
International Journal of Game Theory (1997) 26:147-182 G a m e  Theory 
The Modified Nucleolus: Properties and Axiomatizat ions 1 

PETER SUDHOLTER 

Institute of Mathematical Economics-JMW-University of Bielefeld, Postfach 100131, 33501, 
Bielefeld, Germany 

Abstract: A new solution concept for cooperative transferable utility games is introduced, which is 
strongly related to the nucleolus and therefore called modified nucleolus. It takes into account both 
the"power",i.e, the worth, and the"blocking power" of a coalition, i.e. the amount which the coalition 
cannot be prevented from by the complement coalition. It can be shown that the modified nucleolus is 
reasonable, individually rational for weakly superadditive games, coincides with the prenucleolus for 
constant-sum games, and is contained in the core for convex games. Finally this paper proposes two 
axiomatizations of this solution concept on the set of games on an infinite universe of players which 
are similar to Sobolev's characterization of the prenucleolus. 
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0 Introduction 

A new so lu t ion  concept ,  the modi f ied  nucleolus,  for coopera t ive  side p a y m e n t  
games with a finite set of p layers  is p r o p o s e d  in this paper .  

The  express ion "modi f ied  nucleolus"  refers to the s t rong re la t ionship  of this 
so lu t ion  to the (pre)nucleolus in t roduced  by  Schmeid ler  (1966). 

An impu ta t i on  belongs to the nucleolus of a game,  if it successively minimizes  
the max ima l  excesses, i.e. the differences of the wor ths  of coal i t ions  and  the 
aggrega ted  weight  of  these coal i t ions  with respect  to (w.r.t.) the imputa t ion ,  and  
the number  of coa l i t ions  a t ta in ing  them. F o r  the precise defini t ion Section 1 is 
referred to. By regard ing  the excesses as a measure  of dissat isfact ion the nucleolus  
ob ta ins  an intui t ive mean ing  as po in ted  out  by  Maschler ,  Peleg, and  Shapley  
(1979). 

The  so lu t ion  in t roduced  in the  present  pape r  const i tu tes  an a t t empt  to  t rea t  all 
coal i t ions  equal ly  as far as this is possible.  Therefore  it is na tu ra l  to r egard  the 
differences of excesses as a measure  of d issa t is fact ion leading to the fol lowing 
intui t ive definit ion.  A p r e i m p u t a t i o n  belongs to the modi f ied  nucleolus  T(v) of 

1 This work is partly based on Sections 1, 2, 3, 5 ofa habilitation thesis (Sudh61ter (1993b)) submitted 
to the Department of Economics, University of Bielefeld, Germany. Helpful discussions with 
M. Maschler and J. Rosenmiiller are gratefully acknowledged. 
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a game v, if it successively minimizes the maximal differences of excesses and the 
number of coalition pairs attaining them. The modified nucleolus takes into 
account both the "power", i.e. the worth, and the "blocking power" of a coalition, 
i.e. the amount  which the coalition cannot be prevented from by the complement 
coalition. Alike the prenucleolus, which only depends on the worths of the 
coalitions, the modified nucleolus is a singleton. 

To give an example look at the glove game with three players, one of them 
(player 1) possessing a unique right hand glove whereas the other players (2 and 3) 
possess one single left hand glove each. The worth of a coalition is the number of 
pairs of gloves of the coalition (i.e. one or zero). For the explicit definition the end 
of Section 4 is referred to. If a coalition has positive worth, then 1 is a member of 
the coalition, i,e. player 1 is a veto player possessing, in some sense, all of the 
power. Indeed the (pre)nucleolus assigns one to player 1 and zero to the other 
players. On the other hand both players 2 and 3 together can prevent player 
1 from any positive amount by forming a "syndicate". Therefore they together 
have the same blocking power as player 1 has. The modified nucleolus takes care 
of this fact and assigns 1/2 to the first and 1/4 to each of the other players. 

A further motivation to consider the new solution concept is its behaviour on 
the remarkable class of weighted majority games. For  the subclasses of weighted 
majority constant-sum games on the one hand and for homogeneous games on 
the other hand the nucleolus (see Peleg (1968)) and the minimal integer represen- 
tation (see Ostmann (1987) and Rosenmiiller (1987)) respectively can be regarded 
as canonical representation. Fortunately, the modified nucteolus coincides with 
the prenucleolus on constant-sum games and, up to normalization, with the 
weights of the minimal integer representation on homogeneous games. Addition- 
ally, it induces a representation for an arbitrary weighted majority game. 
Therefore the modified nucleolus can be regarded as a canonical representation 
in the general weighted majority case. For  the details which are not specified in 
this paper Sudh61ter (1993b) is referred to. 

Section 1 presents the precise definition of the modified solution conept. The 
dual game v* of a game v assigns to each coalition the real number which can be 
given to it if the worth of the grand coalition is shared and the complement 
coalition obtains its worth. By looking at complements it turns out that the 
modified nucleoli of v and v* coincide, this also being a characteristic of the 
Shapley value. 

A certain replication of a game is defined, which allows to reformulate many 
assertions concerning the prenucleolus for the modified nucleolus. The dual cover 
of a game arises from a game v with player set N by taking the union of two 
disjoint copies of N to be the new player set and assigning to a coalition S the 
maximum of the sums of the worths of the intersections of S with the first copy 
w.r.t, v and the second copy w.r.t, v* or, conversely, the first copy w.r.t, v* and 
the second w.r.t.v. Hence both, the game and its dual, are totally symmetric 
ingredients of the dual cover. 

A main result of this section, Proposition 1.4, states a strong relationship 
between the prenucleolus of the dual cover and the modified nucleolus of the 
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initial game. One solution concept arises from the other by the canonical 
replication or restriction respectively. Therefore, e.g., the modified nucleolus can 
be computed by each of the well-known algorithms for the calculation of the 
prenucleolus (see, e.g., Kopelowitz (1967) or Sankaran (1992)) applied to the dual 
cover .  

Section 2 starts applying Kohlberg's characterization of the (pre)nucleolus by 
balanced collections of coalitions (see Kohlberg (1971)) to the modified nucleolus 
with the help of Proposition 1.4. It turns out that q-' can be characterized similarly 
by balanced collections of coalition pairs (see Theorem 2.2). 

The coincidence of the pre- and modified nucleolus whenever possible 
w.r.t, duality, i.e. whenever the prenucleoli of the game and its dual can- 
not be distinguished, is the content of Theorem 2.3 and a consequence of 
Theorem 2.2. 

Additionally, it is shown that q~ satisfies the dummy property (a dummy is any 
player whose component of the characteristic function behaves additively), 
weakly respects desirability between players in the sense of Maschler and Peleg 
(1966), and is reasonable in the sense of Milnor (1952). 

Section 3 is devoted to convex games. It turns out that the modified nucleolus is 
a member of the core in this case. 

The prenucleolus is the unique solution concept on the set of games on an 
infinite universe of players satisfying single valuedness, covariance under stra- 
tegic equivalence, consistency, and anonymity (see Sobolev (1975)). In Section 4 it 
is deduced that the modified nucleolus possesses similar axiomatizations, in 
which consistency is weakened and "strong duality" properties are added. 
Indeed, all axioms within each characterization including the infinity assumption 
on the universe of players are shown to be logically independent. 

1 N o t a t i o n  and  D e f i n i t i o n s  

A cooperative game with transferable utility - a game - is a pair G = (N, v), where 
N is a finite nonvoid set and 

v:2N--o ~, v(~) = 0 

is a mapping. Here 2 N = {S ___ N} is the set of coalitions of G. 
If G = (N, v) is a game, then N is the grand coalition or the set of players and v is 

called characteristic (or coalitional) function of G. Since the nature of G is 
determined by the characteristic function, v is called game as well. 

If G = (N, v) is a game, then the dual game (N, v*) of G is defined by 

v*(S)  = v ( N )  - v ( N \ S )  
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for all coalitions S. The set of feasible payoff vectors of G is denoted 

X*(N, v):= X*(v):= {XERNlx(N) < v(N)}, 

whereas 

X(N, v):= X(v):= {xe~NIx(N) = v(N)} 

is the set of preimputations of G (also called set of Pareto  optimal feasible payoffs 
of G). Here 

x(S):= 2 X i ( X ( ~ )  = O) 

for each x ~ R  N and S _~ N. Additionally, let x s denote the restriction o fx  to S, i.e. 

XS = (Xi)ieS@ ~S, 

whereas 

As:= {xsIxeA} 

for A _= NN. For  disjoint coalitions S, To_ N and x e R  N let (Xs, XT): = XSw T. 
A solution concept a on a set F of games is a mapping  

a : F ~  [) 2 x*(~'), r X*(v). 
V~F 

If/~ is a subset of F,  then the canonical  restriction of a solution concept  a on F is 
a solution concept  on F'. We say that  a is a solution concept on F', too. If F is not  
specified, then a is a solution concept  on every set of games. 

Some convenient  and well-known properties of a solution concept  a on a set 
F of games are as follows. 

a is anonymous (satisfies AN), if for each (N, v)6_F and each bijective mapping  
"c:N ~ N' with (N',zv)~F 

a(N', ~:v) = ffa(N, v)) 

holds (where ('cv)(T) = v('c- I(T)), "cj(x) = G-9 ( x ~ N , J  ~N', T~_ N')). 
In  this case v and rv are equivalent games. 
a is covariant under strategic equivalence (satisfies COV), if for (N, v), (N, w)~F 

with w = cw + fi for some ~ > 0, f lE~ N 

a(N, w) = co-(N, v) + fl 

holds. The games v and w are called strategieally equivalent. 
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a is single valued (satisfies (SIVA), if Ja(v)l = 1 for veF. 
a satisfies nonemptiness (NE), if a(v) r ~ for veF. 
a is Pareto optimal (satisfies PO), if o-(v) _ X(v) for wF.  

Note that both equivalence and strategical equivalence commute with duality, i.e. 

(zv)* = ~(v*),(~v + ~)* = c~v* + p, 

where z, ~, 13 are chosen according to the definitions given above. 
It should be remarked (see Shapley (1953)) that the Shapley value qo - t o  be 

more precise the solution concept a given by a(v)= {~o(v)} -sat isf ies  all above 
properties. 

Some more notation will be needed. Let (N, v) be a game and x ~  N. The excess 
of a coalition S _ N at x is real number 

e(S, x, v):= e( S, x):= v(S) - x(S). 

