way with respect to homogeneous 
games with steps of different type, which was shown by Rosenmfiller and 
Sudhrl ter  (1994) and Peleg et al. (1994). 

Example 7.3. 
(a) Let v be the homogeneous ll-pei-son, constant-sum game minimally 

represented by 

(A; M ) =  (16; 1 0 , 6 , 4 , 2 , 2 , 2 ,  1, 1, 1, 1, 1) .  

Define 

x t = (2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0) /7 ,  x 2 = (1, 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) / 2 ,  

x 3 = ( 6 , 3 , 3 , 2 , 2 , 2 , 0 , 0 , 0 , 0 , 0 ) / 1 8  and c=c(v)=M/31. 

It is easy to verify that 

~ (v )  = CH{x I , x 3, c} t.; CH{x 2, x 3, c}. 

There are only two 'types' to rain-win coalitions in T32, the first consists of players 
1, 3, and one additional player in [4, 6] and the second consists of playes 1, 3 and 
two additional players in [7, 11]. The excess at x 3 is 7/18 and 1/2, respectively. 
The maximal excess at x 3 is attained by, e.g. {1, 4} t9 [7, 10], and equals 10/18. 
This example thus shows assertions (i) and (ii). 

(b) Let (A; M)  = (8; 4, 3, 2, 2, 1) represent the five-person weighted majority 
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game v. Then x = M/12 ~ ( v ) .  Indeed, M/12 is the nucleolus of the game. 
Moreover, s52(x ) cannot be attained by a min-win coalition because there is no 
min-win coalition containing player 5 but not player 2. As a consequence, we 
have assertion (iv) and, additionally, s52(x ) < Ix(x). 

(c) Let v be the homogeneous seven-person game, represented by 

(A;M) = (14 ;6 ,5 ,3 ,3 ,2 ,  1, 1). 

Define x I = (2, 2, 1, 1, 0, 0, 0)/6 and x 2 = (2, 1, 1, 1, 1, 0, 0)/6. Then the least core 
is the convex hull o f x t , x  2 and c(v) = M/21. Moreover, the nucleolus of v can be 
computed as (7 / l l ) .¢ (v)+(2/11) . (x~+x2) .  It can easily be verified that 
x l, x 2 , ~ * ( v ) .  With the help of a computer it was checked that this is the only 
seven-person example, showing assertion (iii). 

Final remarks. 
(1) Kopelowitz (1967) presented an algorithm that computes the (pre)kernels 

of weighted majority games. This method is strongly based on Maschler and 
Peleg's (1966) theoretical results on the kernel for general games. Though 
Lemmas 3.3 and 3.4 might be used to slightly simplify this method in the directed 
simpie case, it is not intended to suggest that star-sharpedness of the prekernels 
for the homogeneous extension is a property that will help in the computational 
context. Moreover, it is not known whether star-shapedness has an impact on the 
possible shapes of the prekernels for general weighted majority games. 

(2) The main results on the prekernel can also be formulated for the kernel. 
Clearly, Proposition 4.1, Theorems 4.4, 5.1, 6.3, and 6.6 remain valid for the 
kernel if the absence of winning players is additionally assumed. Recall that 
prekernel and kernel coincide for weakly superadditive games. If exactly one 
winning player occurs, then the center solution is no member of the kernel unless 
this winning player is a vetoer and, thus, all other members of the grand coalition 
are nullplayers. Nevertheless, Proposition 4.1 can be weakened to read: the 
kernel of a homogeneous game is star-shaped or empty. 
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