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Abstract. Two preimputations of a given TU game can be compared via the
Lorenz order applied to the vectors of satisfactions. One preimputation is
`socially more desirable' than the other, if its corresponding vector of satis-
factions Lorenz dominates the satisfaction vector with respect to the second
preimputation. It is shown that the prenucleolus, the anti-prenucleolus, and
the modi®ed nucleolus are maximal in this Lorenz order. Here the modi®ed
nucleolus is the unique preimputation which lexicographically minimizes the
envies between the coalitions, i.e. the di�erences of excesses. Recently Sud-
hoÈ lter developed this solution concept. Properties of the set of all undomi-
nated preimputations, the maximal satisfaction solution, are discussed. A
function on the set of preimputations is called collective satisfaction function
if it respects the Lorenz order. We prove that both classical nucleoli are
unique minimizers of certain `weighted Gini inequality indices', which are
derived from some collective satisfaction functions. For the (pre)nucleolus
the function proposed by Kohlberg, who characterized the nucleolus as a
solution of a single minimization problem, can be chosen. Finally, a collec-
tive satisfaction function is de®ned such that the modi®ed nucleolus is its
unique maximizer.

0. Introduction

Symmetry and fairness are among the basic tenets of the theory of solutions
of cooperative games since its creation by von Neumann and Morgenstern
(1944). Symmetry roughly means that a solution of a game must be invariant
under the (linear transformations induced by the) symmetries of the game.
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(More general formulations are possible.) Fairness, or equal treatment, re-
quires that at each point of the solution symmetric players receive equal
payo�s. However, considerations of equity were not used to justify solutions
of transferable utility (TU) games till the introduction of the nucleolus in
Schmeidler (1969).

Schmeidler considered the distribution of excesses of coalitions (relative
to a feasible payo� vector), and chose the feasible payo� vector that yields
the minimum distribution (in the lexicographic order). Although Schmeidler
was motivated by equity considerations, his approach is ad hoc and is not
directly related to standard concepts of the theory of inequality (in eco-
nomics). Indeed, Maschler (1992) writes on the de®nition of the nucleolus:

``Mathematicians will certainly admire the above de®nition, but
can it be given a convincing intuitive meaning? Here is an attempt
[Maschler, Peleg and Shapley (1979)]. Consider an arbitrator, whom
the players ask to decide how to share v�N�. The arbitrator may regard
the excess of a coalition as a measure of dissatisfaction and he may be
eager to decrease the excesses of the various coalitions as much as
possible. This will also increase ``stability''. He will then look for
payo�s in which the highest excess is as low as possible. If there is
more than one such payo�, he will tell the highest-excess coalitions: ``I
have helped you as much as I could, but I can still help other coali-
tions.'' He will then proceed to choose outcomes for which the second
highest excess is minimal, and so on. Obviously, such ``justi®cation''
raises more questions than it answers. What is more ``stable'', a sit-
uation in which a few coalitions of highest excess have it as low as
possible, or one where such coalitions have a slightly higher excess,
but the excesses of many other coalitions are substantially lowered? It
is the lexicographic order that is hard to motivate.''

Our paper addresses the foregoing questions raised by Maschler using the
standard tools of equity theory. Let v be a TU game. With each preimpu-
tation of v (i.e., a Pareto optimal payo� vector) we associate the distribution
of satisfactions of all the coalitions (the satisfaction of a coalition is the
negative of its excess). We now compare preimputations by (partially) or-
dering their distributions of satisfactions by Lorenz domination. Our solu-
tion, the maximal satisfaction solution M�v�, consists of the set of all
preimputations whose distribution of satisfactions is maximal (i.e., it is not
Lorenz dominated). It cannot be criticized in the foregoing manner, because
it contains all equitable payo�s. Nonemptiness ofM�v� is easily proved. We
now brie¯y review the contents of the paper.

First we show thatM��� has several standard properties: equal treatment,
desirability, covariance, self duality (i.e.,M�v� �M�v�� for each TU game v,
where v� is the dual of v), (strong) null player, and (two-sided) reasonable-
ness. A second goal is to determine the structure ofM�v� for each v. For this
purpose we ®rst obtain a geometric characterization of the points in M�v�
(see Theorem 2.2). Then we prove thatM�v� is a contractible union of a ®nite
number of polytopes. M�v� is also a continuous function of the game v.
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It is easily shown that the prenucleolus, the anti-prenucleolus, and the
modi®ed nucleolus are members ofM. Moreover, it follows from Kohlberg
(1972) that the prenucleolus is the unique minimizer of some weighted Gini
index. (We o�er a purely geometric proof of this result (see Remark 3.3).)
Kohlberg's result can be generalized to the modi®ed nucleolus and the anti-
prenucleolus. In the Appendix we give a new proof of Kohlberg's result. Our
proof enables us to explicitly estimate the coe�cients of Kohlberg's collective
satisfaction function.

This ®rst study of the maximal satisfaction solution leaves open many
problems. We shall only mention one: To ®nd a suitable axiomatization of
M���.

1. De®nitions and preliminary results

A cooperative game with transferable utility ± a game ± is a pair G � �N ; v�,
where N is a ®nite nonvoid set and

v : 2N ! R; v�;� � 0

is a mapping. Here 2N � fS � Ng is the set of coalitions of G.
If G � �N ; v� is a game, then N is the grand coalition or the set of players

and v is called coalitional (or characteristic) function of G. Since the nature of
G is determined by the coalitional function, v is called game as well.

If G � �N ; v� is a game, then the dual game �N ; v�� of G is de®ned by

v��S� � v�N� ÿ v�NnS�
for all coalitions S. The set of feasible payo� vectors of G is denoted by

X ��N ; v� � X ��v� � fx 2 RN j x�N� � v�N�g;
whereas

X �N ; v� � X �v� � fx 2 RN j x�N� � v�N�g
is the set of preimputations of G (also called set of Pareto optimal feasible
payo�s of G). Here

x�S� � Ri2Sxi �x�;� � 0�
for each x 2 RN and S � N . Additionally, let xs denote the restriction of x to
S, i.e.

xS � �xi�i2S 2 RS ;

whereas AS � fxs j x 2 Ag for A � RN . For disjoint coalitions S; T � N and
x 2 RN let �xS ; xT � � xS[T .

A solution concept r on a set C of games is a mapping that associates with
every game v 2 C a set of r�v� � X ��v�.

If �C is a subset of C, then the canonical restriction of a solution con-
cept r on C is a solution concept on �C. We say that r is a solution concept
on �C, too. If C is not speci®ed, then r is a solution concept on every set of
games.
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Some convenient and well-known properties of a solution concept r on a
set C of games are as follows.

