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The positive prekernel, a solution of cooperative transferable utility games, is introduced.
We show that this solution inherits many properties of the prekernel and of the core,
which are both sub-solutions. It coincides with its individually rational variant, the
positive kernel, when applied to any zero-monotonic game. The positive (pre)kernel is a
sub-solution of the reactive (pre)bargaining set. We prove that the positive prekernel on
the set of games with players belonging to a universe of at least three possible members
can be axiomatized by non-emptiness, anonymity, reasonableness, the weak reduced
game property, the converse reduced game property, and a weak version of unanimity
for two-person games.

1. Introduction

The positive prekernel is a set-valued solution of cooperative transferable utility

games. Its definition is strongly related to the definition of the prekernel. A preim-

putation belongs to the prekernel of a game, if for distinct players i and j the

maximum surplus of i over j coincides with that of j over i. The only difference

that occurs in the definition of the positive prekernel is that the maximum surplus

is replaced by its positive part. Therefore, the positive prekernel is a supersolution

of both, the prekernel and the core, thus it is a non-empty supersolution of the core.

The core is regarded as one of the most intuitive solution concepts for cooper-

ative games. The core elements of a game may be considered as outcomes which

should not be rejected. If, on the contrary, it is recommended to reject any proposal

outside the core, then, from this normative point of view, the solution should not

be applied to any game with an empty core. It is the aim of the present paper

to show that the positive prekernel is a non-empty extension of the core which is

intuitively related to the core. In literature, “core-like” solutions like the prenu-

cleolus [see Sobolev (1975)] and the prekernel [see Peleg (1986)] are axiomatized.
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A further solution, the intersection of the kernel and the core, has an interesting

geometric characterisation [see Maschler et al. (1979)] and an axiomatization [see

Peleg (1989)]. Therefore, it seems to be rather natural to consider a non-empty

extension of the core which contains both, the core and the prekernel. Moreover, its

characterisation by plausible properties (see Sec. 7) indicates the intuitive relation

between the positive prekernel and the core.

The positive prekernel has all characterising properties of the prekernel except

the equal treatment property. It especially satisfies the converse reduced game prop-

erty and the null player property. That may be regarded as an advantage over the

prebargaining sets mentioned below which do not have these properties. Moreover,

it is a sub-solution of the prebargaining set and even of the reactive prebargaining

set in the sense of Granot and Maschler (1997) (see Sec. 5). In the special case of

the market game discussed in Maschler (1976) the positive kernel coincides with

the bargaining set. Orshana (1994) showed that every non-symmetric prekernel is

a sub-solution of the positive prekernel.

Our main results (see Sec. 7) show that the positive prekernel has axiomatiza-

tions that are similar to an axiomatization of the core of market games [see Peleg

(1989)]. The positive prekernel is the only known solution that is non-empty for

every game, contains the core, and has an intuitive axiomatization.

The paper is organised as follows: In Sec. 2, the notation and some definitions

are presented.

The positive prekernel of a game is not necessarily individually rational. How-

ever, in Sec. 3 it turns out that it is reasonable. A preimputation is reasonable, if

it assigns to every player at least her minimal and at most her maximal marginal

contribution. The first condition of this property (called reasonableness from be-

low), which is weaker than individual rationality, implies the null player property.

Moreover, it is shown that the positive kernel, the individually rational modification

which resembles the relation between the kernel and the prekernel, coincides with

the positive prekernel on the class of zero-monotonic games.

In Sec. 4 it is shown that a preimputation belongs to the positive prekernel, if

and only if there is a preimputation of the prekernel which yields the same positive

part of the excess of every coalition. Like the prekernel, the positive prekernel of a

game is a finite union of compact convex polytopes. As a correspondence on games

with fixed set of players, it is upper hemi continuous and need not be lower hemi

continuous.

In Sec. 5 it is shown that the positive prekernel coincides with the reactive

bargaining set in the sense of Granot and Maschler (1997) for both the seven-

person projective game and a five-person market game. Moreover, an example of a

game with a non-empty core is presented, in which the positive prekernel is strictly

aHe did not explicitly mention the positive prekernel and, as far as we know, this solution was
not mentioned in literature up to now. However, M. Maschler introduced the expression “positive
kernel” in discussions.
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placed between the reactive prebargaining set and the union of the core and the

prekernel. In this example, the reactive prebargaining set is a proper subset of the

prebargaining set.

In Sec. 6 it is proved that the positive prekernel satisfies the reduced game

property and its converse.

Section 7 presents two characterisations of the positive prekernel on the set of

games with player set contained in some universe of at least three members. This

solution concept is uniquely determined by non-emptiness, anonymity, reasonable-

ness, the weak reduced game property, the converse reduced game property, and

weak unanimity for two-person games (a solution concept satisfies this last property,

if it contains the set of all imputations for every two-person game). If covariance

under strategic equivalence is added, then we can replace reasonableness by some

weaker property which resembles individual rationality in an obvious way.

In Sec. 8 the logical independence of the axioms of the first characterisation is

proved.

2. Notation and Definitions

A cooperative game with transferable utility, a game, is a pair (N, v), where N is a

finite non-void set and

v : 2N → R, v(∅) = 0

is a mapping. Here 2N = {S ⊆ N} is the set of coalitions of (N, v).

If (N, v) is a game, then N is the grand coalition or the set of players and v is

called coalitional function of (N, v).

The set of feasible payoff vectors of (N, v) is denoted by

X(N, v) = {x ∈ RN |x(N) ≤ v(N)} ,

whereas

I∗(N, v) = {x ∈ RN |x(N) = v(N)}

is the set of preimputations of (N, v) (Pareto optimal feasible payoffs of (N, v)) and

I(N, v) = {x ∈ I∗(N, v)|xk ≥ v({k}) ∀ k ∈ N}

is the set of imputations (individually rational preimputations) of (N, v). Here

x(S) = Σi∈Sxi (x(∅) = 0)

for each x ∈ RN and S ⊆ N . Additionally, let xS denote the restriction of x to S,

i.e.

xS = (xi)i∈S ∈ RS .