Let #(x, v):=/~(x) be the maximal excess at x, i.e. 

#(x, v):= max {e(S, x)] S c_ N}. 

The nucleolus of a game was introduced by Schmeidler (1966). Some correspond- 
ing definitions and results are recalled: Let ~9 :UnE~ R"--+ U , ~  R, be defined by 

O(x) = yeA"  (xef?"), 

where y is the vector which arises from x by arranging the components of x in 
a non increasing order. The nucleolus of v w.r.t. X, where X __ NN, is the set 

~/(X, v):= {xeX1,9((e(S, x, V))S=-N) lex -~ t9 ((e(S, y, V))s~_N ) for all yeX}.  

Schmeidler (1966) formulated and proved the following three assertions. 

If X is a nonvoid compact set, then J#(X, v) is nonvoid. (1) 

If Xis convex, then Y ( X ,  v) contains at most one vector. (2) 

If X is a nonvoid, closed convex subset of X*(v), then Y (X ,  v) is a singleton. 

(3) 

The prenueleolus of (N, v) is defined to be the nucleolus w.r.t the set of feasible 
payoff vectors and denoted ~.X(v), i.e., ~AF(v) = .Ar(X*(v), v). 

By (3) the prenucleolus of a game is a singleton, and, clearly, the prenucleolus is 
Pareto optimal. The unique element v(v) of ~Jff(v) is again called prenueleolus 
(point). 
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For  completeness reasons we recall that the nucleolus of (N,v) is the set 
~/~(X, v), where X = {xeX(v)  lx i > v({i})} is the set of imputations of v. Maschler, 
Peleg and Shapley (1979) tried to give an intuitive meaning to the definition of the 
(pre)nucleolus by regarding the excess of a coalition as a measure of dissatisfac- 
tion which should be minimized. If the excess of a coalition can be decreased 
without increasing larger excesses, this process will also increase some kind of 
"stability", they argued. Nevertheless, Maschler (1992) asked: "What is more 
'stable', a situation in which a few coalitions of highest excess have it as low as 
possible, or one where such coalitions have a slightly higher excess, but the 
excesses of many other coalitions is substantially lowered?" Anyone, like the 
present author, who is not convinced by the first or latter, may try to search for 
a completely different solution concept. The concept which will be introduced in 
this paper constitutes an attempt to treat all coalitions equally w.r.t, excesses as 
far as this is possible. Therefore, instead of minimizing the highest excess, then 
minimizing the number of coalitions with highest excess, minimizing the second 
highest excess and so on - the highest difference of excesses is minimized, then the 
number of pairs of coalitions with highest difference of excesses is minimized...  
Here is the notation. 

Definition 1.1: Let (N,v) be a game. For  each x~R N define 

6) (x, v):= 0 ((e(S, x, v) - e( T, x, V))(S,T~ ~:~ • 2.~)e R 22'~1. 

The modified nueleolus of v is the set 

T(v):= {x6X(v ) l  O(x ,v )  <lex O(y,v)  for all y~X(v)  }. 

Remark 1.2: Let (N, v) be a game. 

(i) If x is any preimputation of the game v, then the following equality holds by 
definition: 

e(T, x, v*) = v*(T) - x (T)  = v(N) - v ( N \ T )  - x(N) + x ( N \ T )  

= x ( N \ T )  - v(N\T) (by Pareto optimality of x) 

= - e ( ( X \ r ) ,  x, v). 

(ii) With 

0 (y, v):= 0 ((e(S, y, v) + e(T, y, v ))(s,r)~ z.~• 2N) 

for ye~N Remark 1.2 (i) directly implies for x~X(v)  that 

O (x, v) = g~ (x, v) 
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holds true. Note that x has to be Pareto optimal for this equation. Neverthe- 
less the modified nucleolus can be redefined as 

~'(v) = {x~X*(v) l ~)(x, v) _< O(y, v) for all yeX*(v)}, (4) 
lex  

since Pareto optimality is, now, automatically satisfied. Indeed, this property 
can be verified by observing that for every nonvoid coalition both, the excess 
w.r.t, v and w.r.t, v*, strictly decrease if all components of a feasible payoff 
vector can be strictly increased. 

(iii) The alternate definition of ~(v) in the last assertion (see (4)) directly shows 
that ~P satisfies duality, i.e. ~(v) = ~U(v*) holds. Note that the Shapley value 
also satisfies duality. 

(iv) It is straightforward to verify that 7 ~ satisfies both, anonymity and 
covariance. 

With the help of the next definition and proposition we obtain a relationship 
between the modified nucleolus of v and the prenucleolus of a game called dual 
cover of the game. Additionally, it turns out that the modified nucleolus is 
a singleton. 

Definition 1.3: Let (N, v) be a game and N = N x {0, 1}. We identify N x {0} with 
N and N x {1} with N* in the canonical way, thus . g = N � 9  The game 
(N �9 N*, ~), defined by 

F(S�9 T* )=  max{v(S)+ v*(T), v(T)+ v*(S)} 

for all S, T_c N is the dual cover of v. 

Proposition 1.4: The modified nucleolus of a game (N, v) is the restriction of the 
prenucleolus o f (NwN*,  ~) to N; i.e. 0(v) = v(~N. Moreover, vi(v" ) = vi.(~ for ieN. 

Proof'. By the well-known anonymity of the prenucleolus the second assertion is 
true. Let X be the set of symmetric feasible payoff vectors of g, i.e. 

X = {x~X*(g}ix i = xi. for i~N}. 

Then - by symmetry of the prenucleolus - we come up with 

For  each A = { S u T * , T w S * } E D  = {{SuT* ,TwS*}IS ,  TeN} let S(A) be 
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defined by 

S A  (S •T* ,  if v(S)+v*(T)>_v(T)+v*(S) 
( ) = ~ T u S * ,  otherwise 

a n d / )  = {S(A)IA~D }. Observe that  

~Jg'(f;) = t x6X[ ,9( (e(S,x, v-) )s~) <- ~9( (e(S, y, v') )s~t~) for y ~ X  
( lex ) 

holds true. On the other  hand - f o r  x, y~ R N 

~) (x, v) < O (y, v) iff 
lex 

O((e(S, x, v)) + e(T, x, v*))s~r.~z~ ) _< 3((e(S,y, v) + e(T,y, V*))S~T.~O ), 
lex 

hence the proposi t ion is proved, q.e.d. 

In view of Proposi t ion  1.4 the modified nucleolus of a game v is a singleton 
denoted by 0(v), i.e. 

{0 (~)}  = 'e(~).  

The unique point  0(v) of T(v) is again called modified nueleolus (point). 
With the help of the next definition we obtain a second relationship between 

the modified nucleolus of v and some nucleolus of a game called dual replication 
of v. 

Definition 1.5: Let (N, v) be a game. The game (N �9 N*, ~), defined by 

~(s�9 T*) = v(S) + v*(7') 

for all S, T_c N is the dual replication of v. 

Corollary 1.6: Let X = {xeX(~)[x i = xi, for all i~N}. Then 

(i) .A~(X, v0 = {y~I~N~'N*lyNe ~(V) and y,, = Yi for ieN}, 
(ii) ~,(~) is the replication of ~h(v), i.e. ~pi(,7) = ~pi,(~) and $(V)N = ~,(V). 

A variant  of Proper ty  (ii) of this corollary will be used as one characterizing axiom 
in Section 4. 
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Proof: A proof of (i) is straightforward and therefore skipped. Assertion (ii) 
remains to be shown. By definition 

~*(Su T*) = v(T) + v*(S) = ~(TuS*)  for all S, T~_ N, 

thus by Remark 1.2 (iii), (iv) 0i05) = 0i,(~) for all players i sN .  Therefore 

T(~)N = {x~X*(v)]cffx) < a(Y) f~ y ~ X *  } ' 

cffx):= O((e(S, x, v) + e(T, x, v*) + e(S, x, v) + e(T, x, V*))(S,T,~,?)~2~ • 2N• 2~ • 2N). 

Clearly, ~(x) _< cffy) iff {)(x, v) < O(y, x). q.e.d. 
lex lex 

The Shapley value also satisfies (ii) of the preceding corollary. Moreover, it is 
verified for completeness reasons that the dual cover of a game uniquely 
determines the game up to duality. 

Lemma 1.7: Let (N, v) be a game. Then 

(i) ~oi(~) = qo~,(g) a n d  q}{~)N = q)(v), 
(ii) I fg = # for some game (N,w) then wa{v,v*}.  

Pro@" 

ad (i): The first part of this assertion is guaranteed by duality of the Shapley 
value. To prove the second part the definition of ~o is recalled: 

(s - 1)!(n - s)! (v(S ) _ v(S\{i})), 
~0i(~) = Y~ n! 

i ~ S ~ N  

where t = [ TI denotes the cardinality of T. To each coalition S with i~S all 
coalitions of the form S �9 T* (T_c N) can be assigned, yielding the same 
"marginal value", i.e. v(S) - v(S\ { i} ) = ~(S u T*) - g(S\{i} u T*). 

Therefore it is sufficient to show that 

t=o~(~)(s+t-1)! (2n-s-0!- (s-1)! (n-s) ! (2n)!  n! (5) 

holds true (since (7) is the number of coalitions T ~ _ N  with cardi- 
nality t). Equation (5) is equivalent to 

,=o\  s - 1  / k  n - s  
(6) 
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by multiplying (5) with 
(2n)! 

n!(s - 1)!(n - s)!" 

Formula (6) is a special case of 

~=o(S+S t l l l ) (  n+m-s-t~n-s /:\(n+m~'n / (7) 

for me N w {0}, ne N, se N, s _< n. Using two inductive arguments the proof 
of formula (7) is straightforward and therefore skipped. 

ad (ii): Let # = 5, w ~ v. 

Claim: {w(S), w*(S)} = {v(S), v*(S)} for S _~ N. 

By definition of ~ we have 

(8) 

max {w(S) + w*(~), w*(S) + w(~)} = max {v(S) + v*(~), v*(S) + v(fg)}, 
(9) 

and, e.g., 

w(S) + w*(S) = v(S) + v*(S). (10) 

Using (10) equality (9) directly implies (8). 
Now the proof can be completed. Take any S_~ N with w(S) ~ v(S), i.e. 

w(S) = v*(S) r v(S) by (8). 