(1) r is anonymous (satis®es AN), if for each �N ; v� 2 C and each bijective
mapping s : N ! N 0 with �N 0; sv� 2 C

r�N 0; sv� � s�r�N ; v��
holds (where �sv��T � � v�sÿ1�T ��; sj�x� � xsÿ1j�x 2 RN ; j 2 N 0; T � N 0��. In
this case v and sv are equivalent games.
(2) r satis®es the equal treatment property (ETP), if for every
x 2 r�N ; v� �v 2 C� interchangeable players i; j 2 N are treated equally, i.e.
xi � xj. Here i and j are interchangeable, if v�S [ fig� � v�S [ fjg� for
S � Nnfi; jg.
(3) r respects desirability (satis®es DES) if for every �N ; v� 2 C every
x 2 r�N ; v� satis®es xi � xj for a player i who is at least as desirable as player
j. Here i is at least as desirable as j if v�S [ fig� � v�S [ fjg� for S � Nnfi; jg.
(4) r satis®es the nullplayer property (NPP) if for every �N ; v� 2 C every
x 2 r�N ; v� satis®es xi � 0 for every nullplayer i 2 N . Here i is nullplayer if
v�S [ fig� � v�S� for S � N .
(5) r is covariant under strategic equivalence (satis®es COV), if
�N ; v�; �N ;w� 2 C with w � av� b for some a > 0; b 2 RN implies that
r�N ;w� � ar�N ; v� � b holds. The games v and w are called strategically
equivalent.
(6) r is single valued (satis®es SIVA), if jr�v�j � 1 for v 2 C.
(7) r satis®es nonemptiness (NE), if r�v� 6� ; for v 2 C.
(8) r is Pareto optimal (satis®es PO), if r�v� � X �v� for v 2 C.
(9) r satis®es reasonableness (on both sides) (REAS), if

(a)

xi � minfv�S [ fig� ÿ v�S� j S � Nnfigg
and

(b)

xi � maxfv�S [ fig� ÿ v�S� j S � Nnfigg
for i 2 N ; �N ; v� 2 C, and x 2 r�N ; v�.

Note that both equivalence and strategic equivalence commute with
duality, i.e. �sv�� � s�v��; �av� b�� � av� � b, where s; a; b are chosen ac-
cording to the de®nitions given above. With the help of assertion (9b) Milnor
(1952) de®ned his notion of reasonableness.

It should be remarked (see Shapley (1953)) that the Shapley value u (to be
more precise the solution concept r given by r�v� � fu�v�g� satis®es all
above properties. Moreover, it is well-known that the Shapley value of a
game and its dual cannot be distinguished. This observation motivates the
following

De®nition 1.1 A solution concept r on a set C of games is self dual (satis®es
SD), if r�v� � r�v�� whenever v; v� 2 C.
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Some more notation will be needed. Let �N ; v� be a game and x 2 RN . The
excess of a coalition S � N at x is the real number

e�S; x; v� � e�S; x� � v�S� ÿ x�S�:
The satisfaction of a coalition S at x is the negative excess of S, denoted by
f �S; x; v� � f �S; x� � x�S� ÿ v�S�.

To a `utility' vector x 2 RN its Lorenz curve L�x� � y 2 Rn, where n � jN j,
de®ned by

yk � minfx�S� j S � N and j S j� kg for k 2 f1; . . . ; ng;
is attached. If the points �k; Lk�x�� are plotted and consecutive points
�k; Lk�x��; �k � 1; Lk�1�x�� are connected by a line segment, then a curve is
obtained (see Fig. 4.1). A collective utility function is a continuous mapping
W : RN ! R which satis®es

(1) Anonymity: W �x� � W �y�, if x arises from y by a permutation of the
components, and
(2) Unanimity: W �x� � W �y�, if x � y, and W �x� > W �y�; if xi > yi for i 2 N
for x; y 2 RN .

To simplify notation we de®ne x� to be the vector which arises from x by
ordering the components of x nondecreasingly, i.e.Xk

i�1
x�i � Lk�x� for every k 2 f1; . . . ; ng:

A collective utility function W is said to reduce inequality, if W respects
Lorenz domination, i.e. if L�x� � L�y� and L�x� 6� L�y� hold (x Lorenz dom-
inates y), then W �x� > W �y� is valid. For this notation Moulin (1988) is
referred to.

In order to compare feasible payo� vectors of a game in terms of their
satisfaction vectors it is su�cient to replace `utility' by `satisfaction'. The
formal notion is given in

De®nition 1.2 Let �N ; v� be a game and x; y 2 X ��v�.
(1) x dominates y via satisfaction w.r.t. v �written x �v y�; if

�f �S; x; v��S�N Lorenz dominates �f �S; y; v��S�N :

We write x �v y, if x weakly dominates y via satisfaction, i.e. if either
x �v y or L��f �S; x; v��S�N � � L��f �S; y; v��S�N �:
(2) Let D�x; v� � fz 2 X ��v� j z �v xg be the set of feasible payo� vectors
which dominate x via satisfaction. The set of weakly dominating vectors is
denoted by �D�x; v� � fz 2 X ��v�jz �v xg.
(3) x maximizes satisfaction w.r.t. v, if D�x; v� � ;: Let M�v� � fz 2 X ��v�j
z maximizes satisfaction w:r:t vg be the set of feasible payo� vectors which are
not dominated via satisfaction.
Note that x weakly dominates y via satisfaction w.r.t. �N ; v�, if
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X
f �S; x; v� � min

X
S2T

f �S; y; v�jT � 2N ; jTj � k

( )
�1:1�

for every k � 1; . . . ; 2n and every subset S � 2N with jSj � k. Moreover, x
dominates y, if additionally one of the equations (1.1) is strict.

Lemma 1.3 If �N ; v� is a game and x 2 X ��v�, then �D�x; v� is a nonempty
convex compact set.

Proof. Nonemptiness and boundedness are guaranteed by the facts that
x 2 �D�x; v� and f �S; y; v� � minT�N f �T ; x; v� for every S � N and
y 2 �D�x; v� hold true. Convexity is a direct consequence of the fact that every
component Lk��f �S; �; v��S2N � : X ��v� ! R of the Lorenz curve of the satis-
faction vector is a minimum of ®nitely many a�ne linear functions and, thus,
concave. Continuity of these component functions guarantees closedness of
�D�x; v�. q.e.d.

In order to show that the set of vectors which weakly dominate x inter-
sectsM�v� we recall the de®nition of a nucleolus. For X � RN the nucleolus
of v w.r.t. X is the set N�X ; v� of vectors in X which lexicographically
minimize the nonincreasingly ordered vector of excesses, i.e.

