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Cost sharing rules can be obtained by considering solution concepts on the
associated cost games. The Shapley rule, nucleolus rule, and antinucleolus rule
commonly satisfy “‘covariance under strategical equivalence.” Covariance, together
with “equal treatment of equals™ and either additivity or consistency, characterize
the Shapley rule. The nucleolus rules are axiomatized analogously by changing the
definition of the “reduced cost sharing problem” adequately. In the case of
concave cost functions the nucleolus satisfies a strong version of consistency and
the antinucleolus rule is a core selector. Cost functions for which the proposed
game theoretical solutions coincide with average cost pricing are characterized by a
simple functional equation. Journal of Economic Literature Classification Numbers:
C71, D24. © 1998 Academic Press
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INTRODUCTION

The problem how to allocate the total production cost of a single
homogeneous good is discussed in this paper. A cost function C, i.e. a
nondecreasing function on the nonnegative reals which intersects the
origin, is used to model the production costs depending on the demanded
guantity. Here C(y) should be interpreted as the cost for producing y
units of the good. If the agents or players in a finite group N possess the
production technology and agent i has demand g;, then the question how
to divide the total cost C(X,_ yg,) among the players is answered in
general by proposing any cost sharing rule. Several applications occur in
the literature (see, e.g., Shenker, 1989, 1990).

A cost sharing rule assigns an allocation to any cost sharing problem
(N,C, q), where g is the demand profile of the agents in N, and C is the
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cost function. This allocation has to be feasible in the sense that the
proposed aggregate payment of the players covers the total cost. An
example is average cost pricing. With respect to this rule every agent i has
to pay her proportional part of the total cost. This means that average cost
pricing only depends on the total cost and the demand profile, regardless
of the special shape of the cost function. A further cost sharing rule, serial
cost sharing, also takes into account the evaluation of the cost function at
several distinguished arguments (see Moulin and Shenker, 1992). These
authors (see Moulin and Shenker, 1994) showed that both rules can be
characterized by certain intuitive properties. They also proposed to con-
sider the cost games generated by the cost sharing problems and apply
classical solution concepts for games with transferable utility to these cost
games. Indeed, they mentioned the Shapley value and nucleolus as possi-
ble cost sharing rules for the cost sharing problems. The present paper,
which is organized as follows, discusses the game theoretical solutions in
detail.

In Section 1 the necessary notation is presented. It is shown (see
Remark 1.3 and Fig. 1) that individual rationality, i.e. every player has to
pay not more than her individual cost, cannot be a general property of a
cost sharing rule. Indeed, individual costs may not cover total cost. Conse-
quently, individual rationality is dropped as a property for cost sharing
rules in general. In view of this fact we define the nucleolus rule to be the
prenucleolus of the corresponding cost game. Well-known intuitive proper-
ties for cost sharing rules, e.g. Pareto optimality, “equal treatment of
equals,” the null property (players with zero demands do not have to pay),
monotonicity, and additivity properties, are defined formally. Moreover, it
is shown that similar well-accepted properties for solution concepts on
games imply the properties on cost sharing problems. In order to translate
a cost sharing rule into a solution concept on the arising cost games this
rule should yield the same result in case it is applied to different cost
sharing problems which possess the same induced cost game. A slightly
stronger property is ‘‘covariance under strategical equivalence.” Average
cost pricing does not satisfy covariance. The solution concept which arises
from a covariant cost sharing rule inherits many properties of the rule as
shown in Corollary 1.8. Covariance is the basic property of the game
theoretical cost sharing rules discussed in the following sections.

In Section 2 three different axiomatizations of the Shapley rule are
presented. The common properties of all characterizations are covariance
and equal treatment of equals (i.e., agents with coinciding demands are
proposed to pay coinciding amounts). Together with the null property and
additivity (i.e., if the cost function is the sum of two cost functions, then
everybody has to pay the sum of the fees of both cost sharing problems) or
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minmax additivity (a modification of additivity) Theorems 2.1 and 2.2 are
similar to the results of Shapley (1953) and Dubey (1975). Here covariance
is strongly used and cannot be replaced by Pareto optimality as in the
classical context. Especially Theorem 2.2 is not a trivial analogue to
Dubey’s result, which is emphasized by the fact that in the cost sharing
context these properties are not strong enough to uniquely determine the
Shapley rule on the restricted class of cost sharing problems which gener-
ate monotonic simple cost games. Note that Dubey’s result holds for this
class of games. In a further axiomatization null property and additivity are
replaced by some reduction property which is analogous to that introduced
by Hart and Mas-Colell (1989). Clearly, consistency can only be applied to
classes of cost sharing problems with varying sets of agents.

In Sections 3 and 4 further versions of consistency are introduced and it
is shown that both the nucleolus rule and the antinucleolus rule (i.e., the
prenucleolus of the dual cost game) can be axiomatized by some version of
consistency, covariance, and equal treatment of equals (see Theorems 3.4
and 4.2). As in the game theoretical context the infinity assumption on the
set of potential agents is needed as a prerequisite (see Sobolev, 1975).
Moreover, two interesting results concerning cost sharing problems with
concave cost functions are presented. A strong version of consistency,
together with equal treatment and covariance, uniquely determines the
nucleolus even in case of a finite universe of players (see Theorem 3.3). In
general, the antinucleolus is, other than the nucleolus rule, not a core
selector, even in case that the core is nonempty. In Corollary 4.4 it is
proved that the antinucleolus is a core selector in the case of concave cost
functions. This fact also shows that the class of induced cost games does
not cover, even up to strategical equivalence, the class of all concave
games. This is in contrast to the general case; every game is, up to strategi-
cal equivalence, an induced game of some cost sharing problem (see
Lemma 1.6).

Finally, in Section 5 the cost functions which yield coinciding average
cost pricing, Shapley rule, and nucleolus rules, when applied to a cost
sharing problem with a fixed aggregate demand, are characterized by a
functional equation (see Theorem 5.1). Concerning this class of cost
sharing problems any of the proposed cost sharing rules can be character-
ized by “separable costs” (i.e., coincidence with average cost pricing for
linear cost functions), monotonicity, and Pareto optimality. For average
cost pricing this characterization holds in general (see Moulin and Shenker
(1994)). Moreover, Theorem 5.3 shows that linear and parabolic cost
functions are the unique functions which globally yield coinciding cost
sharing rules. Section 6 presents diagrams which summarize the main
results.
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1. NOTATION AND PRELIMINARY RESULTS

Let U denote the nonvoid set of potential agents; it can be finite or
infinite. A triple (N, C, ¢) is called cost sharing problem (CSP), if N is a
finite nonvoid subset of U (the set of agents of the CSP), C is a
nondecreasing function on the nonnegative reals R . ; such that C(0) = 0
(the cost function of the CSP), and g = (g;);. y € R" is such that ¢, > 0
for i € N (the demand profile of the CSP). Let I'(U) denote the set of all
cost sharing problems with the foregoing properties. A cost sharing rule
(CSR) on a subset I' of I'(U) associates a vector o(N, C, q) € R" satisfy-

ing

Y. 0(N,C,q) =C(q(N)) (feasibility)
iEN

with each CSP (N, C, g¢) € T'. As usual x(S) = X, . s x; denotes the aggre-
gate weight of S at x € RY for S C N. Feasibility means that at least the
total cost is covered by the agents. We do not require o,(N,C, ¢g) > 0, but
in all our examples this property automatically holds. Well-known and
intuitively justified properties of a CSR o on I are as follows:

(i) Pareto optimality (PO). X,. vy 0:(N,C,q) = C(g(N)) for all
(N,C,q) €T.
(i) Ranking (RAN). ¢; < q; implies ay(N, C, ) < 0;(N, C, ¢) for all
(N,C,q) €T.
(iii) Separable costs (SC). If C(y) = A-y for y > 0 and (N,C, q) €
T, then o(N,C,q) = A-q.
(iv) Equal treatment of Equals (ET). g, = g; implies 0,(N,C, q) =
a(N,C,q) forall (N,C,q) €T.
(v) Null property (NP). g, =0 implies o,(N,C,q) =0 for all
(N,C,q) eT.
(vi) Anonymity (AN). If (N, C, ¢g), (N,C, 7 g) € T for some permu-
tation 7 of N, then o_(N,C, 7 ¢q) = 0N, C, ¢q) for all i € N.
(vii) Monotonicity (MON). If (N,C,¢), (N,C,¢) € T with C <C,
then o(N,C,q) < (N, C, g).
(viii) Additivity (ADD). If (N, C,q), (N, C, q), (N,C + C, q) € T, then
a(N,C,q) +(N,C,q) =(N,C + C,q).
_ (i) Minmax additivity (MMADD). If (N, C, g), (N,C,q), (N,C A
C,q), (N,CV C,q) €T (where A denotes “minimum”) and Vv denotes
“maximum,” then o(N,C,q) + o(N,C,q) = o(N,C A C,q) + o(N,C
v C, q).
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ExAMPLE 1.1. For every CSP (N, C, ¢) define

2(N,C,q) = (q;/9(N))-C(q(N)) (where0/0 = 1).

The mapping < is called average cost pricing (rule).

Note that average cost pricing distributes the total cost C(q(N)) among
the agents according to the Aumann—Shapley unit price (see Aumann and
Shapley, 1974). Note, furthermore, that average cost pricing is completely
determined by the demand profile and the total cost. There is an example
of another CSR, namely serial cost sharing (see Moulin and Shenker,
1992), which depends on both the demand profile and the cost function
evaluated at n arguments. Moulin and Shenker (1994, Examples 3 and 4 of
Section 3) suggested looking at cost sharing rules which mainly depend on
the cost function (the demand profile is only used implicitly). They pro-
posed the Shapley value and the nucleolus of a certain induced game as
feasible cost sharing rules. To formulate this more explicitly it is necessary
to define the induced (TU) cost game (N,v¢9) of an arbitrary CSP
(N, C, ). The coalitional function v is given by

vea(S) = C(q(S)) forScN.

In general a game is a pair (N, v) such that v: 2% - R and v(&) = 0 hold
true. The Shapley (cost sharing) rule ¢ assigns to every CSP the Shapley
value of its induced game (for the definition of the Shapley value, see
Shapley, 1953). There are two cost sharing rules based on the prenucleolus
of the induced game or its dual. Here is the precise

DeriNnITION 1.2. 1. Let (N, v) be a game (considered as the cost game)
and let X(v) = {x € RY | x(N) = v(N)} be the set of preimputations of
v. The prenucleolus ¥(v) of (N,v) is the unique preimputation which
successively minimizes the largest excesses. Here x(S) — v(S) is the excess
of S at x (with respect to v) for x € R”". To put it more formally, let

Z = {xeX(v) 10((x(S) = v(5))sen)
< O((¥(5) = (8))sex) for y  X(0)

where © applied to a vector (x(S) — v(S))s . of excesses at x orders the
components of this vector nonincreasingly. The set Z is a singleton and its
unique element »(v) is the prenucleolus of v (see Maschler, Peleg, and
Shapley, 1979). In the definition of the nucleolus (see Schmeidler, 1969)
X(v) is replaced by the subset of individually rational preimputations.
(A vector x € RY is individually rational if x, < v({i}) for all i € N.)
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2. The nucleolus rule on a subset T" of I'(U) assigns to each CSP
(N,C,q) €T the prenucleolus of its induced game (N, v¢ ). We denote
this cost sharing rule by v.

3. The anti-nucleolus rule »* on a subset T of I'(U) assigns to each
CSP (N, C, q) €T the negative of the prenucleolus of the negative of its
induced game (N, v¢9), i.e.,

v*(N,C,q) = —v(—v“1).

Remark 1.3. (i) Note that the nucleolus in the sense of Schmeidler
does not necessarily exist; i.e., the set of imputations (individually rational
preimputations) of a game can be the empty set. This is also true for
induced games of cost sharing problems. In Fig. 1 two 2-agent cost sharing
problems with demand profiles ¢ and g and the same “‘S-shaped” cost
function C are sketched. Note that S-shaped cost functions (i.e., decreas-
ing marginal costs for “small” aggregate demand and, due to, e.g., weak
capacity bounds, increasing marginal costs for “large” aggregate demand)
are typical for many economical applications. For the demand profile ¢
feasibility of a CSR o requires at least one individual fee which is higher
than the individual cost whereas in case of g the total cost can be divided
among the players in such a way that both pay less than their individual
costs. Therefore the version of a nucleolus rule based on individually
rational feasible payoffs does not establish a cost sharing rule.

(ii) Using the notion of “interpersonal comparisons of utility” the
prenucleolus can be justified for cost games (see Maschler, 1992). Al-

1 C 1 C

0 -9, aiN)” 0 9-3  gN)
"large" individual demands 'small" individual demands

FIG. 1. “S-shaped” cost function.
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though the definition of the antinucleolus rule, i.e. successively maximizing
minimal excesses, seems to be counterintuitive, there are examples of cost
sharing situations for which the antinucleolus rule can be justified (see
Potters and Sudholter, 1995). Therefore, we also analyze the antinucleolus
rule »* in this paper.

In order to characterize the game theoretical cost sharing rules (Shapley
rule, nucleolus rule, and antinucleolus rule), which are determined by the
cost function evaluated at the aggregate demands of the coalitions, one
additional property referring to the induced games is needed. Indeed,
average cost pricing satisfies all properties (i)—(ix) (see Moulin and Shenker,
1994) and certain reduction properties as shown in the following sections.
A game theoretical solution rule is determined by the induced game.
A stronger version of this property is presented in

DeriNITION 1.4. A cost sharing rule o on a set I' c T'(U) satisfies
covariance (COV), if the following condition holds: -

If(N,C,q) €T and a > 0, B € R" are such that there is (N,C,§) € T
with

C(G(8)) = a-C(q(S)) + B(S) forScN (ie, a v+ pg=0C7),

then o(N,C,§) = a- o(N,C, q) + B.

Covariance on a set of games is an intuitive property. Two games (N, v)
and (N, w) which coincide up to strategical equivalence (i.e., w = a-v + 8
for some a > 0 and B8 € R") should be treated accordingly by a solution
concept for games. In the context of cost sharing problems COV seems
less intuitive. Nevertheless, as long as the induced game serves as an
adequate description of the cost sharing problem, covariance can be
interpreted as in the original game theoretical context. Note that a similar
approach can be found in McLean and Sharkey (1994), who use a strong
additivity assumption which applies to the games derived by cost sharing
problems.