Take any T with v(T) r v*(T). By definition of ~ and (8) we conclude 

max{w(T) + w*(S-), w(S) + w*(T)} = max{w(T) + v(S), v*(S) + w*(T)} 

= max{v(T) + v*(S), v(S) + v*(T)} r max{v(T) + v(S), v*(S) + v*(T)}, 

thus w(T) = v*(T) again by (7). q.e.d. 

2 Properties of the Modified Solution 

At first Kohlberg's (1971) characterization of the (pre)nucleolus by balanced 
collections of coalitions is recalled and applied to the modified nucleolus. It 
should be remarked that his assumption of zero-normalization - i.e. v({i}) = 0 for 
all players i - c a n  be deleted without destroying the proofs. Moreover, the 
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original results were stated for the nucleolus, but it is easy to formulate analogous 
properties for the prenucleolus (see Peleg (1988/89)). Some notation is needed. 

A finite nonvoid set X % ~u is balanced, if X possesses a vector of balancing 
coefficients (6:,):~x, i.e. 

6~x=lN and 6 ~ > O f o r x e X .  
x e X  

Here 1 s is the indicator function of S, considered as vector of RN. A nonvoid 
subset D of coalitions o r / )  of pairs of coalitions is balanced if 

{lsISeD } or {1 s + 1r[(S, T)e/)} respectively 

is balanced. We say that S and (S, T) respectively is in the span of D and 
/~ respectively if 1 s and 1 s + 1 r is in the span {ls lSeD } and {1 s + lr](S, T)e/~} 
resp. For xeN N, c~eR define 

D(x, ~, v) = {S c_ N Ie(S, x, v) > ~}, 

/)(x, e, v) = {(S, T)62 N • 2NI e(S, x, v) + e(r, x, v*) >_ ~}. 

Theorem 2.1 (Kohlberg): Let (N, v) be a game, c~e R, and x~X(v). Then x = v(v) iff 
each nonvoid D(x, c~, v) is balanced. 

For a proof of this theorem Kohlberg (1971) is referred to. The analogon for the 
modified solution is 

Theorem 2.2: Let (N,v) be a game, ,oN,  and xEX(v). Then x=O(v) iff each 
nonvoid/)(x, , ,  v) is balanced. 

Proof." Let z:= (x,x*)eN N~N*, thus z is a preimputation of the dual cover g of 
v (see Definition 1.3). By the same definition we come up with the following two 
assertions: 

If(S, T)~D(x,~z, v) =:/), then Sw T*6D(z, cz, ~:= D~ TuS*,  
If S u  T*~D, then (S, T)e/~ or (T, S)e/). 

Particularly, D va ~ iff/~ r ~ .  Assume that/~ is nonvoid. 
Note that x coincides with 0(v) iff z coincides with v(0 by Proposition 1.4. 
Assume, now, x = 0(v) and take balancing coefficients 6s~r* > 0 of D, i.e. 

SwT*~D 

For (S, T)e/) define a real number 

fi(s,r) [~(6s~r. + 6r~s.), otherwise = 1 
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Then 

3(Sr)(ls+IT) = ~, 1 , ~(6s~r* + 3T~S,)(ls + 1T) 
(S, T)eb (S, T) eb _ 

and (T,S)~D 
+ 

(S ,T)~b  _ Su  T*~D 
and (T,S)sD 

holds true, thus/5 is balanced. 
Conversely, i f / )  is balanced with balancing coefficient (~(S,T) > 0 for (S, T)~/), 

then ((Ss~r.)s~r,~D, where 

t 3(s,r + C~(r.s), 

C~s,~ T *= b(s,r), 

k.(~tT,S), 

if (S, T)eD~(T,S) 
if (T,S)~D~(S, T), 
if (S, T)~D~(T,S) 

are balancing coefficients for D, q.e.d. 

By Remark 1.2 (iii) the modified nucleolus satisfies duality. Nevertheless, 0 co- 
incides with the prenucleolus whenever this is compatible with the duality 
property. To be more precise, all of O(v), v(v), and v(v*) coincide if the last two 
vectors coincide. Formally, this assertion is the content of the next 

Theorem 2.3: Let (N, v) be a game. If v(v) = v(v*) holds, then 0(v) = v(v) is also 
true. 

Proof'. In view of Theorem 2.2 it is sufficient to show that /5 := /?(x, c~, v) is 
balanced, whenever/~ is nonvoid, where x = v(v). 

Define 

A:= {S ~ N[there is T _  N with (S, T)~/)} 

and 

B:= { T _  N[there is S _ N with (S, T)E/)} 

and take SeA.  Then (S, T)6/), iff e(T,x ,v*)> : t -  e(S,x,v)=:ct(S). Since v(v*) 
coincides with x by assumption, Theorem 2.1 can be applied; hence the set 
D}:= D(x, ct(S), v*) is balanced, let us say, with balancing coefficients 6~T,S) > O, 
T~D~ s. Let fl be the maximal excess of coalitions in B w.r.t, v*, i.e. 
fi = max {e(T, x, v*)[ T~B}. Then, by definition, A = D(x, ct - fi, v) holds true, thus 
A is balanced - since v(v) = x - with balancing coefficients (6S)S~A. With 

Cs:= ~ biT,S ) and c:= 1 +s~ACS6s 
\ T~D~ / 
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the following equation shows the balancedness of/): 

Z C'CsCSSC3~r,s)(ls + 1T)= c ' Z  Cs~Ss ~,, (3'~T,s,(ls + 1T) 
(S,T)d) S~A T~D} 

=C's~ACs6s(1N+ r~D 6~r,s)ls)=C'(1N+s~ACs6slN) = IN" q.e.d. 

The prerequisite v(v)= v(v*) is trivially satisfied for each constant-sum game. 
Recall that (N, v) is a constant-sum game, if v(S)+ v(N\S)= v(N) for S _~ N. 
Therefore v is a constant-sum game, iff v coincides with the dual game v*. 

Corollary 2.4: For each constant-sum game the pre- and the modified nucleolus 
coincide. 

This corollary can also be proved without using Theorem 2.3 by first observing 
that the dual cover g of v is a constant-sum game and the prenucleolus of this 
game arises from the one of the game started with by replication, i.e. v(~ = 
(v(v), v(v)*). 

Up to the end of this section some properties of 5u are formulated which 
directly arise from well-known properties of the prenucleolus applied to the dual 
cover of the game. Indeed, it is shown that the modified solution is reasonable in 
the sense of Milnor (1952) and satisfies the dummy property. Moreover, the 
modified nucleolus weakly respects desirability. Some well-known definitions are 
recalled. 

Let (N, v) be a game. Player i eN is a dummy of v, if v(S w {i}) = v(S) + v({i}) for 
all S ~ N\{i}. This player is a null-player, if additionally v({i}) = 0 holds. Player 
i E N is at least as desirable as player j sN, written i ~_ j ,  if v(S u {i}) > v(S u {j}) for 
all S c_ N\{i, j}. The arising strict relation is abbreviated >-v:i is more desirable 
than j, if i~_vj and not j~_vi. Player i and j are interchangeable - i ~ j - i f  
i _~,j ~_ ] .  This desirability relation between players was introduced by Maschler 
and Peleg (1966) and can be generalized to coalitions (see, e.g., Einy (1985)). In the 
first paper it was shown that the prenucleolus as an element of the prekernel (for 
the definition of the prekernel Davis and Maschler (1965) and Maschler, Peleg, 
and Shapley (1972) are referred to) respects desirability-i.e.,  vi(v ) >_ vj(v), if 
i~_ ~j and satisfies the dummy property - i.e., vi(v ) = v({i}) for each dummy i of 
v. With the help of the following lemma the same statement can be proved for the 
modified nucleolus. 

Lemma 2.5: Let (N, v) be a game, g be the dual cover of v, and i, jeN. 

(i) i~_~j, iff i~_?j. 
(ii) i is a dummy of v, iff i is a dummy of ~. 

(iii) min {v(S u {i}) - v(S) IS ~_ N\{i} } = min {g(~u {i}) - ~(~t ~_c (N\{i}) w N*}. 
(iv) max {v(S u {i}) -- v(S) IS ~_ N\{i} } = max {~(S u {i}) - g(S) l S _~ (N\{i})uN*}. 
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Proof." Observe  that  v* has the same '~ structure",  the same dummies  
and so on. To  be more  precise the exact formulat ions  are as follows - a p roof  is 
a s t ra ightforward consequence of the definition of v*: 

i~_~j iff i~_v,j; 

i is a d u m m y  of v iffi is one of v* and v({i}) = v*({i}); 

a := min{v(S u {i}) - v(S) IS ~_ N\{i} } = min{v*(S u {i}) - v*(S) IS ~_ N\{i} }, 

b:= max{v(S tA {i}) - v(S) IS ~ N \  {i} } = max  {v*(S u {i}) - v*(S) IS c_ N\{i} }, 

ad (i): Let i _~?j for some i, j e N  and SeN\{i , j} .  Defining S = S u {i}, T = S u {j} 
we come up with 

v(T) + v*(S) < g (Tu  S*) _< g(S~S*) = v(S) + v*(S) 

by definition and assumption,  thus i~_ vJ. 
Conversely,  if i ~ ~j and S ~ T* ~_ (N\  { i, j} ) ~ N*, let w.l.o.g. 

~ ( s ~  {j} ~ T*)  = , , (Su  {j})  + ~*(T), 

otherwise exchange the roles of v and v*. Hence  

g(Su {j} u r * )  < v (S ,  {i}) + v*(T) <_ ~(Su {i} u T*). 

ad (ii): A p roof  of this assertion is s t ra ightforward using the above observa t ion  
and therefore we skip it. 

ad (iii): Take  S ~_ N\{i) and T% N. W.l.o.g. g(S~ T*) = v(S) + v*(T) - otherwise 
exchange v and v*. Then  

~(s u {i} ~ T*)  - ~(S u T*) _> v(S u {i}) - v(S) >_ a. 

Conversely,  take S ~_ N\{i} such that  a = v(Su {i}) - v(S). Then 

~(Su {i} u ( S u  {i})*) - g(Su ( S u  {i})*) _< v(S c; {i}) + v*(S ~ {i}) - 

(v(S) + v*(Su {i})) = a. 