For disjoint coalitions S, T ⊆ N and x ∈ RN let (xS , xT ) = xS∪T .

A solution σ on a set Γ of games is a mapping that associates with every game

(N, v) ∈ Γ a set σ(N, v) ⊆ X(N, v).
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If Γ̄ is a subset of Γ, then the canonical restriction of a solution σ on Γ is a

solution on Γ̄. We say that σ is a solution on Γ̄, too. If Γ is not specified, then σ is

a solution on every set of games.

More notation will be needed. Let (N, v) be a game and x ∈ RN . The excess of

a coalition S ⊆ N at x is the real number

e(S, x, v) = v(S)− x(S) .

For distinct players i, j ∈ N , let Tij = {S ⊆ N |j 6∈ S 3 i} be the set of coalitions

containing i and not containing j and let

sij(x, v) = max{e(S, x, v)|S ∈ Tij}

denote the maximum surplus of i over j at x. The core of (N, v) is the set

C(N, v) = {x ∈ X(N, v)|e(S, x, v) ≤ 0 ∀ S ⊆ N}

of feasible payoff vectors which generate non-positive excesses. The prekernel of

(N, v) is the set

K∗(N, v) = {x ∈ I∗(N, v)|sij(x, v) ≤ sji(x, v) ∀i, j ∈ N with i 6= j}

of preimputations that balance the maximum surpluses of the pairs of players.

Now we are able to present the definition of the positive (pre)kernel.

Definition 2.1. The positive prekernel of a game (N, v) is the set

K∗+(N, v) = {x ∈ I∗(N, v)|sij(x, v) ≤ (sji(x, v))+ ∀ i, j ∈ N with i 6= j} ,

where r+ = max{r, 0} denotes the positive part of a real number r.

Note that the positive prekernel of a game contains both, the core and the prekernel

of the game, by definition. In Sec. 5 it is shown that the inclusion may be proper.

Some intuitive and well-known properties of a solution σ on a set Γ of games

are as follows:

(1) σ satisfies anonymity (AN), if for each (N, v) ∈ Γ and each bijective mapping

τ : N → N ′ with (N ′, τv) ∈ Γ

σ(N ′, τv) = τ(σ(N, v))

holds (where (τv)(T ) = v(τ−1(T )), τj(x) = xτ−1j(x ∈ RN , j ∈ N ′, T ⊆ N ′)).
In this case (N, v) and (N ′, τv) are isomorphic games.

(2) σ satisfies covariance under strategic equivalence (COV), if for (N, v), (N,w) ∈
Γ with w = αv + β for some α > 0, β ∈ RN

σ(N,w) = ασ(N, v) + β

holds. The games v and w are called strategically equivalent.

(3) σ satisfies non-emptiness (NE), if σ(N, v) 6= ∅ for (N, v) ∈ Γ.

(4) σ satisfies Pareto optimality (PO), if σ(N, v) ⊆ I∗(N, v) for (N, v) ∈ Γ.
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Remark 2.1.

(1) It is well-known [see e.g. Davis and Maschler (1965) and Peleg (1986)] that

both the prekernel as well as the core (restricted, of course, to games with a

non-empty core) satisfy all the above properties.

(2) The positive prekernel satisfies anonymity, covariance, non-emptiness and

Pareto optimality. Indeed, AN, PO and COV are immediate consequences of

the definition. The NE of the prekernel implies the NE of the positive prekernel.

(3) For every two-person game (N, v), the positive prekernel is either the prekernel,

i.e. consists of the standard solution xv (defined by

xvi = (v({i})− v(N \ {i}) + v(N))/2 ∀i ∈ N)

only, or it coincides with the core of the game.

3. Individual Rationality and the Positive Kernel

In the definition of the positive prekernel, individual rationality is not required.

However, it is possible to relax individual rationality adequately. Indeed, a solution

σ on a set Γ of games is said to satisfy reasonableness from below (REASB), if

xi ≥ min{v(S ∪ {i})− v(S)|S ⊆ N \ {i}} = dmin
i (N, v) (3.1)

for i ∈ N, (N, v) ∈ Γ, and x ∈ σ(N, v). We say that σ satisfies reasonableness

(on both sides) (REAS), if in addition to Eq. (3.1), it satisfies reasonableness from

above, i.e. if

xi ≤ max{v(S ∪ {i})− v(S)|S ⊆ N \ {i}} = dmax
i (N, v) (3.2)

holds. A payoff vector that satisfies (3.1) and (3.2) is also called reasonable. With

the help of assertion (3.2), Milnor (1952) defined his notion of reasonableness.

Lemma 3.1. The positive prekernel satisfies REAS.

Proof. Let x ∈ I∗(N, v) be any preimputation. If xk < dmin
k (N, v) for some k ∈ N,

then e({k}, x, v) > 0 and e(S, x, v) < e(S ∪{k}, x, v) for any coalition S ⊆ N \ {k}.
Therefore, player k is a member of any coalition T of maximal excess (which is

positive). Moreover, by Pareto optimality, the coalition T is a proper sub-coalition

of N and, hence, skl(x, v) = e(T, x, v) > (slk(x, v))+ for l ∈ N \ {k}. Thus the

positive prekernel satisfies REASB.

In order to show the remaining property, we now assume that there is a player

l ∈ N with xl > dmax
l (N, v). Then e(N \{l}, x, v) > 0, because x is a feasible payoff

vector, and e(S, x, v) > e(S∪{l}, x, v) for S ⊆ N \{l}. Thus skl(x, v) > (slk(x, v))+

for any member k of a coalition of maximal excess.