If a CSR o on a set ' of cost sharing problems satisfies COV, then
there is a unique continuation & on the set Z(I") of games which are
strategically equivalent to the induced game of some CSP in I'. To put it
more formally, let (N,C,q) €T, B € R",and a > 0. Then (a0 +
B)=a-o(N,C,q) + B.

The solution concept & on Z(I') is called continuation of o. A solution
concept & on a set & of cost games associates a vector (v) € RY
satisfying feasibility (X, y ¢,(v) = v(N)) with each game (N,v) € Z.
Conversely, if £(I') = &, then & inducesa CSR o on T by o(N,C, q) =
a(v©9). Clearly & is feasible, iff o is feasible. Well-known properties for
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a solution concept o on £ are as follows (with (N, v),(N,w) € £2):

(a) Pareto optimality (PO). ¥, y 7:(v) = v(N).

(b) Equal treatment property (ET). v(S U {i}) = v(S U {j}) for S c
N\ {i, j} G and j are interchangeable) implies 7,(v) < ().

(c) Null property (NP). v(S U {i}) = v(S) for S c N (i is a nullplayer)
implies o,(v) = 0.

(d) Anonymity (AN). If (N, w) arises from (N, v) by a permutation of

—

the players then o “respects this permutation.”

(e) Additivity (ADD). If (N,v +w) e £, then o(v) + c(w) =
a(v +w).

(f) MM additivity (MMADD). v Aw, v Vw € ¥Z implies a(v) +
ocw)=c@ Aw)+a(vVvw).

(g) Covariance (COV). If w =a-v + B for some a >0, B € R",
then o(av + B) = ac(v) + B.

Clearly the following statements for a covariant CSR o on TI', together

with its continuation o, hold true:

1. o satisfies COV,

2. o satisfies PO, iff o satisfies PO;

3. If & satisfies NP, then o satisfies NP;

4. If & satisfies AN, then o satisfies AN;

5. If & satisfies ADD, then o satisfies ADD;

6. If o satisfies MMADD, then o satisfies MMADD.

Ranking has an analogue for solution concepts, too. Indeed, many well-
known solution concepts, e.g. the Shapley value and the proposed versions
of nucleoli, preserve the desirability relation in the sense of Maschler and
Peleg (1966). Preservation of desirability on &(I") implies RAN on T'.

Note that the Shapley rule ¢ and both nucleolus rules » and v* satisfy
COV, PO, RAN, SC, ET, NP, and AN (see, e.g., Peleg, 1989). Moreover,
the Shapley rule satisfies ADD and MMADD (see Shapley, 1953, and
Dubey, 1975). For completeness reasons we present an example which
shows that neither ¢ nor v or v* satisfy MON.

ExAMPLE 1.5. Let C(y) = 5-+/y, C(y) = min{C(y), y}, N = {1,2}, and
g = (9,16). An easy computation shows that

o(N,C,q) = v*(N,C,q) = v(N,C,q) = (10,15),
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whereas

«(N,C,q) =2(N,C,q) = v(N,C,q) = v*(N,C,q) = (9,16).

Hence the game theoretical cost sharing rules do not satisfy MON even
in the case of concave cost functions.

For every finite nonvoid subset N of U let I’y denote the set of cost
sharing problems with agent set N. The following assertion shows the
“power” of COV.

LEMMA 1.6. Every game (N, v) is strategically equivalent to some induced
game (N, v %) of a CSP (N,C, q); i.e. Z£(I'y) = {(N,v) | v is a game}.

The proof of this lemma is constructive and several versions of it will be
used.

Proof. Let d(v) = max{v(S) — v(T) | S, T < N} be the maximal dif-
ference of worths of coalitions. Assume for simplicity reasons N =
{1,...,n}, take d > d(v), and define g, B8 € R" by

g =2"1'pB =2"1-dforieN.
Moreover, let C be defined by

C(y) = max{v(S) + B(S) | ScNandg(S) <y} fory >0.

Clearly C is a cost function (C(0) = 0 and C is nondecreasing). In order to
verify that v€9 = v + B holds true, it remains to prove

v(S) + B(S) < v(T) + B(T) for S,
T C N with § # T and g(S) < g(T). €))

By definition of g there is a unique i € N such that i € T\ S and
T\A{1,...,i} = S\ {1,...,}. The definition of B directly shows

0(8) + B(S) < max o(R) + B(S U (L....i = 1}) (2)

and

o(T) + B(T) = min o(R) + BT\ (L,....i = 1}). (3)
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The observation

Rmi}rcl v(R) — max v(R) + B(T\({1,...,i —1})

—B(SU{L,...,i —1})
—d(v) + B - B({1,....i = 1})

i-2
2i—l _ Z 2j—1)
j=0

= —d(v)+d=0

—d(v) +d

completes the proof. Q.E.D.

A stronger version of this result shows that ET and ET are equivalent
for a covariant CSR and its continuation.

LEMMA 1.7.  For every game (N, v) there is a vector B € R”, a demand
profile ¢ € RY , and a cost function C such that v + B is the induced game
of (N,C,q), interchangeable players of v possess coinciding demands, and
nullplayers possess zero demands.

Proof. Take d as in the last proof, assume that N ={1,...,n} and
assume that the equivalence classes of interchangeable players are integer
intervals, i.e., if i is interchangeable with j and j > i, then i and j are
interchangeable with k for k = {i,...,j}. This can be achieved by just
renaming the players. For j € N define ¢; = 2'* and B; = 2'"*-d in case
j is not a nullplayer, where i is the player of minimal index interchangeable
with j. Moreover, put g; = 0 for every nullplayer j € N. The proof can be
completed analogously to that of Lemma 1.6. Q.E.D.

A direct consequence of this result is

CoroLLARY 1.8. Let o be a CSR on Iy satisfying COV and o its
continuation on Z(T'y).
(i) Then o satisfies ET, if and only if G satisfies ET.
(ii) Then o satisfies NP, if and only if & satisfies NP.

2. THE SHAPLEY RULE

In this section we provide axiomatizations for the Shapley rule based on
the classical characterizations of the Shapley value due to Shapley (1953),
Dubey (1975), and Hart and Mas-Colell (1989). The analogues to Shapley’s
and Dubey’s results are formulated in Theorems 2.1 and 2.2.
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THEOREM 2.1. The Shapley rule is the unique cost sharing rule on Ty
satisfying ET, NP, ADD, and COV.

THEOREM 2.2. The Shapley rule is the unique cost sharing rule on T
satisfying ET, NP, MMADD, and COV.

Proof of Theorems 2.1 and 2.2. The Shapley value g(-) satisfies ET, NP,
COV, ADD, and, thus, MMADD (see Shapley, 1953, and Dubey, 1975).
Therefore the Shapley rule satisfies ET, NP, COV, ADD, and MMADD.
The straightforward observation that ADD implies MMADD shows that it
remains to show uniqueness in Theorem 2.2. To this end let o be a cost
sharing rule which satisfies the desired properties, i.e. ET, NP, COV, and
MMADD. The continuation & satisfies COV, ET, and NP by Corollary 1.8.
In order to show that o coincides with the Shapley rule, it is useful to
verify that & satisfies MMADD. Indeed, let (N, v') and (N, v?) be games.
We repeat the construction presented in the proof of Lemma 1.6. Namely,
take d > d(v?) Vv d(v?), define B and ¢ as in the mentioned proof and let
C' be the cost function for v’ + g, i.e.