Finally, assertion (iv) can be proved  analogously  to (iii). q.e.d. 

This last l emma and the wel l -known propert ies  of the prenucleolus together  
with Propos i t ion  1.4 directly imply 

Corollary 2.6: Let (N, v) be a game and x~ ~(v). 

(i) xi(v ) >_ x](v), if i ~ v J; 
(ii) x i = v({i}) for each d u m m y  i of v; 
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(iii) x i >_ m i n { v ( S w { i ) ) -  v(S)[S c_ N\{i} } for ieN;  
(iv) xi < max{v (Sw{ i } )  - v(S)IS c_ N\{i} } for i eN.  

Assertion (iv) is called reasonableness (in the sense of Milnor (1952)). A solution 
concept satisfying (iii) and (iv) for each of its elements is called reasonable on both 
sides. 

Remark 2.7: 

(i) For technical reasons the following assertion is needed. A proof which is 
straightforward is skipped. 

Let N be a finite nonvoid set, D and/3 be balanced collections of coalitions and 
pairs of coalitions respectively. Then every subset E and/~ with D __ E ___ 2 N, 
/3 _c/~ __ 2 N x 2 N such that E and/~ are in the span of D and/3 respectively are 
balanced. 
(ii) Recall that a game (N, v) is weakly superadditive, if 

,(s) {i})>_ ,(s) + ,({i}), 

for i ~N  and S c_ N\{ i} .  Reasonableness on both sides directly implies that 0(.) is 
individually rational for every weakly superadditive game v, i.e. Oi(v) >_ v({i}) for 
ieN.  

3 The Modified Nucleolus in the Convex Case 

A game (N, v) is convex, if 

v(S) + v(T) < v(Sw T) + v (Sn  T) 

for all coalitions S, T _  N. 
Convex games were introduced by Shapley and have interesting economic 

applications (see Shapley (1971)). 
For the class of convex games all well-known solution concepts are nonvoid 

subsets of the core and many coincide or are singletons (see, e.g., Maschler, Peleg, 
Shapley (1972)). Here, the core of a game v is the set 

(g(v) = {xeX(v) le(S ,x ,v)  <_ 0 for all S _~ N}. 

It is the aim of this section to show that the modified nucleolus also belongs to the 
core for convex games. Moreover, illustrating examples are presented at the end 
of this section. 
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Theorem 3.1: Let (N, v) be a convex game. Then r 

Proof: Let 0 := r #:= #(0, v), #* := #(0, v*), 9 o := D(r #, v), and 
91 := D(0, #*,v*) for the definition of D(.,., .) Section 2 is referred to. 

It remains to show # _< 0. 
Assume, on the contrary, # > 0. Note that #* > # holds by v*(S) >_ v(S) for all 

S _ N, i.e., by convexity. 
Recall that 9 o is a near-ring in the sense of Maschler, Peleg, Shapley (1971): 

Indeed, for S, T_c N, we have 

e(S, r v) + e(T, r v) <_ e(Sc~ T, 0, v) + e(Su T, 0, v) (1) 

by convexity. Hence, using the positivity of # - b o t h ,  SvoT and Sc~T are 
members of 9 o ifS and T are ( 9  o is a near-ring). This closedness w.r.t, intersection 
and union shows 

S~ whereS ~  ~ r ~ s  1 =  Q) r .  
Te@ 0 TE.~ 0 

Note that ~ r S o _< S * # N holds, since 0 is a preimputation. 
We claim that each T~91 intersects S~ Inequality (1) applied to an arbitrary 

coalition S c_N\S ~ and to T = S  ~ together with i f > 0  directly implies 
N\(S vo S ~ r 91 . By definition 

9o x 91 =/3(0, # + #*, v) =:/3. 

Take balancing coefficients C~(s,r ) for/3 and player i~N\S  ~. Then equality 

_ C~(s,r)(ls + lr)  = 1N, 
(S, T) e D 

applied to i, shows 

~, _ e(s ,r )  -> 1, (2) 
(S,T)GD 

since there is no S e 9  o containing i. Take TEg~ and jE 7"c~ S ~ Then the same 
equality applied to j, i.e. 

~, _ ~(s,r)(ls + l r ) ( j  ) = 1, 
(S,T)~D 

directly implies - using S O _c S for S ~ 9  o 

_ ~(s,r) + ~ C~(s,% -< 1, 
(S,T)~D S ~  o 

which contradicts (2). q.e.d. 
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Let 5~g(v) denote the least core of  v, i.e., 

L~Cg(v) = {x e X*(v) le(S, x, v) <_ max {e(T, v(v), v) J ~  r T r N},  ~ v a S ~ N},  

if N is no singleton (see Maschler, Peleg, Shapley (1979)). If N is a singleton, then 
Pareto optimality is explicitely presumed and can easily be deduced otherwise. At 
the end of this section (see Example 3.2(i)) a convex game v is presented which 
shows that the prenucleolus of v* does not necessarily coincide with the modified 
nucleolus. Moreover, w.r.t, this convex game the modified nucleolus is no 
member of the least core of v. 

In this example the modified nucleolus is a member of the least core of the dual 
game v* of v. Since O(v) minimizes the largest sum of excesses w.r.t, v and v*, the 
modified nucleolus is contained in 5fC~(v *) in the convex case, as long as this least 
core intersects the core of the original game v. The question whether this 
intersection is nonvoid for any convex game is answered negatively by Example 
3.2(iii). Additionally, it is shown that nonemptiness of the core of an arbitrary 
game w does not necessarily imply ~p(w)eCg(w), even if the Shapley value is 
a member of the core (see Example 3.2(ii)). 

Example 3.2: 

(i) Let N = { 1, 2, 3, 4} and v be defined by 

f 0, 

--1,  

- -  2 ,  

v(S) = - 6, 
- 7 ,  
-10 ,  
- -8 ,  

if S e { ~ , N }  
if S = {2,4} 
if Se{{2,3,4}, {1,2,4}} 
if S = {3} 
if Se{{4}, {2}} 
if Se{{3,4,}, {1,2}} 
otherwise 

The proof of convexity of v is straightforward and skipped. 
With x = ( -  1, 1, - 1, 1) we claim 

x 2x 
v(v) = 2x, v(v*) = ~, ~p(v) = ~p(v*) = ~- .  

2x 
A sketch of the proof of the last equation and of v(v*) va~  - =:z is presented. 

The first equality can be verified analogously. For an illustration of the game 
v, of v*, and of arising excesses Fig. 1 is referred to. The columns of the matrix 
are the lexicographically ordered coalitions. The additional rows of this 
figure represent v, v* and the excess at z w.r.t, v and v* and the excess at 2x 
w.r.t.v. 
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0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
0 0 1 1 0 0 l 1 0 0 1 1 0 0 I 1 
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

v(') 0 --7 - - 6 - - 1 0  --7 --1 --8 - - 2 - - 8  --8 --8 --8 --10 --2 - 8  0 
v*(') 0 8 2 10 8 8 8 8 2 8 1 7 10 6 7 0 

3"e(',z,v) 0--23 - - 1 6 - - 3 0 - 2 3  - 7 - - 2 4  8 - - 2 2 - 2 4 - - 2 0 - - 2 2 - - 3 0  - - 8 - - 2 2  0 
3"e(',z,v*) 0 22 8 30 22 20 24 22 8 24 7 23 30 16 23 0 

e(',2x, v) 0 --9 - - 4 - - 1 0  --9 - 5 - - 8  - - 4 - - 6  --8 - 4  - - 6 - - 1 0  --4 - 6  0 

Fig. l 

W i t h  c~e ~ def ine  the  m a t r i x  

I~ :=  ( l s  + 1T)(S,T)EB(~ ), 

w h e r e / ~ ( e ) : = / ~ ( z ,  ~, v). C lea r ly  (see Fig.  1) , /)(c 0 = ~ for  c~ > 10. 

M o r e o v e r ,  it can  d i rec t ly  be  seen tha t  

I~ = 

110 ] 
0 0 1 

2 2 1 ' 

1 1 2 

i f 8  < c~ _< 10; 

I~ = 

11o il 1 0 0 1 

0 1 1 , 

2 1 1 

1 2 2 

if ~ < c~ < 8; 

A =  

1 1 0 0 -  

0 0 1 1 

1 1 1 0 

1 0 1 1 
1 2 0 1 
0 1 1 2_ 

is a s u b m a t r i x  of  123. 
3 

23 
H e n c e  /5~ is b a l a n c e d  for ~ -  < e < 10 - there  a re  t r iv ia l  b a l a n c i n g  coeffi-  

cients.  Clear ly ,  (1, 1, 2, 2, 1, 1)/6 is a v e c t o r  of  b a l a n c i n g  coeff icients  for the  

pairs  o f  coa l i t i ons  c o r r e s p o n d i n g  to the  m a t r i x  A. T h e  rows  of  A span  the  

E u c l i d e a n  space,  thus /~(~)  is b a l a n c e d  for  e < 3 by  R e m a r k  2.7(i). H e n c e  

~,(~) = z .  

In  o r d e r  to s h o w  tha t  z Cv(v*) it is sufficient  to  verify tha t  

~ =D(z,2@,v*)is  nonvoidandnotbalanced. Indeed, thefirstfourrows of 
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the corresponding matrix 

1 1 0 0" 
0 0 1 1 

1 1 1 0 
I ~ =  1 0 1 1 

1 0 0 1 
0 1 1 0.  

are linearly independent  and, thus, span R 4. Moreover ,  

(1 0 0 1)=(1 1 0 O) - ( 1  1 1 0)+(1 0 1 1), 
(0 1 1 0)= (0 0 1 1)+(1 1 t 0 ) - (1  0 1 1), 
(1 1 1 1)=(1 1 0 0 )+ (0  0 1 1) 

thus A and N cannot  be balanced. Hence z va v(v*). Besides, a further element 
of the core - the center is the Shapley value (p(v) being no member  of the 
straight line to x, i.e. qOl(V ) va -qo2(v ). Indeed, ~0(v) = ( - 2 3 ,  19, - 15, 19)/12 
holds true. 

Figure 1 also shows that  

max {e(S, z, v) l ~  # S # N} = - 7/3 > - 4 = ' m a x  {e(S, 2x, v) l ~  ~ S ~ X}, 

hence z(~Ycg(v). 
(ii) Let N = {1, 2, 3} and games v, w be given by Fig. 2. Define two vectors x and 

y by x = (8,2,2), y = (6,3,3). 