N�X ; v� � fx 2 X ÿG��x�j �lex ÿG��y� for y 2 Xg;
where G�x� � ��f �S; x; v��S�N �. Schmeidler (1969) showed that nonemptiness
together with compactness of X implies nonemptiness of the nucleolus,
whereas convexity of X implies that N�X ; v� contains at most one element.
Corollary 1.4 M�v� \ �D�x; v� is nonempty for every game �N ; v� and every
feasible payo� vector x 2 X ��v�.

Proof. By de®nition N� �D�x; v�; v� �M�v�, thus Lemma 1.3 completes the
proof. q.e.d.

Further properties of M are summarized in the following

Lemma 1.5 On every set C of games the solution concept M satis®es (1) AN,
(2) ETP, (3) DES, (4) COV, (5) PO, and (6) SD.

Proof: It is straightforward to verify AN and COV. ETP is a direct conse-
quence of DES. Therefore it is su�cient to show PO, DES, and SD.

(5) Let �N ; v� 2 C and x 2 X ��v�. If x is not a preimputation, then there
exists � > 0 such that y, de®ned by yi � xi � � for i 2 N belongs to X ��v�.
Clearly f �S; x; v� < f �S; y; v� for ; 6� S � N holds true, thus y dominates x
via satisfaction. Note that � can be chosen in such a way that y is a preim-
putation.
(3) In view of Pareto optimality which is established forM we assume that
x 2 X �v�. Take i; j 2 N and assume that i is at least as desirable as j. If xi < xj,
take � > 0 such that y, de®ned by
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yk �
xk; if k 2 Nnfi; jg
xi � �; if k � i ,
xj ÿ �; if k � j

8<:
satis®es yi � yj. By de®nition of y and assumption we come up with
f �S; x; v� � f �S; y; v� and

f �S [ fig; x; v� � � � f �S [ fig; y; v� � f �S [ fjg; y; v� � f �S [ fjg; x; v� ÿ �
for every coalition S � Nnfi; jg. Thus y dominates x.
(6) Let �N ; v�; �N ; v�� 2 C and x 2M�v�. For every S � N

f �S; x; v� � ÿf �NnS; x; v�� �1:2�
is true by Pareto optimality (see (5)). Assume, on the contrary, there is
y 2 X ��v�� which dominates x via satisfaction w.r.t. v�. Then y can be as-
sumed to be Pareto optimal w.r.t. v� and, hence, w.r.t. v. Equation 1.2 to-
gether with the fact that the sum of all satisfactions is constant on the set of
preimputations shows that y �v x (because

Lk��f �S; z; v���S�N � � L2nÿk��f �S; z; v��S�N � ÿ L2n��f �S; z; v��S�N �
(where L0��� � 0 by convention) is true for z 2 X �v��, thus a contradiction is
established. q.e.d.

Though we have seen that the nucleolus of v w.r.t. the set of elements which
weakly dominate x (for every feasible payo� vector x of v) via satisfaction is
a singleton contained in the set of undominated preimputations it should be
noted that both the prenucleolus N�X ��v�; v� � fm�v�g as well as the anti-
nucleolus m��v� � m�v�� of v are members of the maximal satisfaction solution
M�v�. Indeed, m�v� must be a member of the maximal satisfaction solution
applied to v, which can be seen directly, whereas the antinucleolus must be a
member of M�v� by Lemma 1.5 (6).

Remark 1.6

(1) Note that the maximal satisfaction solution is a standard solution which
means that for 2-person games �N ; v�, let us say N � fi; jg, the only member of
M�v� assigns �v�fig� ÿ v�fjg� � v�N��=2 to player i. NE; PO;ETP , and COV
imply this property.
(2) In what follows an example is presented which simultaneously shows that
M�v� is not necessarily convex (though it is a ®nite union of polytopes as proved
in the next section) and does not necessarily contain the Shapley value. To this
end let �N ; v� be de®ned by N � f1; . . . ; 4g and

v�S� � 12; if S 2 ff4g; f3; 4g; f2; 3g; f1; 3; 4g;Ng
0; otherwise

�
:

With the help of Kohlberg's (1971) characterization of the prenucleolus by
balanced collections of coalitions it can easily be checked that

m�v� � �ÿ4; 2; 6; 8� and m��v� � �4; 0; 4; 4�:
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Moreover, the Shapley value can be computed as u�v� � �1;ÿ1; 5; 7�. The
veri®cation that �1;ÿ1; 6; 6� �v u�v� and (0,0,6,6) �v �m�v� � m��v��=2 is
straightforward and left to the reader.
(3) The maximal satisfaction solution need not be contained in the core even
for convex games. (Recall that a game �N ; v� is convex, if v�S� � v�T � �
v�S [ T � � v�S \ T � for all S,T � N .) Indeed, SudhoÈlter (1997, Example
3.2(iii)) presented a convex ®ve-person game v such that the core of v does not
contain the antinucleolus m�v�� which is a member of M�v�.
(4) The following example shows that the egalitarian solution (as de®ned by
Dutta and Ray (1989)) need not be contained in the maximal satisfaction
solution even for convex games. Let �N ; v� be the convex three-person game
de®ned by N � f1; 2; 3g and

v�S� �
6; if 1 2 S and jSj � 2
12; if S � N
0; otherwise

8<:
Then the maximal satisfaction solution is a singleton consisting of the unique
vector (6, 3, 3) (which is simultaneously the nucleolus, the anti-prenucleolus,
and the Shapley value), whereas the egalitarian solution is the `equal split'
vector (4, 4, 4).

2. Characterizations of the maximal satisfaction solution

This section serves to present characterizations of M�v� which allow many
applications. Indeed, as a byproduct we show that this solution concept
satis®es the strong nullplayer property which can be used to verify REAS.
Moreover, M�v� turns out to be a contractible ®nite union of compact
polytopes.

Some notation is needed. During this section let N be a ®nite set of at
least two elements. Recall that a ®nite set X � RN is balanced, if it possesses
balancing coe�cients �dx�x2X , i.e.

dx > 0 for x 2 X and
X
x2X

dxx � 1N :

Here 1N is the vector �1; . . . ; 1� 2 RN as usual.