Ci(y) ={v'(S) + B(S) IScNand g(S) <y} fori=1,2.

MMADD of o and COV of & imply

a(N,vt vV v?) + a(N,vt Av?)
=a(N,v*VvoP+B)+ (N, vt AvP+B)—2-8
=a(N,(v' + B) Vv (v* + B))

+a(N, (0" +B)A(¥P+B))—2-B

=o(N,C*VC?q)+0o(N,C'AC?* -2
=o(N,Chq) + o(N,C* q) = 2-P
=a(N,v'+B)+a(N v +B)—-2-B
=G (N,v') + (N, 0v?),

and, thus, o satisfies MMADD.

It remains to show that & (v) = o(v) holds true for every game (N, v).
Clearly, this is true for the flat game v = 0 by NP. By COV (of @ and &)
we can assume that v is monotonic, i.e. v(S) < v(T) for S C N. If v = u;
is the unanimity game of T for some &+ T c N (e, u(S) =1, if
T C N; 0, otherwise for § ¢ N), then we proceed by induction on [T|. If
IT| = 1, then &(v) = g(v) by COV, because v is strategically equivalent to
the flat game. If |T| > 2, then take i,j € T, i # j, observe that v = vy,
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A Up\; and, thus, o (v) = @(v) by ET, NP, MMADD, feasibility, and the
inductive hypothesis applied to v, and vr ;. We proceed by induction
on t(v) = {v(S) | S c N} If t(v) = 1, then v is the flat game. If ¢(v) = 2,
then v is a positive multiple of the maximum of finitely many unanimity
games, thus o(v) = @(v) by MMADD and the fact that the minimum of
finitely many unanimity games is a unanimity game. If ¢(v) = ¢ > 3, then
let a, b, c denote the three highest worths of coalitions:

max{v(S) 1S c N}, b=max{v(S)v(S) <c¢, S SN},
max{v(S) | v(S) <b,S S N}.

Cc

a

Define three monotonic games v!, v?, w by

b(S) = {Z’(S), if 0(S) #b}’

otherwise

b2(S) = {U(S), if v(S) #c},

b, otherwise
w(S) =vt Av? forSc N

and observe that v = v* Vv v2 The inductive hypothesis can be applied to
v, v?, and to w, thus MMADD completes the proof. Q.E.D.

To prove that both characterizations are axiomatizations, we present
examples which show the logical independence of both sets of properties.
A weighted Shapley value (see Kalai and Samet, 1988) satisfies NP, COV,
ADD, and MMADD but does not satisfy ET in general for n > 2. There-
fore the corresponding CSR possesses all desired properties except ET.
The CSR o defined by

7(N.Coa) =e() + [v(N) = £ u({m)/n,
JEN
where v = v 7 satisfies all axioms except NP for n > 2. For n > 3 the
nucleolus rule does not satisfy ADD or MMADD, but it possesses all other
properties. Finally, average cost pricing can be used as an example which
shows the independence of COV.

Remark 2.3. Dubey (1975) used MMADD to characterize the Shapley
value on monotone simple games. A monotone simple game (N, v) is a
game such that v(S) € {0,1}, v(N) = 1 (the game is simple) and v(S) <
v(T) for § € T c N (the game is monotone). The analogue does not hold
in the cost sharing context. Indeed, on the set

I' = {(N,C,q) | Cisacost function with C(y) € {0,1}}
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of cost sharing problems possessing cost functions with domain 0,1 the
Shapley rule is not uniquely determined by ET, NP, MMADD, and COV,
even together with PO. To see this, define

0, if i is a nullplayer of the induced game

o (N.C,q) = 1/k, otherwise,

where k denotes the number of nonnullplayers of the induced game.
Clearly o satisfies NP, ET, and PO. MMADD and COV are not strong
enough to rule out the CSR o on this small set of cost sharing problems.
One reason can be seen in the fact that the class of induced games is too
small. Indeed, every induced game is not only a monotone simple game but
also a weighted majority game.

In the end of this section it is shown that NP and ADD (or MMADD)
can be replaced by a reduction property in the sense of Hart and Mas-
Colell. Certainly I'y has to be replaced by some richer class of cost sharing
problems, namely by T'(U). The next definition recalls the notions of a
“reduced game” and ‘“‘consistency.” Moreover, the analogues for cost
sharing problems are presented.

DEFINITION 2.4. Let o be aCSR on I'(U) and & be a solution concept
on Z(U) = £(I'(V)).

(i) Let(N,v) € Z(U)and & # S c N. The o-reduced game (S, v; )
(on S with respect to &) is defined by

Uy s(T) =v(TUN\S) - ), o(TUN\S,v)ford+TcN
iEN\S
and
vy 5(D) = 0.

(ii) o satisfies a-consistency (CON) in the sense of Hart-Mas-Colell,
if the restriction to S of the solution is a solution of the o-reduced game;
ie.,

o(S,v; 5) =0(N,v)s foreverygame (N,v) of Z(U).

(i) For a CSP (N,C,q) and & # S c N define the o-reduced func-
tionC, ;s R_, —> R by

Co s(y) =C(y +4q(5))

- min{ Y, 0(TuUSC,qr,5) | T<Sand

eS¢

a(T) = max{q(R) IR < S.q(R) <}
for y > 0and C, ((0) = 0.
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Here S¢ = N\S is the complement of S. Note that the o-reduced
function is not necessarily a cost function (monotonicity of C is not
guaranteed).

(iv) The CSR ¢ satisfies o-consistency (CON), if for (N, C, q) € T'(U)
and & # § C N the following condition holds: If C, ¢ is a cost function
and forevery @+ T C S

Cr.5(a(T)) = C(q(T) +q($°)) — L (T US"Cqrys)

eS¢

is valid, then o(S,C, g, g5) = o(N,C, q)s.

Definition 2.4(i),(ii) is due to Hart and Mas-Colell (1989). They showed
that the Shapley value is uniquely determined on £(U) by CON and some
weak versions of ET, COV, and PO. It is obvious that CON, together with
COV (on £(U)), implies CON for the associated CSR on I'(U). If the
reduced function C, ¢ is a cost function, then the arising aggregate costs
for the coalitions can be interpreted as follows. Coalition T c § deter-
mines its new cost (supposing all members of S¢ agree on the cost sharing
rule o) to be the total cost for the aggregate demand of itself and S°¢
diminished by the aggregate fee which will be paid by §¢ in the new
situation. It should be noted that coalition T imagines a situation in which
only its own agents and the agents of S¢ are present. A different reduced
situation will be discussed in the following two sections.

THEOREM 2.5. The Shapley rule is the unique cost sharing rule on T'(U)
satisfying ET, COV, and CON.