Analogously to the prekernel, the positive prekernel has an individually rational

variant. We recall that the kernel of a game (N, v) is the set

K(N, v) = {x ∈ I(N, v)|sij(x, v) ≤ sji(x, v) or xj = v({j}) ∀ i, j ∈ N, i 6= j} .
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Analogously, we define the positive kernel of a game (N, v) to be the set

K+(N, v)={x ∈ I(N, v)|sij(x, v) ≤ (sji(x, v))+ or xj =v({j}) ∀ i, j ∈ N, i 6= j} .

It is well-known [see Maschler et al. (1979)] that the prekernel and the kernel

coincide, whenever the game is zero-monotonic. Recall that a game (N, v) is called

zero-monotonic, if the minimal marginal contribution of each player i ∈ N is at-

tained by the single player coalition, i.e. if dmin
i (N, v) = v({i}) ∀ i ∈ N. Note that a

superadditive game (N, v), i.e. a game satisfying v(S ∪ T ) ≤ v(S) + v(T ) whenever

the coalitions S and T are disjoint, is always zero-monotonic.

Remark 3.1. If (N, v) is a zero-monotonic game, then its positive prekernel co-

incides with its positive kernel.

Proof. By REASB, K∗+(N, v) ⊆ K+(N, v). To show the other inclusion, let x ∈
K+(N, v). If sij(x, v) > (sji(x, v))+, then xj = v({j}). Let S ⊆ N be a coalition of

maximal excess. Then i must be a member of S, because otherwise

sji(x, v) ≥ e(S ∪ {j}, x, v) ≥ e(S, x, v) ≥ sij(x, v) .

Let |S| be of maximal size. Then S 6= N by Pareto optimality of x. Moreover,

xk > dmin
k (N, v) = v({k}) for every k ∈ N \ S by maximality of S. Take k ∈ N \ S

and a coalition T ∈ Tki attaining ski(x, v). The observation

sji(x, v) ≥ e(T ∪ {j}, x, v) ≥ e(T, x, v) ≥ sik(x, v) ≥ sij(x, v)

establishes the required contradiction.

4. Basic Properties

In this section, we prove that every preimputation of the positive prekernel of a game

can be “supported” (in the sense of Theorem 4.1) by some member of the prekernel

of the game. Moreover, we show that the positive prekernel, when restricted to the

set of games with a fixed player set, is upper hemi continuous.

Theorem 4.1. If (N, v) is a game, then

K∗+(N, v)={y ∈ RN |∃x ∈ K∗(N, v) such that (e(S, x, v))+ =(e(S, y, v))+ ∀S⊆N}.

Proof.

(1) ⊇: This inclusion is a direct consequence of the corresponding definitions.

(2) ⊆: Let y ∈ K∗+(N, v) and define

X = {x ∈ I∗(N, v)|(e(S, x, v))+ = (e(S, y, v))+ ∀S ⊆ N} .

With this definition we have x ∈ X, if and only if the following conditions

hold for any coalition S ⊆ N : (a) If e(S, y, v) > 0, then x(S) = y(S). (b) If

e(S, y, v) ≤ 0, then x(S) ≥ v(S). Therefore X is a non-empty compact convex
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polyhedron. It remains to show that X intersects K∗(N, v). Let N (N, v;X)

denote the nucleolus of (N, v) with respect to (w.r.t.) X, i.e.

N (N, v;X) = {x ∈ X|θ(e(S, x, v)S⊆N ) ≤lex θ(e(S, z, v)S⊆N ) ∀ z ∈ X} ,

where θ(z) ∈ R2|N| is the vector whose components are those of z ∈ R2N

arranged in non-increasing order. The setX is non-empty, compact, and convex,

thus N (N, v;X) consists of a unique member ν by Schmeidler (1969). In order

to show that ν ∈ K∗(N, v) let i, j ∈ N, i 6= j. If sij(ν, v) > sji(ν, v), then

sij(ν, v) ≤ 0 by the definition of X. With 0 < ε ≤ (sij(ν, v) − sji(ν, v))/2, we

define νε ∈ RN by

νεk =


νi + ε, if k = i

νj − ε, if k = j

νk, otherwise

and obtain νε ∈ X. Moreover, the fact θ(e(S, νε, v)S⊆N ) <lex θ(e(S, ν, v)S⊆N )

shows the required contradiction.

Remark 4.1. Let (N, v) be a game and Γ = {(N,u)|(N,u) is a game} be the set

of games with player set N.

(1) Then K∗+(N, v) is a finite union of convex polytopes.

(2) The positive prekernel on the set Γ is upper hemi continuous.

(3) If |N | ≥ 5, then the positive prekernel on Γ is not lower hemi continuous.

Proof.

ad (1): There is only a finite number of sets

Xx =

y ∈ I∗(N, v)

∣∣∣∣∣∣∣∀S, T ⊆ N :

(e(S, x, v) ≥ e(T, x, v) ≥ 0⇒
e(S, y, v) ≥ e(T, y, v) ≥ 0) and

(e(S, x, v) ≤ 0⇒ e(S, y, v) ≤ 0)

 ,

where x ∈ I∗(N, v). If x ∈ K∗+(N, v) then Xx is a polytope containing x and

contained in K∗+(N, v).

ad (2): For any coalition S ⊆ N the mapping e(S, ·, ·) : RN ×Γ→ R, (x, (N,u)) 7→
e(S, x, u), is continuous. For distinct players k, l ∈ N , the mapping skl(·, ·):
RN × Γ → R is the maximum of finitely many continuous mappings, thus it is

continuous. Continuity remains valid, if skl(·, ·) is replaced by its positive part.

ad (3): A careful inspection of Example 1 of Stearns (1968) shows this assertion.