De®nition 2.1 Let �N ; v� be a game and x 2 X ��v�.
(1) A ®nite sequence G � �Gj�rj�1 of collections of coalitions is a con®guration
of N, ifXr

j�1
jGjj � 2n ÿ 2 and

[r
j�1
Gj � 2N

Moreover, Gj 6� ; is assumed for 1 � j � r.
(2) A con®guration G � �Gj�rj�1 of N generates the subset
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X �G� �
Xk

j�1

X
S2Gj

1S �
X
S2T

1S j k � 0; . . . ; r ÿ 1; T � Gk�1

8<:
9=;:

(3) A con®guration G of N is feasible if X �G� is balanced.
(4) The feasible payo� vector x induces the con®guration G�x; v� � �Gj�rj�1
de®ned by
�a� f �S; x; v� � f �T ; x; v� for S; T 2 Gj and j � 1; . . . ; r;
�b� f �S; x; v� < f �T ; x; v� for S 2 Gj; T 2 Gj�1 and 1 � j < r:

Theorem 2.2 Let x 2 X �v� for some game �N ; v�. The preimputation x of v
maximizes satisfaction, if and only if the induced con®guration G�x; v� is fea-
sible.

This Theorem is a direct consequence of the duality theorem of linear
programming and the following

Lemma 2.3 Let x 2 X �v� for some game �N ; v� and

Y � fy 2 RN j y�N� � 0 and y � z � 0 for every z 2 X �G�x; v��g:
(Here x � y denotes the scalar product of x and y.) Then x 2M�v�, if and only if
Y � f�0; . . . ; 0�g.
Proof. Let x 2 X �v�. Clearly, �0; . . . ; 0� 2 Y .

(1) In order to show that Y � f�0; . . . ; 0�g implies x 2M�v�, assume there is
a preimputation x 2 X �v�nM�v�, which does not maximize satisfaction, and
choose some preimputation x0 2 X �v� satisfying x0 �v x; thus x0 6� x is valid. It
remains to show that x0 ÿ x is a member of Y . For

z �
Xt

j�1

X
S2Gj�x;v�

1S �
X
S2T

1S 2 X �G�x; v��; T � Gt�1�x� v�

inequality (1.1) (applied to x0 and x instead of x and y) implies

zx0 ÿ
Xt

j�1

X
S2Gj�x;v�

v�S� ÿ
X
S2T

v�S�

�
Xt

j�1

X
S2Gj�x;v�

f �S; x0; v� �
X
S2T

f �S; x0; v�

� min
X
S2S

f �S; x; v� j jSj �
Xt

j�1
jGj�x; v�j � jTj

( )

� zxÿ
Xt

j�1

X
S2Gj�x;v�

v�S� ÿ
X
S2T

v�S� ;

hence z�x0 ÿ x� � 0. Therefore x0 ÿ x 2 Y holds true.
(2) In order to show the converse implication, assume there is y 2 Y satis-
fying y 6� 0. For every real number � de®ne x� � x� �y. Choose � > 0 small
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enough such that for every pair S; T � N of coalitions satisfying
f �S; x; v� < f �T ; x; v� the condition

f �S; x�; v� < f �T ; x�; v� �2:1�
is also satis®ed.
For k 2 f1; . . . ; 2ng let minfPS2S f �S; x�; v� j jSj � kg be attained by a col-
lectionSk of cardinality k of coalitions. The collectionsSk can be chosen in
an increasingly ordered way, i.e.

; �S1 � � � � �S2n � 2N �2:2�
can be assumed. Then

min
X
S2S

f �S; x; v� j jSj � k

( )
�
X

S2Sk

f �S; x; v�

holds true by (2.1). Moreover, in view of the de®nition of G�x; v�, there is a
number tk and a set Tk � Gtk�1�x; v� of coalitions satisfying

Sk �
[tk

j�1
Gj�x; v� [Tk :

With

zk �
Xtk

j�1

X
S2Gj

1S �
X

S2Tk

1S 2 X �G�x; v��

we conclude that

min
X
S2S

f �S; x�; v� j jSj � k

( )
� min

X
S2S

f �S; x; v� j jSj � k

( )
� �yzk;

thus x� �v x. The fact that the vectors zk span the Euclidean space is a
straight-forward consequence of (2.2). Therefore yzk > 0 for some k by y 6� 0,
thus x� �v x is satis®ed. q.e.d.

Remark 2.4

(1) Similarly to Part (1) of the preceding proof we can show that if x �v y for
some preimputations x and y of v, then �y ÿ x� � z � 0 for every z 2 X �G�x; v��,
thus y ÿ x 2 Y , where Y is de®ned in Lemma 2.3.
(2) If x 2M�v�, then �D�x; v� � fxg.
If y 2 �D�x; v� satis®es y 6� x, then y ÿ x 2 Y by (1). However, in view of
Lemma 2.3, Y 6� f�0; . . . ; 0�g is impossible for x 2M�v�.
Proof of Theorem 2.2. Let Y be de®ned as in Lemma 2.3 and put G � G�x; v�.
Then the following conditions are equivalent by the just mentioned lemma.
(1) x 2M�v�.
(2) The linear programm P
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max
X

z2X �G�
y � z

subject to y�N� � 0; y � z � 0 for z 2 X �G�
�2:3�

is feasible and its value is 0.
The dual program of P reads

min �bz�z2X �G�; bN

h i
� �0; . . . ; 0�

subject toÿ Rz2X �G�bzz� bN1N � Rz2X �G�z; bz � 0 for z 2 X �G�; bN 2 R

�2:4�

and, thus, x 2M�v� implies the existence of vectors bz; bN with the above
properties. As 1� bz > 0 we know that bN must be positive in this case. We
conclude that dz � �1� bz�=bN are balancing coe�cients.

It remains to show the converse direction of our assertion. If the con-
®guration G is feasible, take balancing coe�cients dz > 0 for z 2 X �G� and
observe that �bz�z2X �G� together with bN de®ned by bz � adz ÿ 1 and bN � a,
where a � 1=minfdz j z 2 X �G�g, constitute a feasible and hence optimal
solution (with value 0) of the dual programm of P. The duality theorem and
the last lemma complete the proof of this direction. q.e.d.

Remark 2.5 A con®guration G � �Gi�ri�1 is a re®nement of the con®guration
H � �Hi�ti�1; if every component ofH is the union of consecutive components
of G; i.e.