Proof. It suffices to show the uniqueness part. Let o be a CSR with
the desired properties. Then the continuation & on £ =2(U) of o
satisfies COV and ET by Corollary 1.8. Moreover, & is PO on 1-agent cost
sharing problems by COV. The proof is finished as soon it is verified that &
satisfies CON and PO. In order to show CON and PO take (N,v) € Z,
& # 8§ C N, and assume that (R, v) is Pareto optimal for every proper
subset (J # R ¢ N. First of all it is proved that there is an induced game
(N,w) of some CSP (N, C, g) which is strategically equivalent to (N, v)
such that the o-reduced game w;  is the induced game of the o-reduced
CSP (N, C(, s»qs). Indeed, assume without loss of generality that N =
{1,...,n}and S ={n+ 1 —s,...,n}. Moreover, take ¢ = 2""1)._y, B,
and C as defined in the proof of Lemma 1.6, i.e. (N,C,q) € I'(U) such
that u = v + B = v°4. Define B, = 0 for i € S¢and B, = 2'-d for i € §,
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where d = d(u) + maxyz g X, c g 0,(R U 8¢, C, gz, sc). For y > 0 define

C(y) = max{w(T) | T <N and q(T)
=max{q(R) IR C N,q(R) <y}},

where w = u + B. Clearly C(y) = C(y) for y < ¢(5) and C is nonde-
creasing, thus a cost function. The straightforward observation that

C(q(T)) = C(q(T)) + B(T) for TCN

shows that v 7 =w holds true. By construction, Pareto ogtimality on
proper subproblems and COV of o, the o-reduced function C, ¢ is a cost
function and the induced game of (S, CU s qg) coincides with w. ¢; thus o
satisfies CON by COV. Property PO is a direct consequence of CON
applied to some proper S. Q.E.D.

For completeness reasons examples are presented which show the
logical independence of ET, COV, and CON. There is a positively weighted
Shapley value on Z(U) which does not satisfy ET in case there are at least
two potential agents. (Note that the notion of positively weighted Shapley
values introduced for the set of games with fixed player set (see Kalai and
Samet, 1988) can easily be generalized to £(U) (see Potters and Sudhdlter,
1995).) By definition weighted Shapley values satisfy COV. The proof that
positively weighted Shapley values satisfy CON is straightforward and
skipped. In view of these considerations the associated CSR on T'(U)
shows the independence of ET. In view of the definition it can easily be
seen that average cost pricing satisfies CON, thus independence of COV is
guaranteed for |U| = 2. Finally the nucleolus rule shows that CON cannot
be dropped as a prerequisite of Theorem 2.5 in case |U| > 3.

3. THE NUCLEOLUS RULE

There is a characterization of the prenucleolus on the family of all
games with the player set contained in an infinite universe due to Sobolev
(1975). He needs a consistency property based on a certain reduced game
introduced by Davis and Maschler (1965). The corresponding notion and
its analogue in the cost sharing situation is content of

DerinITION 3.1. Let ¢ be a CSR on I' c I'(U) and & be a solution
concept on £ < Z(U).
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(i) For every game (N, v), every nonvoid coalition S € N, and every
x € R" the reduced game (S, v, ) of v (at x with respect to S) is defined
by

0, if T =0
vg (T) = {V(N) —x(5°), if T=SforTCN
min{v(T U R) —x(R) | R € S}, otherwise.

(i) & is consistent (satisfies CONS), if vg () € £ and o (S, v5 ;)
=o(N,v)g forv e g and J # S C N.

(iii) For every CSP (N,C, g), every nonvoid coalition S N, and
every x € R" the reduced function Cy ,: R ; — R is defined by

min{C(y + q(R)) —x(R) IR C S}, if0<y<q(S)
C(y +4q(8%)) —x(5°), if y >q(S).
(1)

(Note that the reduced function, although it is nondecreasing, it need not
be a cost function, since C; ,(0) might be negative.)

(iv) o is strongly consistent (satisfies SCONS), if (S,Cs ,,q5) €T
and o(S,Cy ., q5) = xg, where x = o(N, C, q) for (N,C,q) € T.

(v) o is consistent (satisfies CONS), if for (N,C,q) €T, J # § C N,
and x = (N, C, g) the following condition is satisfied:

If C5.(q) =0 for ieS, then (S$,(Cs,),,q) €l and x5 =

a(8,(Cs )., q5). (Here y, denotes the positive part of the real num-
ber y.)

CS,x(y) =

An interpretation of CONS is similar to that of CON (see Section 2).
The main difference is that a coalition T takes an “optimistic” view of the
world; every coalition R of members of S¢ (who agreed upon the proposal
given by o) can be taken as a coalition of partners. Therefore the total
cost generated by the aggregate demand of the union T U R can be
“reduced” by the fee which will be paid by R. Moreover, it should be noted
that 7 imagines a situation with respect to the grand coalition in which all
members of S¢ have already paid their fees. The *‘pessimistic’” view of the
world will be discussed in Section 4.

Remark 3.2. (i) A solution concept & on £(U) which satisfies CONS
induces a CSR o on I'(U) which satisfies CONS but not necessarily
SCONS, since Cg (0) =0 is not necessarily true for x = o(N,C, q).
Indeed, the prenucleolus and thus the nucleolus rule are consistent.
Nevertheless, the nucleolus rule does not satisfy SCONS as examples
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show. The objection that the definition of the reduced function (see (1))
should be modified by, e.g., taking the positive part of this function, can be
countered as follows. In the interpretation presented above it is hard to
justify that only certain coalitions take the optimistic view of the world and
others throw away money. Moreover, the idea that (at least) the nucleolus
rule should satisfy CONS excludes this modification as the following
example shows:

Let N ={1,2,3}, g = (1,2,4), C(y) = y2 The nucleolus rule v applied
to this CSP yields x = v(N, C, ¢) = (7,14, 28).

With § = {1, 2} the reduced function satisfies C; (1) = =3, C ,(2) = 4,
and Cg (3) = 21; thus the positive part of C determines the game (S, v)
defined by

v({1}) =v(D) =0, v({2}) =4, v(S) =21

Clearly v(v) = (8,13) /2 # (7,14) = x;.

(ii) It should be noted that it is not known whether there is any
Pareto optimal CSR on T'(U) satisfying SCONS, unless [U| < 2. SCONS is
only used in the context of cost sharing problems with concave cost
functions (see Theorem 3.3).

(iii) Note that average cost pricing satisfies CONS on T'(U). A proof
of this property is straightforward and skipped.

For any set I" of cost sharing problems let I'* denote the subset of cost
sharing problems with concave cost functions within T.

THEOREM 3.3.  The nucleolus rule is the unique cost sharing rule on T*(U)
satisfying ET, COV, and SCONS.

Proof. Clearly each induced game (N, v) of some CSP (N, C, g) with
concave C is concave:

v(S)+uv(T)=v(SUT)+uv(SNT)forS,TCN.
Therefore the nucleolus 7(v) belongs to the core
#(v) ={xeRY [x(N) =v(N) and x(S) < v(S) for S c N}.

This consideration shows that any reduced function is itself a cost function
in case v is the CSR. Moreover, it is not necessary to distinguish whether
y exceeds or does not exceed ¢(§) in equality (1). The first row of (1) can
be taken as definition in this special case. Therefore reducing does not
destroy concavity. Up to now we have shown that CONS and SCONS
cannot be distinguished for the nucleolus rule on cost sharing problems
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with concave cost functions. By the choice of the set of cost sharing
problems every reduced CSP is a member of T'*(U); thus Sobolev’s (1975)
result shows that the nucleolus rule possesses the desired properties.