5. Inclusion in the Bargaining Set

In this section, examples are presented which demonstrate some aspects concerning

the relations between the “classical” bargaining set in the sense of Aumann and

Maschler (1964), the reactive bargaining set [recently discussed by Granot and
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Maschler (1997)], and the positive prekernel. In order to recall the definitions of

the mentioned solution concepts, let (N, v) be a game and k, l ∈ N be distinct

players. An objection of k against l at a payoff vector x is a pair (P, y) satisfying

P ∈ Tkl, y ∈ RP , y(P ) = v(P ), and y � xP (i.e. yi > xi ∀ i ∈ P ) .

A counter objection to the objection (P, y) of k against l is a pair (Q, z) satisfying

Q ∈ Tlk, z ∈ RQ, z(Q) = v(Q), z ≥ xQ, and zP∩Q ≥ yP∩Q .

The prebargaining set M∗(N, v) is the set of all preimputations such that any

objection can be countered (i.e., no player has a justified objection against any other

player). The reactive prebargaining set M∗r(N, v) is the set of all preimputations

with the following property: For every pair (k, l) of distinct players, there is a

coalition Q ∈ Tlk such that any objection of k against l can be countered by using

the coalition Q (i.e. player k does not have a justified objection against l in the

sense of the reactive bargaining set). Thus, the reactive prebargaining set of a game

is contained in the prebargaining set. Moreover, the bargaining set M(N, v) and

the reactive bargaining set Mr(N, v) arise from the corresponding sets M∗(N, v)

and M∗r(N, v) by intersecting these sets with the set I(N, v) of imputations.

Remark 5.1. The positive (pre)kernel is a sub-solutionb of the reactive

(pre)bargaining set.

Proof. Let (N, v) be a game, x ∈ K∗+(N, v) and k, l be distinct players in N. Then

player k has an objection against player l at x, if and only if skl(x, v) > 0. Such an

objection can be countered by any coalition attaining slk(x, v), because skl(x, v) =

slk(x, v). The same argument shows that K+(N, v) is contained in Mr(N, v).

We start with two examples discussed in Secs. 3 and 4 of Granot and Maschler

(1997).

Example 5.1. For the seven-person projective game ({1, . . . , 7}, v), which is de-

fined by

v(S) =

{
1, if S ∈ T
0, otherwise

,

where T is the set of all coalitions that contain one of the following three-person

coalitions

{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {1, 5, 6}, {2, 6, 7} or {1, 3, 7} ,

the reactive bargaining set coincides with the (pre)kernel of the game. This game is

zero-monotonic, thus its positive (pre)kernel coincides with its reactive bargaining

set by Remark 3.1.

bThe solution σ1 is a sub-solution of σ2, if both are defined on a set Γ of games and σ1(N, v) ⊆
σ2(N, v) ∀ (N, v) ∈ Γ.
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Example 5.2. For the five-person market game ({1, . . . , 5}, v), defined by

v(S) = min{|S ∩ {1, 2}|, a|S ∩ {3, 4, 5}|} ,

where a ≥ 0, Granot and Maschler (1997) showed that the reactive bargaining set

is the union of the core and of the kernel of the game. Again by zero-monotonicity

the positive (pre)kernel coincides with the reactive bargaining set in this case.

The following example shows the existence of games for which the core is non-

empty and for which the union of the core and the prekernel is a proper subset of

the positive prekernel, which itself is a proper subset of the reactive prebargaining

set. Moreover, the reactive prebargaining set is a proper subset of the bargaining

set.

Example 5.3. Let N = P ∪ Q ∪ R, where P = {1, 2}, Q = {3}, and R =

{4, 5, 6, 7, 8}. Let (N, v) be defined by

v(S) =



0, if S = ∅ or S = N

2, if |S ∩R| = 3 and S ∩ (P ∪Q) ∈ {P,Q}
−1, if S = {i} ∪ {j} for some i ∈ P, j ∈ R
−2, if S = Q ∪ T for some T ⊆ R with |T | = 2

−5, if S = {i} for some i ∈ P
−40, otherwise

.

(1) Claim: C(N, v) 6= ∅
As the reader may check, (−5,−5,−10, 4, 4, 4, 4, 4) is in the core of the game.

(Indeed, the core is a singleton.)

(2) Claim: The union of the core and the prekernel is a proper subset of the positive

kernel.

In order to show this claim observe that x1 = (−1, 1, 0, 0, 0, 0, 0, 0) is not

a member of the core (because e({3, 4, 5, 6}, x1, v) = 2) and not a member of

the prekernel (because s12(x, v) > s21(x, v)). However, a coalition S satisfies

e(S, x1, v) > 0, iff e(S, x1, v) = v(S) = 2. Therefore the two “types” of coalitions

of positive excess balance the maximum surplus of distinct players i, j satisfying

{i, j} 6= P. Pareto optimality of x1 together with the fact that a coalition of

positive excess either contains P or does not intersect P shows this claim.

(3) Claim: The reactive prebargaining set M∗r(N, v) is a proper subset of the pre-

bargaining set M∗.
Let x2 = (0, 0, 0, 0, 0, 0,−2/3, 2/3). First, we show that x2 does not belong

to the reactive prebargaining set M∗r(N, v) by verifying that player 7 has a

justified objection against player 8 in the sense of the reactive bargaining set.

Precisely the coalitions S = P ∪ T ∪ {8} and S = Q ∪ T ∪ {8}, where T ⊆
{4, 5, 6} with |T | = 2, are the coalitions with non-negative excess containing 8

and not containing 7. Of course, player 7 can take every player i ∈ T to define

a justified objection against S by using the coalition (N \ S) ∪ {i}.
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In order to show that x2 ∈M∗(N, v), note that (sij(x
2, v))+ = (sji(x

2, v))+

for distinct players with i, j /∈ {7, 8}. Of course, s7j(x
2, v) ≥ sj7(x2, v) for j 6= 7

and si8(x2, v) ≥ s8i(x
2, v) for i 6= 8. It remains to show that there is no player

i 6= 8 who has a justified objection against 8 and that 7 does not have a justified

objection against any player j 6= 7 in the sense of the prebargaining set. Every

objection (S, y) of a player i 6= 8 against 8 using a coalition S not containing

player 7 can be countered by the coalition (N \ S) ∪ {k}, which has the same

excess as S, where k ∈ S ∩ {4, 5, 6} \ {i}. If 7 ∈ S, then e(S, x2, v) = 8/3.