Hj �
[i�j�1�ÿ1

i�i�j�
Gi for j � 1; . . . ; t such that 1 � i�1� < . . . < i�t� < r � 1

� i�t � 1�:

We will show that a con®guration H is feasible, if and only if it possesses a
feasible re®nementG. Indeed, every con®guration is a re®nement of itself. For the
converse implication, letG be feasible.With the help of a recursive argument, it is
su�cient to show this assertion for r � t � 1, i.e., ifH�j � G�j [ G�j�1;Hj � Gj�1
for j > �j andHj � Gj for j < �j. In this case we have

(1) X �G� � X �H�.
(2) z 2 X �H� with z �Pk

j�1
P

S2Hj
1S �

P
S2T 1S for some T �Hk�1 im-

plies z 2 X �G� for 0 � k < �jÿ 1 or r ÿ 1 > k � �j. The case k � �jÿ 1 can be
treated as follows. Let

�z �
X
T�H �j

X�jÿ1
j�1

X
S2Hj

1S �
X
S2T

1S

0@ 1A
and observe that
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�z � 2jH�jj � R�jÿ1
j�1RS2Hj1S � 2

jHjjÿ1 � RS2Hj1S

� 2jH�jjÿ1 � R
�j
j�1RS2Hj1S � R

�jÿ1
j�1RS2Hj1S

� �
� 2jH�jjÿ1 � R

�j�1
j�1RS2Gj1S � R

�jÿ1
j�1RS2Gj1S

� �
;

which shows that the sum of vectors in X �H� which may not be in X �G� can be
expressed as a linear combination of elements of X �G�, i.e.

�z �
X

z2X �G�
bz � z;

for some bz 2 R:
Let az > 0 for z 2 X �G� be balancing coe�cients for X �G� i.e.X

z2X �G�
az � z � 1N ;

and � > 0 be chosen such that az ÿ �bz > 0 for z 2 X �G�: Then the equation

1N �
X

z2X �G�
az � z �

X
z2X �G�

�az ÿ �bz� � z� ��z

implies balancedness of X �H�.

Theorem 2.6 The maximal satisfaction solution M�v� is a ®nite union of
polytopes for every game �N ; v�.

Proof. For every feasible con®guration G � �Gi�ri�1 de®ne the set
MG � fx 2 X �v� j f �S; x; v� � f �T ; x; v� for S 2 Gi; T 2 Gj

and 1 � i � j � rg;
which clearly is a polytope. On the other hand

MG � fx 2 X �v� j G is a refinement of G�x; v�g;
which by Remark 2.5 and Theorem 2.2 is a subset ofM�v�. Conversely, the
just mentioned theorem implies that G�x; v� is feasible for x 2M�v�. The
number of (feasible) con®gurations is ®nite, thus the proof is ®nished.q.e.d.

We would like to apply these characterizing results to show that the
maximal satisfaction solution satis®es reasonableness. First of all we show
that the solution satis®es the strong nullplayer property (for single valued
solution concepts also known as `nullplayer out property' (see Derks and
Haller 1995)) in the sense of the following

De®nition 2.7 A solution concept r on a set C of games satis®es the strong
nullplayer property (SNPP), if for every game �N ; v� 2 C and every nullplayer
i 2 N of v the following condition is satis®ed: If Nnfig;w� � 2 C is the subgame
of v which arises from v by deleting i, then r�v� arises from r�w� by adding a
zero component for player i to every element of r�w�, i.e.
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r�v� � x 2 RN j xi � 0 and xNnfig 2 r�w�� 	
:

Note that SNPP implies NPP. Moreover, it should be remarked that many
solution concepts (e.g. the Shapley value, Core, and the nucleoli) satisfy even
the stronger property.

Remark 2.8 Let x 2M�v�. We can get as a corollary of Theorem 2.2 that
X �G�x; v�� is separating, that is, for all i; j 2 N ; i 6� j; there exist a � a�i; j� and
b � b�i; j� in X �G�x; v�� such that ai > aj and bi < bj.

Theorem 2.9 The maximal satisfaction solution M satis®es SNPP.

Proof. For one-person games the solution satis®es NPP because of PO. Let
�N ; v� be a game, i be a nullplayer of v, and x 2 X �v�. In order to show that
zi � 0 for z 2M�v� two cases are distinguished.

(1) xi < 0: The smallest satisfaction is only attained by coalitions S � N
which contain player i. Moreover, by PO and the fact f �fig; x; v� < 0 such
coalitions cannot coincide with the grand coalition N . Take any coalition S
of minimal satisfaction and j 2 NnS. Using the above observation and the
fact that f �T ; x; v� < f �Tnfig; x; v� for all coalitions T � N with i 2 T it is
clear that zi � zj for every z 2 X �G�x; v��. Moreover, the inequality is strict
for at least one z. Therefore x j2M�v� by Remark 2.8.
(2) The case xi > 0 can be treated analogously. Indeed, a coalition S which
attains minimal satisfaction does neither contain i nor coincides with the
empty set, because f �Nnfig; x; v� < 0. Moreover, f �T [ fig; x; v� > f �T ; x; v�
for T � Nnfig. Therefore zi � zj for z 2 X �G�x; v�� and j 2 S. Consequently
x j2M�v� by Remark 2.8.

It remains to show that M�v� � fx 2 RN j xi � 0 and xNnfigi2M�w�g; where
�Nnfig;w� is the subgame of v.

(1) ��� This inclusion is trivial for jN j � 2, thus we assume that N possesses
at least three members. Let x 2M�v�, thus xi � 0 by NPP, and de®ne
~x � xNnfig. Take ~y 2 RNnfig which satis®es ~y�Nnfig� � 0 and ~y � z � 0 for
z 2 X �G�~x;w��. With y � �~y; 0� 2 RN we come with y�N� � 0 and y � z � 0 for
z 2 X �G�x; v��. Indeed, if

z �
Xk

j�1

X
S2Gj�x;v�

1S �
X
S2T

1S �2:5�

for some T � Gk�1�x; v�; then

zNnfig � 2
Xk

j�1

X
S2Gj��x;v�

1S �
X
S2T

1S\Nnfig : �2:6�

(Note that 1S in equation (2.5) is considered to be a vector of R
N , whereas in

the second equation (2.6) it is considered to be in RNnfig.) With
~T � fS \ Nnfig j S 2Tg;T0 � fS 2 ~T j S 2T 3 S [ figg, and T1 �
~TnT0 we have ~T;T0;T1 � Gk�1�~x;w� and we obtain
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zNnfig � 2
Xk

j�1

X
S2Gj��x;w�

1S �
X

S2T0

1S

0@ 1A�X
S2T1

1S

�
Xk
j�1

X
S2Gj�~z0;w�

1S �
X
S2T 0

1S

0@ 1A� Xk
j�1

X
S2Gj�~z1;w�

1S �
X

S2T 0[T 1

1S

0@ 1A
� ~z0 � ~z1

for some ~z0;~z1 2 X �G�~x;w��. By satisfaction maximality ~y � ~z0 � 0 � ~y � ~z1,
thus y � z � 0 and Lemma 2.3 implies the inclusion.
(2) ��� Let ~x 2M�w� and de®ne x � �~x; 0� 2 X �v�. If there is y 2 X �v� with
y �v x; then y 2M�v� can be assumed by Corollary 1.4. Therefore yi � 0 is
true. For ~z 2 X �G�~x;w��, let us say

~z �
Xk

j�1

X
S2Gj��x;w�

1S �
X
S2T

1S

for some T � Gk�1�~x;w�, de®ne z 2 RN by

zNnfig � 2 � ~z; zi �
Xk

j�1
jGj�~x;w�j � jTj

and observe that z 2 X �G�x; v�� holds true. This shows that
�yNnfig ÿ ~x� � ~z � 0 is valid. Clearly, yNnfig ÿ ~x 6� 0 and, thus, Lemma 2.3 ®n-
ishes the proof of this inclusion. q.e.d.