To show uniqueness let o be any CSR with the desired properties and
o its continuation. By COV ¢ is Pareto optimal on 1-agent cost sharing
problems. CONS guarantees PO in general. The proof is complete as soon
as it is verified that &(v) belongs to the prekernel of v for every
v € Z(I'*(U)). (Recall that the prekernel of a game (N, v) is the set

{x € X(v) Is;;(x) =s;(x) fori,jeN,i #j},

where s;;(x) = max{x($) — v(S) |j & § > i} is the maximal surplus from
i over j at x.) Indeed, Maschler, Peleg, and Shapley (1972) showed that the
prekernel of a concave game is a singleton consisting of the prenucleolus
only. If (N, C, g) is any CSP with a concave cost function and n > 2, take
different agents i and j of N, take S = {i, j}, and consider the reduced
CSP (S, Cs ., g5), where x = (N, C, q). The vector x is a member of the
prekernel of v< 4, if and only if x is the standard solution for v = p5:Cs.»
for i, j € N with i # j. (Recall that & is called standard on £, if for every
game (N,v) € £ with n = 2 x; = (v(N) + v({i}) — v({j})) /2 is true, where
x = o(v)and N = {i, j}.) To show that our continuation & is standard, let
(N, C, q) be a 2-agent CSP in IT'*(U) (i.e. [U| = 2 is assumed implicitly;
otherwise the proof is already finished). Without loss of generality let
q; < q;. Define g, = g, for k € N and

C(y), y <C(q)

D)=\ eg) + (v -a)- (Cla(N)) - C(a))/an v Cla),

where 0/0 =1 (if g; = 0) in this context. Since C is concave, C(g;) +
C(g;) = C(q(N)), thus C is concave. Therefore (N, C, g) € I'*(U). More-
over, v + B =0v"7 where B, =0 and B, = C(q) — C(qg). By ET
o;(N, C, §) coincides with o;i(N, C, 7). COV and PO complete the proof of
standardness. Q.E.D.

Note that this characterization is in fact a characterization of the
prekernel which can be generalized to the set of concave cost games with
player sets contained in U.

Although the analogue of Lemma 1.6 does not hold (i.e., it is not true
that every concave cost game coincides, up to strategical equivalence, with
the induced game of some CSP with a concave cost function (see Section
4)), COV cannot be dropped, because average cost pricing satisfies ET and
SCONS but it does not coincide with the nucleolus rule if U contains
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different agents. Sudhdlter (1993) presents examples which show that ET is
independent unless U is a singleton. The Shapley rule satisfies ET and
COV but SCONS fails for |U| > 3.

It should be remarked that it is not known whether CONS is strong
enough to replace SCONS in Theorem 3.3. Nevertheless, the present
approach shows that within this restricted family of cost sharing problems
strong consistency (which seems to be more intuitive than CONS) can
easily be satisfied. The general case requires CONS. SCONS is not
satisfied even for average cost pricing.

THEOREM 3.4. If U is infinite, then the nucleolus rule is the unique cost
sharing rule on T(U) satisfying ET, COV, and CONS.

Proof. 1t is sufficient to show uniqueness. Let o be a CSR with the
desired properties and let & be its continuation. Sobolev (1975) showed
that & has to coincide with 7, if & satisfies COV, AN, and CONS. Orshan
(1993) showed that AN can be replaced by ET. In view of Corollary 1.8 it
suffices to show that & satisfies CONS. A further modification of the proof
of Lemma 1.6 (which is similar to that of Theorem 2.5) shows that & is
consistent. Indeed, if (N,v) € £(U) and S is a nonvoid coalition in N,
then there is a demand profile ¢ and a cost function C such that
v9?=p+ B and C;, (x = 0(N,C,¢q)) is a cost function. COV com-
pletes the proof. Q.E.D.

There are examples which show the logical independence of the proper-
ties as well as the necessity of the infinity assumption (see Sudholter,
1993).

4. THE ANTINUCLEOLUS RULE

In this section we present an axiomatization of the antinucleolus by ET,
COV, and dual consistency. Moreover, it is shown that the antinucleolus
rule is in the core, if the cost function is concave.

DerINITION 4.1. Let ¢ be a CSR on I' c I'(U) and & be a solution
concept on & c Z(U).

(i) For every game (N, v), every nonvoid coalition o € N, and every
x € R" the dual reduced game (S,*vg ,) of v (at x with respect to S) is
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defined by

0, if T=0
*vg (T) = {V(N) = x(S), if T=SforTcN
max{v(T UR) —x(R) |R € §°}, otherwise.

(i) & is dual consistent (satisfies DCONS), if *vg, ., €% and
(8, *vg ,,) = 0(N,v)g forv e gand J# S CN.

(iii) For every CSP (N, C, g), every nonvoid coalition S c N, and
every x € R" the dual reduced function C¥ .: R, — R is defined by

0, if y=0
Cé (y) ={C(q(N)) —x(5), if y >y
max{C(y + q(R)) —x(R) IRc S}, ifo<y<y,

where y = max{q(7) | T ¢ S}. (Note that the dual reduced function need
not be a cost function, since C¢ (y) might be larger than C§ (e + g(5)).)

(iv) o is dual consistent (satisfies DCONS), if for (N,C,q) €T,
@+ 8 cN,and x = o(N, C, q) the following condition is satisfied:
If C§ , is nondecreasing, then (S,C§ ., q5) € I' and x5 = o(S,C§ ., q5).

Note that nondecreasing in (iv) only means C¥ (y) < C(g(N)) — x(S°).
The main difference between CONS and DCONS is that the “optimistic”
view is replaced by the ‘“pessimistic” view of coalition 7 C §. Every
coalition R of members of S¢ (who agreed upon the proposal given by o)
has to be considered as possible coalition of partners of 7. Therefore the
total cost generated by the aggregate demand of the union T"U R can be
“reduced” by the fee which will be paid by R in the “worst” case.

Note that DCONS for induced games implies DCONS for the cost
sharing problems. The proof of the next theorem is similar to that of
Theorem 3.4. Mainly games have to be replaced by their “duals”. Recall
that if (N, v) is a game, then (N, v*), defined by v*(S) = v(N) — v(S°) for
S C N is its dual.

THEOREM 4.2. If U is infinite, then the antinucleolus rule is the unique
cost sharing rule on T'(U) satisfying ET, COV, and DCONS.

Proof. By duality (the antiprenucleolus coincides with the prenucleolus
of the dual game) it is sufficient to show uniqueness. Therefore we only
need to show that & satisfies DCONS. The proof of DCONS is very similar
to the proof of CONS in Theorem 3.4. Therefore we skip the details and
apply Sobolev’s and Orshan’s results. Q.E.D.
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In order to show the independence of the properties again Sudhdlter
(1993) is referred to.