Nevertheless, there are at least two distinct players k, l ∈ R \ {i}, thus one

of them improves by at most 4/3, let us say yk ≤ x2
k + 4/3. The excess of

(N \S)∪{k} is 4/3, thus this coalition can be used to counterobject. A similar

argument shows that 7 does not possess a justified objection.

(4) Claim: The positive prekernel is a proper subset of the reactive prebargaining

set.

Let x3 = (−10,−10,−20, 8, 8, 8, 8, 8). Then

e(S, x3, v)


=


1, if S = {i} ∪ {j} for some i ∈ P, j ∈ R
2, if S = Q ∪ T for some T ⊆ R, |T | = 2

5, if S = {i} for some i ∈ P
≤ 0, otherwise

(5.1)

holds true. Players inside P (or R) do not possess justified objections in the

sense of the reactive bargaining set against each other, because they are inter-

changeable and they are treated equally. Moreover, for l ∈ N \ P there is a

coalition of the “second type” [coalitions that occur in the second row of (5.1)]

which contains l. This coalition can be used to counter any objection of any

player k ∈ P against l. Every objection against k can be countered using {k}.
Every objection of 3 against some player l ∈ R can be countered by using the

coalition {1, l}. Finally, every coalition of the second type that does not contain

l can be used to counter any objection of l against 3.

6. Reduced Game Properties

We recall the definitions of the reduced game [see Davis and Maschler (1965)], of

the reduced game property and its converse [see Sobolev (1975) and Peleg (1986)].

Definition 6.1. Let (N, v) be a game, let ∅ 6= S ⊆ N, and x ∈ X(N, v). The

reduced game w.r.t. S and x is the game (S, vS,x) defined by

vS,x(T ) =


0, if T = ∅
v(N)− x(N \ S), if T = S

max{v(T ∪Q)− x(Q)|Q ⊆ N \ S}, otherwise

.
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Definition 6.2. Let σ be a solution on a set Γ of games. Then σ satisfies the

(1) reduced game property (RGP), if the following condition holds:

If (N, v) ∈ Γ, ∅ 6= S ⊆ N, and x ∈ σ(N, v), then (S, vS,x) ∈ Γ and xS ∈
σ(S, vS,x).

(2) weak reduced game property (WRGP), if the following condition holds:

If (N, v) ∈ Γ, ∅ 6= S ⊆ N, |S| ≤ 2, and x ∈ σ(N, v), then (S, vS,x) ∈ Γ and

xS ∈ σ(S, vS,x).

(3) converse reduced game property (CRGP), if the following condition holds:

If (N, v) ∈ Γ is a game with at least two players, if x ∈ I∗(N, v), and if

for every S ⊆ N with two members (S, vS,x) ∈ Γ and xS ∈ σ(S, vS,x), then

x ∈ σ(N, v).

Note that Definition 6.2(2) is due to Peleg (1989) and that RGP implies WRGP.

Furthermore, note that the prekernel and the core satisfy CRGP and RGP, if the

set Γ of games is rich enough. The following lemmata show that the same properties

hold in the case of the positive prekernel. If U is a set (the universe of players),

then let ΓU denote the set of games with player set contained in U.

Lemma 6.1. The positive prekernel on ΓU satisfies RGP.

Proof. If (N, v) ∈ ΓU , x ∈ K∗+(N, v), and ∅ 6= S ⊆ N, then (S, vS,x) is a game,

thus it is a game of ΓU . Let i, j ∈ S, i 6= j. Then Definition 6.1 implies

sij(xS , v
S,x) = sij(x, v) , (6.1)

thus the positive prekernel satisfies RGP.

Lemma 6.2. The positive prekernel on ΓU satisfies CRGP.

Proof. Let (N, v) be a game and x ∈ I∗(N, v) be a preimputation. If x /∈ K∗+(N, v),

then distinct players i, j ∈ N exist such that sij(x, v) > (sji(x, v))+, thus Eq. (6.1)

implies that x{i,j} /∈ K∗+({i, j}, v{i,j}).

7. A Characterisation of the Positive Prekernel

In this section, we shall assume that the universe U of players contains at least

three members. We recall Peleg’s (1989) notion of unanimity for two-person games

(UTPG). A solution σ on a set Γ of games satisfies UTPG, if

σ(N, v) = {x ∈ I∗(N, v)|xi ≥ v({i}) ∀i ∈ N}

holds true for every two-person game (N, v) ∈ Γ. This property, together with

WRGP, CRGP, and individual rationality (x ∈ X(N, v) is individually rational,

if xi ≥ v({i}) for every i ∈ N) can be used to axiomatize the core of the set of

markets games with player set in U [see, Peleg (1989)]. If Γ contains a two-person
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game with an empty core, then there is no solution satisfying NE and UTPG. A

weaker property will be used.

Definition 7.1. A solution σ on a set Γ of games satisfies weak unanimity for

two-person games (WUTPG), if

σ(N, v) ⊇ {x ∈ I∗(N, v)|xi ≥ v({i}) ∀ i ∈ N}
holds true for every two-person game (N, v) ∈ Γ.

Now we present the main result of this section.

Theorem 7.1. The positive prekernel is the unique solution on ΓU that satisfies

NE, AN, REAS, WRGP, CRGP and WUTPG.

The following lemmata are useful in the proof of Theorem 7.1.