Theorem 2.10 The maximal satisfaction solution is reasonable.

Proof. Assume, on the contrary,M does not satisfy REAS on some set C of
games. Let �N ; v� 2 C be a game and x 2M�v�, such that there exists i 2 N
with

di � minfv�S [ fig� ÿ v�S� j S � Nnfigg > xi or

Di � maxfv�S [ fig� ÿ v�S� j S � Nnfigg < xi:

(1) xi < di: By COV we can assume that di � 0 holds true. Let j j2N and
de®ne �N [ fjg; u� to be the game which arises from v by adding one null-
player j. By the SNPP y � �x; 0� 2M�u�, but yi < di � 0 � yj which con-
tradicts DES.
(2) The case xi > Di can be treated analogously by interchanging the roles of
di; < and Di; >. q.e.d.

Theorem 2.11 For every game �N ; v� the maximal satisfaction solutionM�v� is
contractible.

Proof. The mapping M�v� ! R2n de®ned by x 7! L��f �S; x; v��S�N � is con-
tinuous and, by Remark 2.4 (2), injective. With C � L��f �S; x; v��S�N �

�
j x 2M�v�g we conclude that
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h : M�v� ! C defined by h�x� � L��f �S; x; v��S�N �
is a homeomorphism (because M�v� is compact). Let

D � fz 2 R2n j there is a c 2 C such that c � zg :
Then D is closed and convex (because the component functions hk are con-
cave) and C is the set of Pareto optimal points of D. Theorem 4.6 of Peleg
(1972) directly implies that C is contractible. ThereforeM�v� is contractible,
because h is a homeomorphism. q.e.d.

Theorem 2.12 M�v� is a continuous function of v.

Proof. (1) Lower hemicontinuity: Let �vk�k2N be a sequence of games on N
with limk!1 vk � v and let x 2M�v�. Choose xk 2 X ��vk�; k 2 N, such that
limk!1 xk � x. For each k there exists yk 2M�vk� such that yk �vk xk. The
sequence �yk�k2N is bounded by Theorem 2.10. Let ykj

ÿ �
j2N be a convergent

subsequence of yk
ÿ �

k2N, and let y � limj!1 ykj . Then y 2 X ��v� and y �v x
(because

Lt��f �S; y; v��S�N � � lim
j!1

Lt��f �S; ykj ; vkj��S�N � �
lim
j!1

Lt��f �S; xkj ; vkj��S�N � � Lt��f �S; x; v��S�N �; t � 1; . . . ; 2n�:

Thus, by Remark 2.4, y � x.
(2) Upper hemicontinuity: Let limk!1 vk � v; xk 2M�vk�; k 2 N, and
limk!1 xk� x. Without loss of generality we can assume that G�xk; vk� � G
for every k 2 N. By Theorem 2.2 G is feasible and, clearly, it is a re®nement
of G�x; v�: By Remark 2.5 G�x; v� is feasible. Therefore by Theorem 2.2
x 2M�v�: q.e.d.

3. The nucleolus as the unique minimizer of a weighted Gini index

In this section we ®x a ®nite nonvoid set N and denote the set of games with
player set N by C � f�N ; v� j v is a gameg:
De®nition 3.1 A function U : RN � C! R is a collective satisfaction function
reducing inequality, if there exists a collective utility function W : R2N ! R

reducing inequality such that

U�x; v� � W ��f �S; x; v��S�N �
holds true for x 2 RN and v 2 C.
We are going to show that there is a collective satisfaction function U re-
ducing inequality such that the nucleolus (pre- or antinucleolus respectively)
is the unique maximizer of U��; v� restricted to the set of feasible payo�s
X ��v� of v. Moreover, it will be shown that U can be chosen in such a way
that the induced inequality index is a weighted Gini index.
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Recall (see Kolm (1966) and Atkinson (1970)) that a collective utility
function W : RN ! R reducing inequality induces an inequality index
G � GW : RN

�Onf0g ! R, de®ned by

G�x� � 1ÿ �n � a�x��=x�N� ; �3:1�
where a�x� 2 R>0 is the unique real number satisfying

W �a�x� � 1N � � W �x�:

(Recall that W is assumed to be continuous.) An inequality index G satis®es
G�x� < G�y� for x; y 2 RN

�0nf0g with x�N� � y�N� whenever x Lorenz dom-
inates y.

In case

W �x� �
Xn

i�1
��2�nÿ i� � 1�=n2� � x�i ; �3:2�

i.e.

G�x� � 1ÿ �n=x�N��
Xn

i�1
��2�nÿ i� � 1�=n2� � x�i ; �3:3�

the induced inequality index is the Gini index. It takes the surface between the
`straight line', i.e. the Lorenz curve of the `equal treatment vector'
�x�N�; � � � ; x�N��=n, and the Lorenz curve of x as a measure of inequality of
x. Indeed, note that (3.3) can be rewritten as

G�x� �
Xn

i�1
��i � x�N��=nÿ Li�x��=��n � x�N��=2�: �3:4�

For this notation Moulin (1988) is referred to.
Every strictly decreasing ®nite sequence p � �p1; . . . ; pn� of positive real

numbers with total weight 1, i.e.

p1 > � � � > pn > 0; p�N� � 1;

(p is called descending probability on f1; . . . ; ng� de®nes a collective utility
function Wp : RN ! R analogously to (3.2) by

Wp�x� �
Xn

i�1
pix�i � pnLn�x� �

Xnÿ1
i�1
�pi ÿ pi�1�Li�x�: �3:5�

By the nonincreasingness and positivity of p the collective utility function Wp

reduces inequality. The induced inequality index Gp is a weighted Gini index
(cf. SudhoÈ lter 1996b). The di�erence between the `classical' Gini index and a
weighted Gini index can be seen by looking at the formula

Gp�x� � �n=x�N�� � Rnÿ1
i�1 �pi ÿ pi�1��i � x�N�=nÿ Li�x��

� 1ÿ n=x�N�Rn
i�1pix�i

�3:6�

Therefore Gp puts weight pi ÿ pi�1 to i. The Gini index is proportional to the
surface between the straight line and the Lorenz curve (i.e. the Gini index G is
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a special weighted index such that consecutive weights are equidistant),
whereas Gp `distorts' the axis before measuring the surface. Figure 3.1
sketches the Lorenz curves and the `distorted' Lorenz curves of x � �2; 2; 14�
and y � �0; 9; 9� where p � �6; 2; 1�=9. In this case Gp puts larger weights to
`poorer people'. Indeed, the horizontal distances between consecutive players
in the left part of the ®gure (which sketches the `classical' Gini index) are
equal, whereas the horizontal distance between i and i� 1 in the right part of
the ®gure (which sketches Gp) is proportional to pi ÿ pi�1. In this example
G�x� > G�y� and Gp�x� < Gp�y�.