To provide the second result of this section the definition of the least
core of a cost game (N, ¢) is recalled. The least core of (N, v) is the set

2€(v) ={xeX(v) 1x(S) —v(S) <max{y(T) —v(T) |T#TgN},
J+SgNforyeX(v)}
of preimputations which minimize the maximal nontrivial excess. As a
matter of fact the nucleolus 7(v) is a member of the least core.
LEMMA 4.3. If C is a concave cost function and (N, C, q) is a CSP, then
the least core of the dual of its induced game is contained in its core, i.e.,

Z&(v*) c #(v), where v =0p19,

Proof. Let x be any preimputation of v which does not belong to the
core of v. Then there is a coalition § in N with positive excess; i.e,
v(S) — x(S) < 0. Define 2 =2(x) to be the set of maximal excess coali-
tions (i.e. 2 ={S c N | v(S) —x(S) < v(T) — x(T) for T  N}). The set
2 possesses the ‘“near-ring property” in the sense of Maschler, Peleg,
and Shapley (1972); thus § = U .., S €. Conversely, let .# = {S C N |
v(S) —x(S) = v(T) — x(T) for T < N} denote the set of minimal excess
coalitions. For i € ¢ we easily obtain

x; <v(SU{i}) —ov(S). (1)

Claim. For S €.# either S° € S or § C §¢ is true. ~
If g(S) < g(S), then assume S U S # N and take i € (§ U S)°. The fact

x; <v(SU{i}) —o(S) <u(SU{i}) —u(S),
which is true by concavity of C and (1), implies
(v(Su{i}) —x(SU{i})) - (v(S) —x(5)) >0,
which establishes a contradiction to the fact S €.#. Therefore S¢ c S in
this case.

If g(S) > ¢(8), then take such S that || is minimal. If § N S # &, take
i €S NS and observe that

v(S) —v(S\{i}) <v(S) —v(S\{i}) (byconcavity of C)
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is valid; hence

(v(8) =x(8)) = (v(S\{i}) —x(S\{i}))
< (0(8) —x(8)) — (o(S\{}) —x(S\ {i}))

<0.

Thus equality holds (remember that S €.#, S € 2). Minimality of S and
the first part of this proof show that g(S\ {i}) < ¢(5) and S¢cS. If
S NS =, then S € §¢. Now the proof can be finished using Kohlberg’s
(1971) characterization of the nucleolus by balanced collections of coali-
tions which can easily be weakened for the least core (see, e.g., Sudhdlter,
1997). Indeed, if y is a preimputation of v, then y belongs to the least
core of v*, if and only if 2(y) is weakly balanced. Weakly balanced means
that the barycenter of the grand coalition is in the convex hull of the
barycenters of the maximal-excess coalitions; i.e., there are coefficients
vs = 0 such that Xg_ 5 v+ 15 = 1. By our claim x cannot be a member
of the least core of v*. Q.E.D.

This last lemma shows that the set £(I'*(U)) of games strategically
equivalent to the induced game of some CSP with concave cost function is
a “small” subset of the set of all concave games with player set contained
in U. (Note that concavity is closed under strategical equivalence; i.e., the
game is concave, iff every game, which is strategically equivalent to the
initial game, is concave.) This can be seen with the help of examples.
There is a concave game such that the least core of its dual does not even
intersect the core of the game (see Sudhdlter, 1997, Example 3.2.3).

COROLLARY 4.4. The antinucleolus of a CSP (N, C, q) with concave C is
in the core of its induced cost game v

5. COINCIDENCE OF COST SHARING RULES

This section serves to classify the set of cost functions such that the
mentioned cost sharing rules, namely the Shapley rule ¢ and both nucleo-
lus rules v and v*, coincide with average cost pricing = for every demand
profile. We shall say that a cost function C satisfies the coincidence
property (CP) at « for some a > 0, if

2(N,C,q) = ¢(N,C,q) (1)

holds true for every agent set N with two agents and every demand profile
g € RY; such that the aggregate demand coincides with «, i.e. g(N) = «.
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FIG. 2. C with the CP at «a.

THEOREM 5.1. (i) A cost function satisfies CP at a, if and only if
a (C(y) —C(a—-y)) =2y —a)-C(a) forO<y<a. (2)

(i) If C satisfies CP at « and (N, C, q) is a CSP with aggregate demand
o, then

v(N,C.q) = v*(N,C,q) = ¢(N,C,q) =2(N,C,q).

The typical shape of a cost function satisfying CP is sketched in Fig. 2.
Note that in assertion (ii) of this theorem n = 2 is not assumed. The
nucleolus rule, the antinucleolus rule, average cost pricing, and the Shap-
ley rule coincide for any cost sharing problem with a cost function
satisfying CP at the aggregate demand of the agents.

Proof of Theorem 5.1. Let C be any cost function. For o = 0 both
assertions are trivially satisfied, thus « > 0 is assumed from now on. Take
any y with 0 <y < « and define N = {1,2}, g = (y, @ — y). Standardness
of the Shapley value ¢ shows that

¢1(N,C,q) = (C(q1) + C(q(N)) —C(q,))/2
= (C(y) + C(a) —C(a—y))/2
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Average cost pricing yields

2(N.C.q) = (91/9(N)) - C(a) =y/a-C(a).
This shows that ¢ and < coincide on (N, C, q), if and only if

(C(y) + C(a) = C(a~y))/2=y/a C(a),

which is equivalent to (2). For y € {«, 0} equality (2) is trivially satisfied.

In order to prove (ii) let (N, C, g) be any CSP such that g(N) = « and
C satisfies CP at «. Let x € R" abbreviate =(N,C, q); i.e., x; = (¢q,/a) -
C(a) for i € N. The explicit formula for the Shapley value (see Shapley,
1953) yields

#(N,C,q)
s—1!(n—s)!
- SzN( PO q()) - cats i)
_ ¥ (s_l)!,;l(n_S)!
ieSCN )
L (Ca(8)) = Ca(S\ (i) + Ca(5 Y (i) = C(a(5)))
2
(by taking “‘complements”)
_ v (s — 1);-'(11 —5)!
ieSCN )
L (24(8) —a) + ff]fsc i) RPN
s—1D!'(n—3s)! g
R0
= (g;/) - C(a)
. Zn: (s - 1)!'|(n —9)! (” N 11) (by “counting subsets”)
s=1 n: 5=

i

For the nucleolus rules » and v* Kohlberg’s approach is used. At x the
excess x(S) — v(S) coincides with that of S¢, where v =<7 (by (2)).
Therefore the balancedness criteria show that both nucleolus rules coin-
cide with average cost pricing. Q.E.D.



166 PETER SUDHOLTER

COROLLARY 5.2. A cost function satisfying CP at « is continuous, if it is
restricted to {y 1 0 <y < a}.

Proof.  This assertion can be shown with the help of (2) and monotonic-
ity of a cost function C. If C satisfies CP at « then the slope of C is
bounded from below by 0 by definition. Equality (2) shows that the slope is
bounded from above by 2 - C(«), whence C is restricted to the interval
[0, al;ie, (C(y) — C(2))/(y —2z) <2-C(a) for 0 <z <y < a. Indeed,

(C(y) ~€(2)  (Cla—z) —C(a—y))

y-z (a=2z) = (a-y)
_ (C(y) —C(a—y)) —(C(2) — C(a—2))
y—z
=2-C(a) (by(2))
and both summands are nonnegative. Q.E.D.