Lemma 7.1. Let σ1, σ2 be solutions on ΓU . If σ1 satisfies WRGP, σ2 satisfies

CRGP, and if σ1(N, v) ⊆ σ2(N, v) for every game (N, v) ∈ Γ with at most two

persons, then σ1 is a sub-solution of σ2.

Proof. It suffices to show σ1(N, v) ⊆ σ2(N, v) ∀(N, v) ∈ Γ with |N | ≥ 3. If

x ∈ σ1(N, v), then xS ∈ σ1(S, vS,x) for every coalition ∅ 6= S ⊆ N with |S| ≤ 2 by

WRGP of σ1. Therefore xS ∈ σ2(S, vS,x) for these coalitions by the assumption,

thus x ∈ σ2(N, v) by CRGP of σ2.

Lemma 7.2. If σ is a solution on ΓU that satisfies NE, AN, REAS, WRGP and

CRGP, then σ is a sub-solution of the positive prekernel.

Proof. By REASB (only Condition (3.1) is needed here), σ is Pareto optimal on

one-person games. WRGP, applied to one-person reduced games, implies that σ

satisfies PO. In view of Lemma 7.1 applied to σ1 = σ and σ2 = K∗+, it suffices to

show that σ(N, v) ⊆ K∗+(N, v) for every two-person game (N, v) with N ⊆ U. If

C(N, v) 6= ∅, then it coincides with the core [see Remark 2.1 (3)], thus σ(N, v) ⊆
K∗+(N, v) by REASB and PO in this case. Let (N, v) ∈ ΓU with |N | = 2 and

C(N, v) = ∅. Let x = xv ∈ RN denote the standard solution. We have to show that

σ(N, v) = {x}.
Claim 1. x ∈ σ(N, v).

Assume, on the contrary, x /∈ σ(N, v). Take ∗ ∈ U \ N (which is possible by

|U | ≥ 3), let N = {i, j}, and define (N ∪ {∗}, w) by

w(S) =


0, if S = ∅
v(N), if S = N ∪ {∗}
x(S ∩N) + α, otherwise

,

where α = e({1}, x, v) = e({2}, x, v) > 0. With y = (x, 0) ∈ RN∪{∗}, we obtain

w(S) = y(S)+α ∀S 6= ∅, N∪{∗} and skl(y, w) = α for distinct players k, l ∈ N∪{∗},
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thus y is an element of the prekernel of w. (Indeed, it is well-known [see, e.g.,

Sudhölter (1993)] that the prekernel of a three-person game is a singleton, thus

Theorem 4.1 also shows that y is the unique element of the positive prekernel.)

The reduced game (N,wN,y) coincides with (N, v), thus y /∈ σ(N ∪ {∗}, w).

Take z ∈ σ(N ∪ {∗}, w) (which is possible by NE). The components of y − z can

be arranged in non-increasing order, i.e. there is a bijective mapping θ : {1, 2, 3} →
N ∪ {∗} such that

yθ(1) − zθ(1) ≥ yθ(2) − zθ(2) ≥ yθ(3) − zθ(3) .

We assume for simplicity reasons that N ∪ {∗} = {1, 2, 3} and θ = id, thus

y1 − z1 ≥ y2 − z2 ≥ y3 − z3 . (7.1)

By REASB yi − α ≤ zi ∀i = 1, 2, 3. By PO z1 < y1, z3 > y3 and one of the

inequalities of (7.1) is strict. Two cases may occur.

(1) y1 − z1 > y2 − z2

If y2 ≥ z2, then define ({1, 2, 3}, u) by

u(S) =


w({2, 3})− z2, if S = {3}
v(N)− z1 − 1, if S = {2, 3}
w(S), otherwise

and observe that uS,z = wS,z for every proper non-void sub-coalition ∅ 6= S ⊆
N ∪ {∗}, S 6= N ∪ {∗}, because

e({2, 3}, z, w) < e({2}, z, w), e({3}, z, w) ≤ e({2, 3}, z, w) < e({1, 3}, z, w)

and v(N)− z1 − 1 < w({2, 3}). By CRGP z ∈ σ({1, 2, 3}, u). However,

dmin
1 ({1, 2, 3}, u)

= min
S⊆{2,3}

u(S ∪ {1})− u(S)

= min{u({1}), u({1, 2})−u({2}), u({1, 3})−u({3}), u({1, 2, 3})−u({2, 3})}

= min{w({1}), w({1, 2})− w({2}), w({1, 3})− w({2, 3}) + z2, z1 + 1}

= min{α+ y1, y1, y1 − y2 + z2, z1 + 1} > z1 ,

which yields a contradiction to REASB.

If y2 ≤ z2, then define ({1, 2, 3}, u) by

u(S) =

{
q, if S = {2, 3}
w(S), otherwise

,

where q < min{w({3}) + z2, z2 + z3}, and observe that uS,z = wS,z for every

proper non-void sub-coalition ∅ 6= S ⊆ N ∪ {∗}, S 6= N ∪ {∗}, because

e({2, 3}, z, w) < e({2}, z, w), e({2, 3}, z, w) ≤ e({3}, z, w) .
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By CRGP z ∈ σ({1, 2, 3}, u). However,

dmin
1 ({1, 2, 3}, u) = min{α+ y1, y1, v(N)− q} > z1 ,

which yields a contradiction to REASB.

(2) y1 − z1 = y2 − z2

This implies z2 < y2. Therefore s31(z, w) is attained by {2, 3} and s32(z, w)

is attained by {1, 3}. Define ({1, 2, 3}, u) by

u(S) =

{
w(S), if S 6= {3}
z3 − 1, if S = {3}

and observe that uS,z = wS,z for every proper non-void sub-coalition ∅ 6= S ⊆
N ∪ {∗}, S 6= N ∪ {∗}. By CRGP z ∈ σ({1, 2, 3}, u). However,

dmax
3 ({1, 2, 3}, u) = max

S⊆{1,2}
u(S ∪ {3})− u(S) = max{z3 − 1, y3, y3 − α} < z3 ,

which yields a contradiction to condition (3.2) of REAS.