Unfortunately the de®nition of inequality indices cannot directly be
generalized to utility pro®les which possess negative entries. In our situation
we would like to have the notion of inequality indices for satisfaction vectors.
As the interest is mainly restricted to preimputations the normalization
factor `n=x�N�' can be dropped in formula 3.6. Therefore we will frequently
replace equation 3.6 by

Gp�x; v� �
X2nÿ1

i�1
�pi ÿ pi�1� � �i � �f �x; v� ÿ Li��f �S; x; v��S�N �� �3:7�

from now on. Here �f �x; v� � �1=2n� �PS�N f �S; x; v�.
Moreover, for every descending probability p 2 R2n

de®ne Up : RN�
C! R by Up�x; v� � Wp��f �S; x; v��S�N �, i.e.

Up�x; v� �
X2n

i�1
pi � Fi�x; v�; �3:8�

where

Fig. 3.1 Gini index versus Gp
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��f �S; x; v��S�N ��i � Fi�x; v�
� minfmaxff �S; x; v�j S 2SgjS � 2N and jSj � ig:

Every c > 1 determines a descending probability p � pc 2 R2n
by

pi � ��cÿ 1�=�c2n ÿ 1�� � c2nÿi for i � 1; . . . ; 2n:

Theorem 3.2 There is a c0 � 1 such that for every c > c0 the prenucleolus is the
unique maximizer of Upc , i.e.

argmaxfUpc�x; v� j x 2 X ��v�g � fm�v�g �3:9�
for every v 2 C.

This theorem is a direct consequence of Theorem 4.1 of Kohlberg (1972).
Indeed, note that Kohlberg's assumption of zero-normalized games is not
needed in his proofs, and can, thus, be dropped. Moreover, it should be
remarked that in view of Lemma 1.5 and Theorem 2.10 equation 3.9 can be
replaced by

argmax fUpc�x; v� j x 2 Xg � fm�v�g; �3:10�
for every set X � X �v� satisfying X � fx 2 X �v� j x is reasonableg. By COV of
M and m we can assume without loss of generality that v�N� � 0 and that the
marginal contributions of every player are bounded by ÿ1 from below and
�1 from above, i.e.

ÿ1 � v�S [ fig� ÿ v�S� � 1 for S � N nfig and i 2 N

is satis®ed. Therefore X � fx 2 RN j x�N� � 0 and ÿ1 � xi � 1 for i 2 Ng
possesses the desired properties. As X is a polytope Kohlberg's result applies.

Remark 3.3 Let �N ; v� 2 C and x 2 X �v�. Denote h�x� � L��f �S; x; v��S�N �.
Then

hk�x� � min
X
S2S

f �S; x; v� jS � 2N and jS j � k

( )
for k � 1; . . . ; 2n. Hence hk��� is a polyhedral concave function for each k. As
in the proof of Theorem 2.11 let

D � fz 2 R2n j there is x 2M�v� such that h�x� � zg:
Then D is a polyhedral convex set whose set of Pareto optimal points is
C � h�M�v��. It is easily veri®ed that the (®nite) set of extreme points of D is
contained in C. A point z 2 C is exposed, if it is extreme (because D is poly-
hedral). Thus, a point x 2M�v� is the unique maximizer of a collective satis-
faction function of the form

U�y� �
X2n

k�1
pkLk��f �S; y; v��S�N �; y 2 X �v�;
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where pk > 0; k � 1; . . . ; 2n; iff z � h�x� is an extreme point of D. Thus
h�m�v�� is an extreme point of D (this can also be veri®ed directly from the
de®nitions of m and D; notice that h�m�v�� is the lexicographic maximum of D).

In order to obtain a similar result for the antinucleolus de®ne for every
descending probability p 2 R2n

the dual vector p� 2 R2n
by

p�i � �1ÿ p2n�1ÿi�=�2n ÿ 1� for i � 1; . . . ; 2n

and note that p� is a descending probability in R2n
.

Theorem 3.4 There is a c0 � 1 such that for every c > c0 the antinucleolus is the
unique maximizer of Upc� , i.e.

argmaxfUpc� �x; v� j x 2 X ��v�g � fm��v�g �3:11�
for every v 2 C.

Proof. By Lemma 1.5 equation 3.11 is equivalent to

argmaxfUpc� �x; v� j x 2 X �v�g � fm��v�g �3:12�
and, hence, to

argmax fÿ�2n ÿ 1�
X
S�N

f �S; x; v� � �2n ÿ 1�Upc� �x; v� j x 2 X �v�g � fm��v�g:

�3:13�
Let x 2 X �v�. With the help of equation 3.5, Fi�x; v� as de®ned in formula 3.8,
and q � pc� we come up with

ÿ �2n ÿ 1�RS�N f �S; x; v� � �2n ÿ 1�Uq�x; v�
� ÿ�2n ÿ 1�L2n�F �x; v�� � �2n ÿ 1��q2n L2n�F �x; v��
� R2nÿ1

i�1 �qi ÿ qi�1�Li�F �x; v���
� �2n ÿ 1�L2n�F �x; v��� � �2n ÿ 1��ÿq2n L2n�F �x; v���
� R2nÿ1

i�1 �qi ÿ qi�1��L2nÿi�F �x; v��� ÿ L2n�F �x; v�����
� pc

2n L2n�F �x; v��� � R2nÿ1
i�1 pc

i Li�F �x; v���
� Upc�x; v��:

The second equality is guaranteed by Li�F �x; v�� � L2nÿi�F �x; v���
ÿL2n�F �x; v��� for i � 0; . . . ; 2n �L0��� � 0 by convention). Therefore equa-
tion 3.13 is equivalent to

argmaxfUpc�x; v�� j x 2 X �v��g � fm��v�g �3:14�
which is valid by Theorem 3.2 for c large enough. q.e.d.