0 0 0 0 1 1 1 1 

0 0 1 1 0 0 1 1 
0 l 0 1 0 1 0 1 

v(') 0 - 2  - 2  - 2  - 2  10 10 12 
e(',x,v) 0 - 4  - 4  - 6  - 1 0  0 0 0 
e(',y,v) 0 - 5  - 5  - 8  --8 1 1 0 

w(') 0 - 6  - 6  6 6 6 6 12 
e(',x,w) 0 - 8  - 8  2 - 2  - 4  - 4  0 
e(',y,w) 0 - 9  - 9  0 0 - 3  - 3  0 

Fig. 2 

It is easy to verify 0(v) = 0(w) = y and (p(v) = (p(w) = x. Clearly, yr 
Conversely, x(~ Cg(w) g y. 
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Let N = {1, 2, 3,4, 5} and v be defined by 

1, if Se{{2, 3, 4, 5}, {1, 3, 4, 5}, {1, 2, 4, 5}} 

v(S)= 4, if S~{{1, 2, 3}, {1, 2, 3, 5}, {1, 2, 3, 4}} 
5, if S = N  
0, otherwise 

Then v is clearly convex. Using Remark 2.70) it can easily been seen that 
x 

O(v) = g holds true, where 

x = (8, 8, 8, 3, 3). 

Hence 

#(O(v),v*) > v*({3, 4}) 11 19 
- > 3 .  

6 9 

Taking y = (1, 1, 1, 1, 1), the maximal excess w.r.t, v* strictly decreases, i.e. 

#(y, v*) = 3. 

Therefore the modified nucleolus is no member of the least core of v*. 
Besides, it can be verified that  

v(v*) = y, v(v) = (13, 13, 13, 3, 3)/9. 

4 Axiomatizations 

In this section the characterizing axioms for the prenucleolus will be recalled and 
the fact that  the modified nucleolus can be axiomatized by similar axioms will be 
shown. First the necessary definitions concerning the prenucleolus are given. 

Definition 4.1." 

(i) For  a set U let F v = {(N,v)lN ~_ U} denote the set of games with player set 
contained in U. 

(ii) Let (N, v) be a game, x~N N, and S be a nonvoid coalition of N. The game 
(S, vS'x), where 

v(N) - x(N\S), if S = 
v~'x(S)= 0, if S = ~ ,  

m a x { v ( S w Q ) -  x(Q)[Q ~_ N\S},  otherwise 

is the r e d u c e d  g a m e  of v w.r.t x and S. 
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(iii) A solution concept e on a set F of games satisfies consistency (CONS) if 
(N, v)EF, x~c~(v), ~ # S #  N implies (5~, vS,~)EF and x ~  o-(S-, vs'x). 

The notion of a reduced game was introduced by Davis and Maschler (1965). For  
the axiom C O N S -  also called reduced game proper ty-  and for the following 
axiomatization of the prenucleolus Sobolev (1975) is referred to. Note that the 
condition (S, vsx)EF in the definition of the reduced game can be dropped in 
Sobolev's result since the considered set of games (Fv) is rich enough, i.e. each 
reduced game w.r.t, each feasible payoff vector automatically is an element of this 
set. 

Theorem 4.2 (Sobolev): If U is an infinite set, then there exists a unique solution 
concept on F v satisfying SIVA, AN, COV, CONS; and it is the prenucleolus. 

For  the definition of SIVA, AN, COV Section 1 is referred to. 
Proposition 1.4 together with the single valuedness of the prenucleolus and the 

definition show that the modified nucleolus also satisfies SIVA, AN, and COV. 
Moreover, T does not satisfy CONS on F v, since it does not coincide with v (see, 
e.g., Example 3.2 (i)). In what follows it turns out that the modified nucleolus can 
be characterized by replacing the reduced game property and the anonymity by 
two additional axioms. Before stating and proving the main results of this section 
(Theorem 4.10), some notation and assertions concerning the coincidence of 
v and ~ are needed. 

Definition 4.3: Let (N, v) be a game. 

(i) The game (N, w) is a shift game of v if there is a real number c~ ~ such that 

~v(S)+c~, if ~ v  a S # N  
w(S) 

Iv(S) , otherwise 

In this case w is the a-shift game of v, denoted ~v. 
(ii) For  x e R  N let A(x,v) be defined by 

A (x, v) = min {v(T) - v*(T) l ~ v~ T va N} - #(x, v), 

where #(x, v) = max {e(S, x, v) l ~  # S # N} denotes the maximal nontrivial 
excess at x. Here min ~ = oo and m a x ~  = - oo as usual and, in addition, 
A (x, v) = 0 for a 1-person game. 

(iii) The game v has the large excess difference property (LED) w.r.t, x~R N, if 
A(x,v) >_ O. 

For a verbal interpretation of LED the paragraph following Definition 4.6 is 
referred to. 

Lemma 4.4: Let (N,v) be a game and x~A N for some IN] > 2. 
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(i) A (x, v) = min { min {e(S, x, v), e(T, x, v) } - e(S, x,  v) - e(T, x,  v*)l ~ r S, T r N}, 
(ii) A (x, %) = A (x, v) + c~ for ~ R, 

(iii) The shift game % of v satisfies L E D  w.r.t, x, iff c~ >_ - A  (x, v). 

Proof:  Assertion (ii) is a direct consequence of the corresponding definition, 
whereas (iii) is implied by (ii). 
ad (i): Let  ~ r S, T r  be two coalitions. If e(S, x,  v) >_ e(T, x ,  v), then we come 

up with 

rain {e(S, x, v), e(T, x, v) } - e(S, x ,  v) - e(T, x ,  v*) 

= e(T, x,  v) -- e(T, x ,  v*) - e(S, x,  v) 

= v(T)  - v*(T)  - e(S, x,  v) > A (x, v). (1) 

If e(S, x,  v) < e(T, x,  v), we conclude 

rain {e(S, x,  v), e(T, x,  v) } - e(S, x,  v) - e(T, x ,  v*) 

= --e(T,  x, v*) = v(T) -- v * ( T ) -  v ( r )  + x (T)  

> v (T )  -- v*(T)  -- ~(x,  v) >_ A ( x ,  v). (2) 

Conversely, let #(x ,v )  be at tained by S for some ~ r 1 6 2  and 
min{v(T) - v*(T)T~5 r T r  N} be at tained by T for some ~ -r T #  N. 
Then  

rain {e(K x, v), e(T, x, v)} - e(S, x, v) - e(T, x, v*) = A (x, v) 

can be verified directly, q.e.d. 

L e m m a  4.5: Let (N, v) be a game and v:= v(v) be the prenucleolus of v. 

(i) The prenucleolus of each shift game of v coincides with v. 
(ii) If v satisfies L E D  w.r.t, v, then v = 0(v). 

Proof:  Assertion (i) is a trivial consequence of the corresponding definition. 
It remains to verify 

(ii) By Theorem 2.3 it is sufficient to show tha t / ) := / ) (v ,  ~, v) is balanced, if/)  r ~ .  
Applying L E D  we come up with 

e(S, v, v) + e(S, v, v*) <_ e(S, v, v) 

for each ~ r S :~ N (by Lemma 4.4 (i)), and thus with 

e(S, v, v*) <_ 0 for all S _~ N. (3) 



The Modified Nucleolus: Properties and Axiomatizations 169 

Moreover, inequality (3) and Remark 1.2 (i) imply 

e(S, v, v) > 0 for all S _c N. (4) 

In view of these considerations the following assertions are obvious. Let 
D :-- D(v, cr v). Then 

S~D for all (S, T)e/), 

TeD for all (S, T)e/~ with ~ # T r  N, 

(S, ~)eL5 iff (S, N)~/3 iffS~D, 

(S, ~ ) e / )  if(S, T)e/5 for some T ~  N. 

(51 

(6) 

(7) 
(a) 

With D1 := {(S, ~)f f f i} , / )2  = {(S, g)~f i} ,  fi12 = fil  t)/~2, and using (7), (8) we 
obtain 

/~  = {(S, ~)[S~D} and/~2 -- {(S,N)[SeD}. 

The balancedness of D (Theorem 2.1, D is nonvoid by (5)) directly implies 
that b o t h / )  1 and /~2 are balanced, thus /~12 is. Clearly, each pair 
(S, T)~DkD12 is in the span of /)12; hence Remark 2.7(i) completes the 
proof, q.e.d. 

In the following definition some notation is introduced leading to axiomatiz- 
ations of the modified nucleolus. 

Definition 4.6: Let a be a solution concept on a set F of games, let (N, v) be a game 
and x e R N. 

(i) Define a game (N, v x) by 

~ v( s), 
vx(S) = [max{v(S) + # + 2#*, v*(S) + #* + 2#}, 

if S~{~,N}  
otherwise 

for S _ N, where # = #(x, v) and #* = #(x, v*). 
(ii) a satisfies excess comparability (EC), if v~ F, xea(v), and vX~F imply x~a(vx). 

(iii) a satisfies the dual replication property (DRP), if the following is true: If ve F, 
~:NuN*-- ,N is a bijection such that (N,w)~F, where w = z ~  (for the 
definition ~ of the dual replication of v Section 1 is referred to), xea(v), then 
z(x, x*)~ ,~(w). 

(iv) The difference vector dYeR N of maximal and minimal marginal contributions 
w.r.t, v and x is defined by 

d[ -- max {v(S w {i}) - v(S)[S _c N\{i} } -- min {v(S w {i}) - v(S) hS c_ N\{i} } 

for i~N (and d~ = 0 if [NI = 1). 
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(v) a satisfies the dual cover property (DCP), if the following is valid: If(N, v)~F, 
z : N w N * - ~ N  is a bijection such that (N,w)sF,  where w =~(z~) (for the 
definition of the dual cover ~ ofv Section 1 is referred to) with ~ = 6dr(N), and 
if x~a(v), then z(x, x*)~a(w). 

(vi) a satisfies large excess difference consistency (LEDCONS), if (N,v)~F, 
x~a(v), and v satisfies LED w.r.t, x implies (S, vs'x)eF and Xs~a(vs'~). 