Claim 2. σ(N, v) = {x}.
Assume, on the contrary, there exists y ∈ σ(N, v) \ {x}. Assume without loss

of generality N = {1, 2}, 3 ∈ U, and y1 < x1, y2 > x2. Define ({1, 2, 3}, w) by

w({1}) = w({2}) = v({2}), w({1, 2}) = v(N) + v({2})− v({1}), and w(S ∪ {3}) =

w(S) + d, for S ⊆ N, where d = v({1}) − v({2}) + y2 > y1. Moreover, define

z ∈ RN∪{3} by z1 = z2 = y2 and z3 = y1. Then

wN,z(S) =


0, if S = ∅
2y2, if S = N

max{v({2}), v({1}) + y2 − y1}, otherwise

,

thus

wN,z(N) = v(N) + y2 − y1 < v({2}) + v({1}) + y2 − y1 ≤ wN,z({1}) + wN,z({2}) .
This last observation shows that C(N,wN,z) = ∅ holds true. Moreover, the

fact that wN,z({1}) = wN,z({2}) holds shows that zN is the standard solu-

tion of (N,wN,z), thus zN ∈ σ(N,wN,z) is valid by Claim 1. The other two-

person reduced games ({k, 3}, w{k,3},z), where k = 1, 2, are isomorphic to (N, v).

Indeed, w{k,3},z({3}) = max{d, v({2}) + d − y2} = v({1}), w{k,3},z({k}) =

max{v({2}), v(N) + v({2})− v({1})− y2} = v({2}), and w{k,3},z({k, 3}) = v(N),

thus the bijection τ : N → {k, 3}, defined by τ(1) = 3 and τ(2) = k, satisfies

τv = w{k,3},z . Therefore zS ∈ σ(S,wS,z) for every two-person sub-coalition of

{1, 2, 3} by AN. Applying CRGP yields z ∈ σ({1, 2, 3}, w), but player 3 is inessen-

tialc of worth d, where

dmin
3 ({1, 2, 3}, w) = d = dmax

3 ({1, 2, 3}, w) ,

thus z3 < d establishes a contradiction to REASB.

cA player k in a game (N, v) is inessential of worth d, if v(S ∪ {k})− v(S) = d ∀ S ⊆ N \ {k}.
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Corollary 7.1. The positive prekernel is the maximum solution on ΓU that satis-

fies NE, AN, REAS, WRGP and CRGP.

Proof. The positive prekernel satisfies the required properties by Remark 2.1,

Lemma 6.1, and Lemma 6.2. Lemma 7.2 completes the proof.

Proof of Theorem 7.1. By Remark 2.1, the positive prekernel satisfies WUTPG.

Corollary 7.1 and Lemma 7.1 complete the proof.

The core on the set of market games contained in ΓU is the unique solution that

satisfies individual rationality (IR), WRGP, CRGP and UTPG [see Peleg (1989)].

We used WRGP, CRGP and WUTPG, a property that is weaker than UTPG, in

our characterisation. In some sense, REAS replaces IR. However, it is possible to

replace REAS by REASB and COV in Theorem 7.1. That means that the positive

prekernel can be characterised by weakening the axioms for the core and adding

some “standard axioms”.

Theorem 7.2. The positive prekernel is the unique solution on ΓU that satisfies

NE, AN, COV, REASB, WRGP, CRGP and WUTPG.

Proof. Only the uniqueness part has to be shown. In the proof of Lemma 7.2,

condition (3.2) of REAS is only used once, namely in Claim 1, part (2). This

case leads to a contradiction, because z{1,2} is the standard solution of the

game ({1, 2}, w{1,2},z) with an empty core. This game is isomorphic to a game

that is strategically equivalent to (N, v), thus WRGP, AN and COV establish a

contradiction.

8. On the Independence of the Axioms

The following examples show that the properties used in Lemma 7.2 and The-

orem 7.1 are logically independent. We start showing that these results are not

valid, if |U | = 2.

Example 8.1. If |U | = 2, then define

σ0(N, v) = {x ∈ I∗(N, v)|x is reasonable} ∀ (N, v) ∈ ΓU .

Then σ0 satisfies NE, AN, REAS, COV, RGP, CRGP and WUTPG, but it is not

a sub-solution of the positive prekernel.

From now on we assume that the universe U of players contains at least three

members.

Example 8.2. The solution σ1 on ΓU is defined by distinguishing cases.

(1) If N = {i}, then σ1(N, v) = I∗(N, v) = {v({i})}.
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(2) If |N | = 2, N = {i, j}, then

σ1(N, v) =

{
C(N, v), if C(N, v) 6= ∅
{x ∈ I∗(N, v)|xi = v({i}) or xj = v({j})}, otherwise

assigns to every two-person game with an empty core the extreme points of its

set of reasonable preimputations.

(3) σ1(N, v) = {x ∈ I∗(N, v)|xS ∈ σ1(S, vS,x) ∀ S ⊆ N, |S| = 2}, if |N | > 2.

This solution satisfies AN, COV and CRGP by definition. The core is a sub-

solution of σ1, thus it satisfies WUTPG. Moreover, σ1 satisfies RGP by the transi-

tivity of reducing:

vT,x = (vS,x)T,xS ∀ (N, v) ∈ ΓU , ∅ 6= T ⊆ S ⊆ N, x ∈ X(N, v)

σ1 does not satisfy NE (even if |U | = 3), because its application to the game

(N ∪ {∗}, w) of Claim 1 of the proof of Lemma 7.2 yields the empty set.

Claim. σ1 satisfies REAS.

Assume, on the contrary, there is a game (N, v) and x ∈ σ1(N, v) that does

not satisfy reasonableness. Then there is a player i ∈ N such that (3.1) or (3.2) of

REAS is violated at i.