For a > 0 the proposed cost sharing rules (Shapley rule ¢, both nucleo-
lus rules v and v*, and average cost pricing <) can be characterized on
the set I" of cost sharing problems with cost functions satisfying CP at «,
where « is the aggregate demand. Indeed, Moulin and Shenker (1994)
showed that average cost pricing is the unique CSR satisfying Pareto
optimality, separable costs, and monotonicity on sets of cost sharing
problems (N, C, ¢), which contain (N, C?, g) and (N, C? A C, q), where C?
is the “constant returns” cost function given by C(y) - g(N) =y - C(g(N)).
Since T possesses this property by (2), in view of Theorem 5.1 the same
result holds true for ¢, v, and »* on I'. Moreover, if |U| > 2, the logical
independence of PO, SC, and MON can be verified by considering
the following cost sharing rules. The CSR, which assigns z/(N,C, q) +
(C(g,) — C4(q,)), to agent i for every CSP (N, C, ) of T satisfies SC and
MON but is not Pareto optimal. The “equal split” solutions shows the
independence of SC. Finally, the CSR which assigns

Cla) + (1/m - [Cla(N)) = ¥ C(q))]

JEN

to agent i for every CSP (N, C, g) of T satisfies PO and SC but is not
monotonic.

A cost function C possesses the global coincidence property (GCP), if C
satisfies CP at every a« € R_ ,. The set of cost functions satisfying GCP
can be characterized. | am indebted to A. Sobolev who found the elemen-
tary proof of the following
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THEOREM 5.3. A cost function C satisfies GCP, if and only if C is a
parabola or if it is linear; i.e., there are nonnegative real numbers A, B such
that

C(y)=A-y*+B-y* fory>0. (3)

Proof.  Every function C: R, — R given by (3) is a cost function. The
proof that C satisfies (2) for every @ and 0 <y < « is straightforward and
skipped. For the converse let C be a cost function satisfying GCP. By (2)
we have

z:(C(z+x) —C(z—x)) =x-C(2z2) (4)

for 0 < z < x, which can be seen by applying (2)to o = 2z and y =z + x.
Define

A=A, =1/2n, z=k-A,, x=m-A,, y,=C(p-A,)
for n, p, k,m € N with m < k. By (4) we come up with
k*(Yism = Yi—m) =M Yo (5
The following recursive formulae
Yok :kz'()’3 — Y2 = Y1) T k(2y, +y1 —ys) (6)
and
YZk—lz(k_l)z'(Y3_Y2_Y1) +(k=1) -y, +x (7
are obviously valid for k = 1, 2. By induction on k it can be shown that (6),
(7) are generally true. Indeed, for k£ > 3 first of all the application of (5)
with m = 1 shows (6). Second, (5) applied to m = k — 1 shows (7). The
necessary computations are straightforward and skipped.
With n =2y, +y, —y;and p =y, —y, —y, we obtain
C(1)=C(2n-A) =y,,=n’-p+n-n,
C(2) =C(4n-A) =y,,=4n*-p+2n-mn (bothby (6))
thus
np = (C(2) — 2+ C(1)) /2
and

= (4-C(1) - C(2)) /2,
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The observation
C(k/n) = C(2k/2n) = C(2k-A) =k*-p+k-n (by(6))
= (k/n)*-n?-p+ (k/n)-n-p
= ((C(2) —2:C(1))/2) - (k/n)’
+((4-C(1) = C(2))/2) - (k/n)

for k,n € N shows that C(y) = Ay? + By for any rational number y > 0,
where

A=(C(2) —2-C(1)/2, B=(4-C(1) — C(2))/2.

Since C is a cost function (nondecreasing and nonnegative), 4 and B are
nonnegative. Corollary 5.2, i.e. continuity of C, shows that C possesses the
desired properties. Q.E.D.

Remark 5.4. If (N,C,q) is a cost sharing problem for which average
cost pricing «, the nucleolus rule v, the anti-nucleolus rule v*, and the
Shapley rule ¢ coincide, then the Shapley value g, the prenucleolus v, and
the antinucleolus 7* coincide when applied to the induced game v< ¢ (by
definition). Conversely, if (N, v) is a game satisfying o(N,v) = 2(N,v) =
7*(N,v), then it can be shown that there is a cost sharing problem
(N, C, g) such that its induced game is strategically equivalent to (N, v)
and average cost pricing coincides with the Shapley rule (hence with the
nucleolus rules) when applied to (N, C, g). Indeed, we can assume that
o(N,v) = v(N,v) = v*(N,v) = (0,...,0) by COV. Let q and C be cho-
sen as in the proof of Lemma 1.6. This lemma and the definition of =
directly show that (N, C, q) possesses the desired properties. In view of
these facts a possible characterization of all cost sharing problems, for
which average cost pricing, the nucleolus rules, and the Shapley rule
coincide, requests and implies a characterization of all TU games, for
which the Shapley value, the prenucleolus, and the antinucleolus coincide.
Of course, this author cannot supply any characterization of the foregoing

type.

6. SUMMARIZING DIAGRAMS

Table | shows the properties of the cost sharing rules discussed in this
paper. A “—" means that the corresponding CSR does not satisfy this
property, at least on the set of all cost sharing problems with the agent set
contained in some universe U of more than two members. The symbols



SOLUTIONS FOR COST SHARING PROBLEMS

TABLE |

Properties
2 ) v v*
PO + + + +
RAN + + + +
SC + + + +
ET + + + +
NP + + + +
AN + + + +

‘‘common properties”

@ @ v v*
MON + - - -
ADD + + - —
MMADD + + - -
CON + + - -
CONS + - + -
SCONS - - - -
DCONS + - - +
cov - + + +
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“+and “ @’ mean that the corresponding property is satisfied or belongs
to the axiomatization respectively.

With a finite subset N of U such that n» > 3 and a > 0 the following
three tables summarize the presented axiomatizations on Ty, T'(U), I'*(U),
and on the set T" of cost sharing problems (N, C, ¢) with cost functions C

TABLE I
On Iy

On I'y

©

N
-
N
N

N

£
o

ET

NP

ADD
MMADD
cov

SC

PO

MON

I+ + & + & & &
I+ + & & + & &

+ 4+ + +

G D D |
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TABLE 111
on I'(U)
14

- v* ]
OnT(U) 33.3 34 42 2.5
ET [$7] [$2] [$7] @
CON - - - ®
CONS + ® - -
SCONS ® - - -
DCONS - - ® -
cov (7] @ [$7] @

on I'*(U) U infinite

satisfying the coincidence property at «, where « = g(N) is the aggregate
demand of the agents. The abbreviation “M-S” indicates that this axioma-
tization is due to Moulin and Shenker (1994). The numbers refer to the
theorems or to the sections where these results are proved. Table Il treats
cost sharing rules on cost sharing problems I, with a fixed agent set.

Although Theorems 2.1 and 2.2 also hold for I'(U), Table Il neither
mentions this fact nor repeats the characterization of average cost pricing.
These axiomatizations are strongly based on *varying sets of agents,” i.e.
on consistency principles (see Sections 2—-4).

Table 1V presents the common axiomatizations on the set I' of cost
sharing problems with cost function satisfying the coincidence property at
the aggregate demand of the agents.
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TABLE IV
Coincidence
@ v v* ”
onrl Section 5 M-S
PO ® [ @ ®

SC
MON @ 2 2] @

®
@
@
®
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