The idea of the game v x is as follows. Assume that x is Pareto optimal, i.e. 
x constitutes a rule how to share v(N). Moreover, assume that the players agree 
that this rule should take into account the worth v(S) of each coalition S and the 
amount  which S can be given, if the complement coalition N \ S  obtains its own 
worth v(N\S). Now the problem to compare these numbers v(S) and v*(S) is 
solved here by adding constants to both, v(S) and v*(S), such that the arising 
modified maximal excesses w.r.t, v and v* coincide (as long as both initial 
maximal excesses are attained by nontrivial coalitions). Excess comparabili ty 
now means that the solution x has not to be changed if the game v is replaced by 
v x, i.e. by a game which contains v and its dual as totally symmetric ingredients 
in its definition such that the coalitions with maximal initial excesses possess 
coinciding new excesses (except if one maximal excess is attained by the empty 
and grand coalition only). If x = v(~ N is the restriction of the prenucleolus 
of the dual cover of the game, then v x coincides-  up to a sh i f t -w i th  the 
reduced game of the dual cover w.r.t, the initial player set and the prenucleolus, 
hence x = v(v x) by Lemma 4.5(i) in this case. Moreover, v ~ satisfies LED w.r.t, x, 
hence x coincides with the modified nucleolus of v ~. Therefore ~(v ~ = ~(v) 
holds true by Proposition 1.4. 

The large excess difference property can be interpreted with the help of v x as 
follows. If v satisfies LED w.r.t, the Pareto optimal vector x, then #(x, v*)= 0 
(see (3), applied to x). Due to definition of LED we obtain v(S) - v*(S) - #(x, v) >_ O, 
thus 

v(S) + 2#(x, v*) + #(x, v) >_ v*(S) + 2#(x, v) + #(x, v*) for ~ r S =~ N. 

Therefore v x coincides (up to a shift) with v and, hence, v is the only significant 
ingredient of v x in this case. If the coalitions agree to the "comparabili ty principle" 
(i.e. to the replacement ofv by vx), then each coalition should argue with its excess 
w.r.t, the original game instead of switching to the dual game v*. 

In view of Corollary 1.6(ii) and Remark 1.2(iv) the modified nucleolus clearly 
satisfies the dual replication property. 

As shown in the next lemma SIVA and both DRP or D C P  imply AN on/F v for 
infinite U. Therefore every solution concept satisfying one of these pairs of axioms 
also satisfies anonymity. 

Lemma 4.7: Let a be a single valued solution concept on F v for some infinite U. 

(i) If a satisfies DRP,  then a is anonymous. 
(ii) If a satisfies DCP, then a is anonymous. 
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Proof: Assertion (ii) can be p roved  analogously  to (i), hence we concent ra te  on 
this case. Let a be a solut ion concept  on F v satisfying the desired properties.  Let  
(N, v) and (N, ~v) be equivalent  games  in Fv,  i.e. r~: N -+ _~ is bijective. Since U is 
infinite, there exists a game in F v  which is equivalent  to the dual  replicat ion of v, 
say (.~, ~g)~ F v for some bijective mapp ing  ~: N vo N* --+ N and some N _c U. The  
m app ing  r~:N w N* --+ N vo N* defined by 

~i = 17ri' if i~N  

~zi., if i~N* 

is a bijection. Moreover ,  the compos i t ion  z~ 1 : N U N * - - + N  is a bijection. Let 
x be the unique element of a(v) and y = rtx. The  obvious  equali ty 

~ -  l(y, y , )  = z~ l~(x, x*) = ~(x, x*)~ a (~ )  

directly implies rcxea(zcv), q.e.d. 

The  following two l emmata  are useful. 

Lernma 4.8: Let (N,v)  be a game,  525 r ~_c N, and xeX*(v) .  

(i) If v satisfies L E D  w.r.t, x, then v ~'x satisfies L E D  w.r.t, x~. 
(ii) If x is reasonable  on bo th  sides (w.r.t. v), then the shifted dual  cover  ~g where 

c~ = 6d~(N), satisfies L E D  w.r.t, the replicated vector  (x, x*)e  NNON*. 
(iii) If  V satisfies L E D  w.r.t, x, then v satisfies L E D  w.r.t, v(v). 

Proof: 

(i) Let  v, S, x have the desired propert ies  and let w denote  the reduced game, i.e. 
w = v ~'~. Let  525 v a S, T ~  S such that  A (x~, w) = w(T) - w*(T) - e(S, x~, w). 
The observa t ion  w*(T) = min {v*(Tvo R) - x(R) IR c_ N \ S }  shows tha t  there 
are coali t ions R~, R 2, R 3 _~ N \ S  such that  

w(T) = v( r u  R1) - x(R,),  w(S) = v(Sto e 2 )  --  x ( e 2 )  , 

w*(T) = v * ( T u  R3) - x ( T u  R3) < v*(Tvo R1) - x(R1), thus 

0 <_ A(x ,  v) <_v(Tu R1) - v*(TtoR1) - e ( S u R 2 ,  x, v) 

= e(r to  R1, x, v) -- e(Tvo R1, x, v*) -- e(S u Ra, x, v) 

< e ( T u  R~,x ,v)  -- e(rvo R s , x , v *  ) -- e (Sw R2 , x , v  ) 

= e(r, xg, w) - e(T, xg, w*) - e(S, x~, w) 

= w(T) -- w*(T) -- e(S, x~, w) = A (Xs, w). 

(ii) Let v, x have the desired properties,  let c~ = 6d~(N), and let w = ~ .  An 
inductive a rgument  on the cardinali ty of S shows - by using reasonableness  
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of x on both sides (see Corollary 2.6) - that 

- d~ < e(S, x, v) < d~(S) for S _~ N, (9) 

hence 

-dr(S)  <_ e(S,x, v*) _<_ d~ for S _~ N, (10) 

holds true. Nonnegativity ofd  ~ implies that d~(S) can be replaced by d~ in 
(9) and (10) whenever it occurs. Therefore we have -2"d~ e(S, y, ~ < 
2"d~(N) for S ___ _N = N �9 N*, thus - with y = (x, x*) - 

4.dO(N)<e(S,y ,w)= - e ( N \ S , y , w * ) < 8 . d ~ ( N ) f o r  ~ # S  ~_N. (11) 

In view of 

A (y, w) = min (w(T) - w*(T)) - I~(y, w) 
~4-T~N 

= min ( e ( T , y , w ) -  e ( T , y , w * ) ) -  ~(y,w) 
~eT~& 

_> min e(T,y ,w)--  max e(T,y,w*)-Lt_(y,w)>O 
~#T~Jq f2~#Tc=N 

(by (11)) 

w satisfies LED w.r.t.y. 
(iii) Clearly g(v(v), v) < _g(x, v) for xeX*(v),  hence this assertion is a consequence of 
the definition of A (', v). q.e.d. 

Due to the last lemma the modified nucleolus satisfies D C P  on every set F of 
games and satisfies L E D C O N S  on F v for every set U, since U is rich enough in 
the sense that any reduced game of a game in this set again belongs to this set of 
games. Therefore both pairs of axioms, D R P  and SIVA on the one hand and 
D C P  and SIVA on the other hand side, imply duality and can, thus, be regarded 
as strong versions of duality. 

Lemma 4.9: Let cr be a solution concept on a set F v of games satisfying SIVA, 
COV, and LEDCONS.  Then the following assertions hold true: 

(i) If ~r satisfies EC, then a satisfies Pareto optimality (PO). 
(ii) If U is infinite and a satisfies DCP, then a satisfies PO. 

Pro@ We proceed analogously to Peleg's (1988/89) proof of PO, if SIVA, COV, 
and CONS are satisfied. In fact CONS is only used concerning reduced games 
w.r.t. 1-person coalitions. Indeed, for 1-person games SIVA and COV imply PO. 
Let a be a solution concept on F v with the desired properties. 
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ad (i): I t  remains to verify that w = v x satisfies L E D  w.r.t, x for xea(v), because 
any 1-person reduced game of w coincides with the 1-person reduced game of 
v w.r.t, the same feasible payoff  vector. Let (N, v) e F for some [gl  > 2, x ~ a(v), and 
w = v x. Take nontrivial  coalitions ~ r S, T ~  N such that  _g(x, w) = e(S, x, w), 
w(T) - w*(T) = min {w(T) - w*(T)l ~ ~ S, T ~  N}, and observe that  

w*(T) = min {v(T) -- 2# -- #*, v*(T) - 2#* - #}, 

where # = #(x, w), #* = #(x, w*), holds by definition of w. Assume w(T) = v(T) + 
2#* + # (otherwise exchange the roles of v and v*). We come up with 

A (x, w) = w(T) - w*(T) - e(S, x, w) = v(T) + 2#* + # - w*(T) - e(S, x, v) 

>_ v(r)  + 2#* + # - (v(T) - 2# - #*) - e(S,x, v) >_ 3(# + #*) - 2(# +/x*) 

> _ # + # * _ > 0 .  

The last inequality is guaranteed since p + #* _> e ( ~ ,  x, v) + e (~ ,  x, v*) > 0 is true. 
ad (ii): This assertion follows from the following four steps. 

Step 1: If (N, v )~F  v is an additive game, i.e. v = x for some x E R  N, then x~a(v). 
Let yea(v). Then, by covariance, both  2y and y + x  are members  of 

a(2v) = o-(v + x). By SIVA 2y = y + x, thus x = y. 

In view of Step 1 it is sufficient to prove that  the solution is Pare to  optimal for 
an arbitrary nonaddit ive game (N, v) o f f  v. Moreover ,  we can assume v(N) = 0 by 
COV. Let ( N , v ) E F  v be a nonaddit ive game such that  v(N) = 0 (hence IN[ > 2, 
d~(N > 0). Let x~a(v) and ((N,, v,)),~ be the sequence of successively shifted dual 
covers of (N o, Vo) = (N, v), i.e. v, = 6d,. ,Vr_ 1, N,  = N r_ 1 u N *  1, where 
d,_ 1 = d~'-'(N~- 1) denotes the aggregated maximal  difference of marginal  contri- 
butions of the players in Nr_ 1 for re  N. Note  that  v,(N,) = 0 for i6 N. 