(1) xi < dmin
i (N, v).

Then sij(x, v) > 0 ∀ j ∈ N \ {i}, thus sji(x, v) = 0 by definition of σ1.

Take S ⊆ N \ {i} which is maximal (under ⊆) such that e(S, x, v) = 0. Then

S 6= N \{i}. Take T ⊆ N \{i} attaining 0 = sji(x, v) for some j ∈ N \(S∪{i}).
By maximality of S there exists k ∈ S \ T. Therefore

skj(x, v) ≥ e(S ∪ {i}, x, v) > 0 and sjk(x, v) ≥ e(T ∪ {i}, x, v) > 0 ,

a contradiction.

(2) xi > dmax
i (N, v).

Then sji(x, v) > 0 ∀j ∈ N \ {i}, thus sij(x, v) = 0 by definition of σ1. Take

S ⊆ N \ {i} which is minimal such that e(S ∪ {i}, x, v) = 0. Then S 6= ∅. Take

j ∈ S and T ⊆ N \ {i} such that sij(x, v) is attained by T ∪{i}. By minimality

of S, we have T \ S 6= ∅. Let k ∈ T \ S. Then

skj(x, v) ≥ e(T, x, v) > 0 and sjk(x, v) ≥ e(S, x, v) > 0 ,

a contradiction.

Example 8.3. In order to show that AN is independent, we proceed similarly to

Example 8.2 by defining σ2. The only difference in the definition occurs for two-

person games (N, v) with an empty core. Choose two different players, let us say 1

and 2, of U and define

σ2(N, v) =

{
{x ∈ I∗(N, v)|x1 =v({1}) or x2 = v({2}) or x=xv}, if N={1, 2}
xv, otherwise

,
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where xv is the standard solution of (N, v). As in the last example it is easy to

verify that σ2 satisfies NE, COV, RGP, CRGP, WUTPG. It does not satisfy AN.

Claim. σ2 satisfies REAS.

By construction, x ∈ σ2(N, v) implies

(skl(x, v))+ = (slk(x, v))+ ∀ k, l ∈ N with k 6= l, {k, l} 6= {1, 2} . (8.1)

Therefore x ∈ K∗+(N, v) for every N satisfying {1, 2} 6⊆ N. Assume, on the

contrary, x ∈ σ2(N, v) is not reasonable, thus x /∈ K∗+(N, v) and |N | > 2. Property

(8.1) implies that (3.1) and (3.2) of REAS are satisfied for i ∈ N \{1, 2}. Moreover,

s12(x, v) > 0 and s21(x, v) = 0 can be assumed (otherwise exchange 1 and 2). Hence

x2 > dmax
2 (N, v) or x1 < dmin

1 (N, v) .

Two cases may occur:

(1) x2 > dmax
2 (N, v).

Then

si2(x, v) = s2i(x, v) ∀ i ∈ N \ {1, 2} . (8.2)

If S ⊆ N has maximal excess, then S ⊆ N \ {2}, thus S = {1} by (8.2).

This observation contradicts |N | > 2.

(2) x1 < dmin
1 (N, v).

The fact that s1i(x, v) = si1(x, v) > 0 for i 6= 1, 2 implies that N \ {2} is

the unique coalition of maximal excess. Take j ∈ N \ {1, 2} and observe that

sj2(x, v) = s2j(x, v) > 0 yields a contradiction.

Example 8.4. The solution σ3, defined by

σ3(N, v) = {x ∈ X(N, v)|sij(x, v) ≤ (sji(x, v))+ ∀ i, j ∈ N with i 6= j} ,

satisfies AN and COV by definition and contains the positive prekernel, thus it

satisfies NE and WUTPG. If K∗+(N, v) is replaced by σ3(N, v), then the proofs of

Lemmata 6.1 and 6.2 also show that σ3 satisfies RGP and CRGP. In the proof of

reasonableness from above (see Lemma 3.1) Pareto optimality is not used, thus σ3

shows that REASB is logically independent and that REAS cannot be relaxed to

reasonableness from above.

Example 8.5. The solution σ4 is defined inductively on |N |. If |N | ≤ 2, then

σ4(N, v) = K∗+(N, v). If |N | > 2, then two cases are distinguished.

(1) If (N, v) does not contain inessential players, then σ4(N, v) is the set of all

reasonable preimputations of (N, v).

(2) If i ∈ N is an inessential player of (N, v), then

σ4(N, v) = {x ∈ I∗(N, v)|xN\{i} ∈ σ4(N \ {i}, vN\{i})} .
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An inductive argument shows that σ4 is well-defined. In view of the fact that K∗+ is

a sub-solution of σ4 which coincides on games with at most two persons, σ4 satisfies

NE, WUTPG, and CRGP. COV, AN are satisfied by definition and, thus, WRGP

is violated.

Example 8.6. Define

σ5(N, v) = {x ∈ I∗(N, v)|xS is reasonable for (S, vS,x) ∀∅ 6= S ⊆ N}. Then σ5

satisfies NE, AN, REAS, COV and WUTPG. Moreover, RGP is a consequence of

the transitivity of reducing. Of course σ5 violates CRGP, because it is a proper

sub-solution of the positive prekernel.

Example 8.7. The prekernel shows the logical independence of WUTPG in

Lemma 7.1 and Theorems 7.1 and 7.2.

Remark 8.1.

(1) Note that we do not know whether Theorem 7.2 remains valid, if COV is

dropped as a condition. Moreover, we do not know, whether REAS can be

replaced by REASB in Theorem 7.1 or Lemma 7.2.

(2) A careful inspection of the proofs of Sec. 7 shows that AN and COV are only

applied to two-person games. Moreover, REAS(B) and NE are only applied to

games of at most three persons (cp. Examples 8.2, 8.3 and 8.4).
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