Step 2: d, > 2r.do for rEN o. 
Indeed, d r > 2"-d o for r = 0. Suppose the assertion is verified for some r > 0. 
Take some player iEN,  and observe that  

dr+l -> dV~+l ~ (/At+ 1({i}) -- vr+ 1(~))  -- (Dr+ I(Nr+ 1) --/At+ l(Nr+ 1\{i})) 

_> (v,({i}) + 6d , )+  v~(N,) + v*(n~\{i}) + 6d, (by definition) 

>_ 12d, _> 2d, _> 2 '+ ld o (by the inductive hypothesis). 

Step 3: v,({i}) > c + (2 r - 1)d o <_ vr(N,\{i}) for i~N,  and rEN o, where 

c = min {v({i})]iEX} u {v(N\{i})[i~ N}. 

Again we proceed by induct ion observing that  the assertion is valid for r = 0. 
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For  ieN~ we come up with 

v~+ ~({i}) _> v,,({i}) + 6d~ > c + (U - 1)d o + 2"d o (by the hypothesis  
and Step 2) 

>_ c + (U + 1 _ 1)do 

and analogously  with 

v~+ l(Nr+ ~\{i}) _> e + ( 2  r + l  - -  1)d o. 

For  ieN*+ 1 the assertion follows f rom symmet ry  reasons. 

Let x r =  (x ~- 1, (x r-  1) , )~N~ be the r-fold replicated vector  of x ~ = x. In view of 
Step 3 and d o > 0 there is f e  N such that  x ~ - 1 is reasonable  on bo th  sides for v~ 1. 

Step 4: v~ satisfies L E D  w.r.t, x r. 
This assert ion follows f rom the following inequalities: 

A ~" , r , - v~ ( S ) )  - ~ ( x ,  v~) (x ,  v~) = min (v~(S) 

_> min e(S, x ~, v~) - max e(S, x ~, v~*) - max  e(S, x,~ v~) 
~3~-S~N~ Z ~ S ~ N , .  .~4-S~-N,  

> 4dr + 4d,. - 8d~ (by reasonableness  on both  sides and (11)). 

Let (N, w ) e F  v be some game equivalent  to (N~, v~) (w exists because the cardinal-  
ity of U is assumed to be infinite), say w = zv F for some bijection r:N~ ~ N. Then, 
by Step 4, w satisfies L E D  w.r.t, y = vx r. Moreover ,  in view o f D C P ,  y is a m e m b e r  
of a(w). Applying L E D C O N S  we come up with yl~a(wli~'Y) for i eN,  thus y 
is Pare to  opt imal  for w by Step 1. The conclusion v ( N ) = x ( N )  is, now, 
obvious,  q.e.d. 

Theorem 4.10: Let U be an infinite set. 

(a) There  is a unique solution concept  on F v satisfying SIVA, COV,  L E D C O N S ,  
EC, and DRP.  

(b) There  is a unique solution concept  on F v satisfying SIVA, COV,  L E D C O N S ,  
and DCP.  

In bo th  cases ((a) and (b)) the unique solution concept  is the modified 
nucleolus. 

Proof: The modified nucleolus satisfies SIVA, COV,  L E D C O N S ,  EC, DRP,  and 
D C P  (see Section 1, L e m m a  4.5, and L e m m a  4.8). 

It  remains to show that  the modified nucleolus is uniquely determined by both  
systems of axioms. We proceed analogously  to Peleg's (1988/89) adap ta t ion  of 
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Sobolev's p roof  of the corresponding direction of Theorem 4.2. Let  o- be a sol- 
ution concept  on the given set of games with the desired properties.  Let  (N, v) be 
a game in F v and x~a(v) (i.e. a(v) = {x} by SIVA), y = 0(v). W.l.o.g. y = 0 can be 
assumed by COV. In view of AN (see Lemma 4.7) and the infinity assumption on 
the cardinali ty u of U it can be assumed that  the dual replication (N �9 N*, ~) is 
a member  of F v in case (a) and the shifted dual cover ( N O N * , w ) ,  where 
W = 6clV(N)~, is a member  of F v in case (b). In case (a) we proceed by defining 
w = g(~,x*). Observe that  w = ~(~(Y'Y*)) for some nonnegat ive real ~ in (a), since the 
modified nucleolus (y, y*) of ,7 minimizes the sum of maximal  excesses w.r.t, the 
game and its dual. The  game w satisfies L E D  w.r.t. (y, y * ) =  v(w) by Lemma 4.5 
and 4.8 in bo th  cases (a) and (b). In view of SIVA it is sufficient to show 
(y,y*)ea(w) in case (a) (by D R P  and EC) and in case (b) (by DCP).  Sobolev 
constructs a game (/V, co)e F v with N O N* __c _~ satisfying 

coNoN*,~ = W, where z = 0 ~ ;  (12) 

co(S) > min w(S) for ~ # S =c ~;  (13) 
2 ~ r  

�9 ~ f f o r  i, j ~ N  there is a permuta t ion  ~ on (14) 
is transitive'l 'e ' :[2V leaving co unchanged and mapping i to j" W 

Therefore,  by AN and P �9  (see Lemma 4.7 and 4.9), zest(co) by (14). The proof  is 
finished (by L E D C O N S  and (12)) as soon it is shown that  co satisfies L E D  w.r.t.z. 
To  do this note  that  

A (z, co) = min (co(S) - co*(s)) - max co(S) 
~ s ~ 7  ~ s = = ~  

> min co(S)-  max co*(S)-  max co(S) 

> 2" min co(S) - max co(S) (by co(N) = 0 (see (12)) 

> 2 .  min co(S)-  max co(S) (by (13)) 
~237~Scc_NON * .Q~#S~NON* 

(15) 

holds true. In case (b), (15) and (11) directly imply A (z, w) > 0. In case (a), define 
= #(y, v) and ~* = #(y, v*). In this case (15) can be rewritten as 

A(z ,w)  > 2" 

>2" 

min (v(S) + v*(T) + 3(# +/~*)) - max (v(S) + v*(T) + 3(p + #*)) 
S , T ~ N  S,T~_N 

( ( - # *  - g) + 3(/~ + #*)) - (/, + #* + (3(# + #*)) -- 0. q.e.d. 

The rest of this section is devoted to prove that  both  characterizations of the 
modified nucleolus given by Theorem 4.10 are axiomatizations,  i.e. examples of 
solutions are presented which show that  both  systems of axioms are logically 
independent.  Moreover ,  the infinity assumption on the cardinali ty of the universe 
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of players is discussed. Finally it is remarked that Theorem 4.10 remains valid, if 
DRP and DCP respectively are replaced by certain weaker version of these 
axioms. 

Let U be an infinite set. Then define for (N, v)~Fv:  

al(v) = ~;~ (the empty solution); 

0-2(0 = {x ~ ff~NIx i = v(N)/n for iE N} (the equal split solution); 

0-3(0 = {q0(v)} (the Shapley value); 

0-4( 0 = ~Y(v)  (the prenucleolus). 

Obviously the empty solution does not satisfy SIVA but all other properties of(a) 
and (b), the equal split solution does not satisfy COV but all other axioms, and the 
prenucleolus satisfies SIVA, COV, CONS (thus LEDCONS) and does not 
coincide with ~P in general (see Example 3.2), hence does not satisfy DCP. The 
Shapley value satisfies SIVA, COV, and (by anonymity and Lemma 1.7) DRP. 
Moreover, 0 -3 satisfies DCP and EC, hence does not satisfy LEDCONS (indeed, 

and qo do not coincide in general as seen via the game co below), as shown in the 
following 

Lemma 4.11: Let (N,v) be a game, c ,d~R,  and (N,w) be defined by 

f,v(S), if Se{ZJ,  N}  f o r S c N .  
w(S) = [max{v(S) + c, v*(S) + d), otherwise 

Then qo(v) = cp(w) is true. 

Proof: Let v, c, d, w be chosen according to the prerequisites of the lemma. For 
# S =m N the equivalence 

w(S) = v(S) + c if and only if w(N\S)  = v(N\S)  + c (16) 

and the formula 

v(T) - v (N \  T) = v*(T) - v* (N\  T) for T ~  N (17) 

can be deduced directly. With the help of (16) and (17) we come up with 

(w(S) - w(S\{i}))  + (w(N\(S \{ i } ) )  - w(N\S) )  

= (v(S) - v(S\{i}))  + (v(N\(S\{ i} ) )  - v (N\S))  for S ~ N \ { i }  (18) 

holds true for any i eN .  Applying (18) to a formula defining the Shapley value 
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yields 

~(w) = 

1 

2 

1 

2 

= ~o~(v).  

(s - 1)!(~ - s)! (w(S) - w ( S \ { i } ) )  

~ N ( s  - l ~ n  - s)! ((w(S) _ w(S\{i}  )) + (w(N)(S\{ i}  )) - w(N\S)))  

(s - 1)!(n - 
~ _ , ,  n! s ) ! ( ( v ( s ) -  v(s\{~})) + ( v ( N \ ( S \ { ~ } ) ) -  v ( N \ S ) ) )  

q.e.d. 

Clearly the Shapley value is not  sensitive against  shifting of games, hence L e m m a  
1.70) , the definition of v ~ (Definition 4.6(i)), and L e m m a  4.11 directly imply tha t  0.3 
satisfies D C P  and EC. 

In  order  to define a solution concept  0 .5 which shows that  D R P  is independent  
within the first system of proper t ies  assume that  N = {1, 2, 3} _ U (otherwise 
rename the players  of U). Let (N, co) be the glove game discussed in the 
in t roduct ion  defined by 

1, if l e S  and s > 2  
co(S) 

0, otherwise 
for S_~N.  

It  is easy to verify that  0(co) = (2, 1, 1)/4, x :=  v(co) = (1, 0, 0), and (p(co) = (4, 1, 1)/6. 
Fo r  any game w not  equivalent  to a game strategically equivalent  to co define 

aS(w)='/ '(w). 

Otherwise,  define 

~5(~(~co +/~)) = {~(~x +/~)}, 

if ~ > 0,/~ ~ R N, and ~ is a bijection r: N - ~  N for some N _~ U. It  is s t ra ightforward 
to show that  this solut ion satisfies SIVA and COV.  In order  to prove  EC it 
suffices to verify O(cox)= x which can be done by observing co~= ~co for some 
c~ > 0 and applying L e m m a  4.5(ii). 

To  show that  cr 5 satisfies L E D C O N S  it suffices to prove  that  co does not  occur  
as a reduced game of some game v satisfying L E D  w.r.t. O(v) (since "reducing 
commutes  with equivalence and strategical equivalence",  i.e. 

for any bijection z : N  ~ N, ~ > 0, x, /?~N N, ~ ~ S _~ "c(N)). In view of the fact that  
a reduced game of a game v satisfying L E D  w.r.t. O(v) satisfies L E D  w.r.t, the 
restricted vector  (see L e m m a  4.8) it is sufficient to verify that  w satisfies L E D  
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neither w.r.t, x nor w.r.t. ~(w), which is straightforward and therefore left to the 
reader. Consequently o-5 satisfies SIVA, COV, LEDCONS, and EC and does not 
coincide with T, hence violates DRP (and DCP). 

To complete the independence part a solution satisfying SIVA, COV, LED- 
CONS, and DRP has to be constructed which does not coincide with T. Some 
notation is needed. Let (N, v) be a game. A vector x~ ~N is symmetrically weakly 
balanced (sw-balanced) w.r.t. (v,v*) if there are nonvoid balanced subsets 
A ~_ {S c_ N le(S, x, v) = #(x, v)} and B ~_ {S c_ N]e(S, x, v*) = #(x, v*)} such that 
there are balancing coefficients (~ and (6r)r~ ~ with Zs~A 2s = Y~r~B@" Using 
the duality theorem of linear programmingit  is easy to see that ifa Pareto optimal 
x is sw-balanced, then 

xe(y~f(v) v ~(v)) n ( ~ r  ~r 

Define 

o_6(v) = ~ ~P(v), if O(v) is sw-balanced w.r.t. (v, v*) 
[ {q0(v)}, otherwise 

Clearly o -6 satisfies SIVA, COV, and AN. The following lemma together with AN 
and Lemma 1.7 directly implies that o-6 satisfies LEDCONS and DRP. 

Lemma 4.12: Let (N,v) be a game, x = O(v), and y = ~o(v). 

(i) If v satisfies LED w.r.t, y, then v satisfies LED w.r.t.x. 
(ii) If v satisfies LED w.r.t, x, then x is sw-balanced w.r.t. (v, v*). 
(iii) x is sw-balanced w.r.t. (v, v*), iff (x, x*) is sw-balanced w.r.t. (~, g*). 

Proof: 

(i) If v satisfies LED w.r.t, y, then v satisfies LED w.r.t, v(v), since 

dy, v)>_dv(v),v) 

holds true by definition of the prenucleolus. In this case v(v) = x by Lemma 
4.5(ii). 

(ii) If v satisfies LED w.r.t, x, then e(S, x, v*) <_ 0 <_ e(S, x, v) for each coalition S in 
N (see (3), (4); only Pareto optimality of v is used). Therefore x~Cg(v *) and 
thus, B = {~ ,  N} is a balanced subset of {S _c g le(S,x, v * ) r  #(x, v*)} and 
A = D(x, #(x, v), v) (for the definition of this set Section 2 is referred to) is 
a balanced subset of {S _~ N je(S, x, v) = #(x, v) } by Theorem 2.1. Let (Ts)s~a be 
balancing coefficients for A. The obvious fact ~,s~a?s -> 1 implies sw-bal- 
ancedness, since 6 N = 1, 6 z = Zs~AVs -- 1 (or 1 for {N} in case equality holds) 
are balancing coefficients for B. 
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(iii) Let x be sw-balanced w.r.t. (v, v*) and let A, B(TS)SsA, (6r)r~ B be defined as 
above. Then 

= {SO T* ISeA, TeB} c_ {S c_ NON*le(S,x,x*),  ~) = p((x, x*), ~5)}, 

= {T�9  TeB} ~_ {S ~_ NON*[e(S,x,x*),g*) = #((x,x*),~*)}. 

With c = Y',S~AYs = Zr~BSr it is straightforward to verify that ~Tsor* = (Ys6r)/c 
and 6r+s* = ~s�9 (SEA, TeB) are balancing coefficients for A and/~ respect- 
ively, thus (x, x*) is sw-balanced w.r.t. 05, ~*). 

Conversely, if A _~ {S _~ N�9 = p((x,x*),v)} is balanced 
with balancing coefficients (Ts)s~, then 

A = {S _c N]there is T_~ N with SO T*eA} and 

B = { T _  N[there is S ~ N with SO T*eA} 

and balanced with balancing coefficients 

7s= ~ ~sor.(SeA) and 6T= ~ ~s+r.(TeA) respectively. 
S�9 T*~J~ SO T*~J~ 

Clearly A and B consist of coalitions of maximal excess w.r.t, v and v*. 
q.e.d. 

It remains to verify that a 6 does not coincide with T on Fv, which can be done by 
noting that this set of games contains a game equivalent to ~0 (for the definition of 
the glove game co the paragraph is referred to in which a5 is defined). Indeed, O(co) 
is not sw-balanced w.r.t. (co, co*) and (p(co) r ~(co). 

Let us now consider a finite universe U of players. If I gl  = u _> 3, let us say 
U = { 1,. . . ,  u}, two cases may be distinguished. 

If u is odd, define a game (w, U) by 

1, if l eS  and s ~ u - 1  for 
w(S)= O, otherwise S o U ,  

hence 

1, if l e S  and s > 2  
w*(S)= 0, otherwise f o r S c U ,  

We claim O(v) = x, where 

f2 / (u+l ) ,  if i = l  
xi = ). 1/(u + 1), otherwise 

for ie U. Indeed, 

D(x,p(x,w),w) = {S ~_ U[s = u -- 1 and leS), 

D(x,p(x,w*),w*) = {S ~_ Ul(s = 2 and lq~S) or S = {1}}, 
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thus/)(x,  #(x, w) +/x(x, w*), w) is balanced and spans 2 v x 2 v, hence O(w) = x by 
Remark 2.70). Define y ~ N V  by Yl = 1 and y~ = 0 for ieU\{1}. It should be noted 
that x is the prenucleolus of w and w x coincides with a shift game of w. 
Analogously to o.s define o .7 on F v to be the solution given by aT(v) = 7J(v) for any 
game not being equivalent to any game strategically equivalent to w and 
o.7(r(c~w +/~)) = {z(~x +/?)} otherwise, o.7 satisfies SIVA, COV, LEDCONS,  and 
EC. Indeed, a proof  of these properties is straightforward and skipped. Moreover, 
no game in the domain of a 7 can have a dual replication or shifted dual cover 
which is equivalent to any game being strategically equivalent to w, because such 
a game possesses an even number of players. Therefore o.v satisfies, additionally, 
D R P  and DCP. 

If u is even, a similar procedure can be used: Consider the game (U\{u}, w), 
where w is defined as above for the universal player set U \ { u }  with an odd 
number of members. The analogously defined o -7 satisfies SIVA, COV, EC, DRP,  
and DCP. Since w cannot occur as a reduced game of a game v satisfying LED 
w.r.t, the proposed solution, o.v satisfies LEDCONS.  

If u = 1, Theorem 4.10 remains valid (though the properties are obviously not 
logically independent). It remains to discuss the case u = 2, let's say U = {1, 2}. 
A solution concept o. on F v satisfying SIVA, COV, LEDCONS,  and EC satisfies 
PO by Lemma 4.9(i). 

In order to prove that o. coincides with q~ it is sufficient to show that o. is 
a standard solution, i.e. coincides with the Shapley value (pre- and modified 
nucleolus) for 2-person games. Indeed, if (U, v) is additive, then COV and SIVA 
directly imply wo.(v) .  If (U, v) is not additive, then we can assume v({i})= 0 for 
i e U  by COV, hence v(U) v a 0. Let xeo.(v).  Then 

xea(v~) ,  (by EC) 

vX({i}) = c for i ~ U  for some c e ~  with v ( U ) ( c ) O ,  

hence x - { e a ( v  x - c') by COV, where ci = c for i~ U. On the other hand 

v ~ --  ~ = d'v,  where d = (v(U) - 2c)/v(U). 

In case v ( U ) < O  we have d > 0  and thus (by COV and SIVA) x - ~ = d ' x .  
Consequently x~ = v(U)/2 holds for i~ U in this case. If v(U) > 0 we have d < 0. 
Analogous considerations (replacing v by v x -  c-) imply ( x -  c')i = (v x -  c')(U)/2, 
hence x~ = v(U)/2 for ie U in this case. 

The system of axioms in (b) does not guarantee AN, as the following example 
shows: as(v) = {x v } for any game (U, v), where x~ = v( { 1 } ), x~ = v(U) - v( { 1 } ), and 
as(v) is the Pareto optimal solution for 1-person games. Clearly a s satisfies SIVA, 
COV, and CONS (hence LEDCONS).  Moreover, d~(N) = 0, hence 6e~mg(and the 
dual replication g) is additive for any 1-person game (N, v). Therefore a s satisfies 
D C P  (and DRP). 

The preceding examples show that both systems of axioms of Theorem 4.10 are 
logically independent if U is infinite. In the finite case the properties of (a) 
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uniquely determine a solution concept if and only if ]U I<  2, whereas the 
properties of (b) uniquely determine a solution if and only if lU[ < 1. 

Remark 4.13: It should be noted that DRP and DCP can be replaced by some 
weaker versions ("there is yea(w) such that x i = y~ for ieN" in Definition 4.6(iii) 
and (v) respectively) in Theorem 4.10. If the axioms are formulated as "there is 
yscr(w) such that x i = yi for ieN, if z~ = i for ieN", then it is, unfortunately, not 
known how to deduce anonymity (and Pareto optimality). On the other hand 
Theorem 4.10 remains valid if DRP and DCP respectively is replaced by the weak 
version and AN. In some sense this variant of Theorem 4.10 can be regarded as 
"the best" analogon on Sobolev's characterization of the prenucleolus. Indeed, 
compare the new version of (b) with the classical axiomatization of the prenuc- 
leolus. SIVA, COV, and AN apply in both characterizations whereas CONS 
occurs now in its weak form LEDCONS. The additional property (the weak 
version of DCP) together with SIVA and AN guarantees that duality is satisfied. 
This last property is crucial for the modified nucleolus. Unfortunately it is not 
known whether this best analogon constitutes an axiomatization, i.e. whether AN 
is logically independent. It should be noted that AN is independent in Sobolev's 
characterization, as shown in SudhNter (1993a), but it is not known how the 
examples presented in this paper can be modified in order to solve the new 
problem of independence. 
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