Note that

pc
i ÿ pc

i�1 is proportional to c2
nÿiÿ1

and
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pc�
i ÿ pc�

i�1 is proportional to ciÿ1

for i � 1; . . . ; 2nÿ1. Therefore Theorem 3.2 and 3.4 can be reformulated in
terms of weighted Gini indices. Let Gm

c;G
m�
c : RN � C! R be de®ned by

Gm
c�x; v� �

X2nÿ1

i�1
c2

nÿiÿ1�i � L2n��f �S; x; v��S�N �=2n ÿ Li��f �S; x; v��S�N ��

and

Gm�
c �x; v� �

X2nÿ1

i�1
ciÿ1�i � L2n��f �S; x; v��S�N �=2n ÿ Li��f �S; x; v��S�N ��:

Corollary 3.5 There exists c0 � 1 such that for every c > c0 and every v 2 C

(1) argminfG _m
c�x; v�jx 2 X �v�g � fm�v�g and

(2) argminfGm�
c �x; v�jx 2 X �v�g � fm��v�g:

Intuitively, Gm puts exponentially larger weights to larger aggregate ex-
cesses (i.e. smaller satisfactions play a `dominant role'), whereas for Gm� the
opposite is true. Hence a possible minimizer has to take care of relatively
large lowest satisfactions in the ®rst case and of relatively small highest
satisfactions in the second case.

A constant c0 which guarantees these results may depend on the cardi-
nality of the player set N. We are going to present one possible candidate.
Recall that a subset S � 2N is called balanced, if the set f1S jS 2Sg is bal-
anced (see Section 2). It is well-known that every balancedS, which does not
contain the empty coalition, is the union of its minimal balanced subcol-
lections. The balancing coe�cients for a minimal balanced collection of co-
alitions are uniquely determined. Moreover, all minimal balanced collections
of a ®nite set can be generated recursively w.r.t. the number of players as
shown by Peleg (1965). In view of this fact it is possible to compute
b�S� � maxfdS=dT j S; T 2Sg for every minimal balanced set S, where
�dS�S2S are the balancing coe�cients of S.

Note that c�n� �P b�S�, where the sum has to be taken over all minimal
balanced collections S of coalitions of N, is completely determined by the
cardinality n � jN j.
Theorem 3.6 For the real number c0 which occurs in Theorems 3.2 and 3.4 any
c0 � c�n� can be chosen.

For a proof of this theorem the Appendix is referred to.

4. The modi®ed nucleolus as the unique minimizer of an inequality index

So far we have characterized two `classical' single valued members of the
maximal satisfaction solution, namely the pre- and the antinucleolus.
Common to M they satisfy AN, ETP, DES, COV, PO, SNPP, and REAS.

402 P. SudhoÈ lter, B. Peleg



Unfortunately none of these single valued solutions satis®es self duality. The
modi®ed nucleolus introduced by SudhoÈ lter (1996a, 1997) possesses all of the
mentioned properties including SD. In what follows we brie¯y recall the
de®nition and show that it is a member of the maximal satisfaction solution
by directly proving that it maximizes a certain collective satisfaction function
which reduces inequality.

For every game �N ; v� the modi®ed nucleolus W �v� is the set of preim-
putations of v which lexicographically minimize the nonincreasingly ordered
vector of excess di�erences, i.e.

W�v� � fx 2 X �v� j H ��x� �lex H ��y� for y 2 X �v�g �4:1�
where H�x� � �f �S; x; v� ÿ f �T ; x; v��S;T�N 2 R2N�2N

. The modi®ed nucleolus
satis®es SIVA. Let w�v� be the unique element of W�v�. Moreover, W can be
rede®ned by

W�v� � fx 2 X ��v�j �H��x� �lex
�H ��y� for y 2 X ��v�g �4:2�

where �H�x� � �f �S; x; v� � f �T ; x; v���S;T�N . The modi®ed nucleolus satis®es
the above mentioned properties. For detailed proofs SudhoÈ lter (1996a, 1997)
is referred to.

For every descending probability p 2 Rn2 de®ne ~Wp : RN ! R by

~Wp�x� �
Xn2
i�1

pi � z�i ; �4:3�

where z�x� � z � �xi ÿ xj � x�N��i;j2N 2 RN2

. Clearly ~Wp satis®es anonymity.
The veri®cation of unanimity is straightforward and left to the reader.
Moreover, ~Wp reduces inequality as shown in the following

Lemma 4.1 For every descending probability p 2 Rn2 the arising collective
utility function ~Wp reduces inequality.

Proof. It is su�cient (see Moulin (1988)) to show that ~Wp satis®es the Pigou-
Dalton principle:

~Wp�x� > ~Wp�y� holds true for and any two vectors x; y 2 RN with
x�N� � y�N�; xk � yk for k 2 Nnfi; jg and jxi ÿ xjj < jyi ÿ yjj, where
i; j 2 N ; i 6� j are arbitrary.

Without loss of generality yi > yj can be assumed. Let � be de®ned by
xi � yi ÿ � (i.e. xj � yj � � is automatically true). Moreover, by anonymity we
can assume that xi � xj, thus � > 0. For k; r 2 Nnfi; jg we have

xi ÿ xj � yi ÿ yj ÿ 2� � xj ÿ xi � yj ÿ yi � 2�

xi ÿ xk � yi ÿ yk ÿ � � xj ÿ xk � yj ÿ yk � �
xk ÿ xj � yk ÿ yj ÿ � � xk ÿ xi � yk ÿ yi � �
xk ÿ xr � yk ÿ yr:

Therefore z�x� � z�y�; z�x� 6� z�y� and, thus, the Pigou-Dalton principle is
implied by decreasingness and positivity of p. q.e.d.
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The induced inequality index coincides (up to normalization) with

~Gp�x� �
Xn2ÿ1
i�1
�pi ÿ pi�1� � �i � x�N� ÿ Li��xk ÿ xr � x�N��k;r2N �; �4:4�

because equation 4.3 can be rewritten as

~Wp�x� � pn2Ln2��xk ÿ xr � x�N��k;r2N �

�
Xn2ÿ1
i�1
�pi ÿ pi�1�Li��xk ÿ xr � x�N��k;r2N �; �4:5�

In this sense we could call ~Gp a dually weighted Gini index.

For c > 1 de®ne ~P c 2 R22n
by

~P c
i � �cÿ 1�=�c22n ÿ 1�

h i
c2

2nÿi for i � 1; . . . ; 22n

and observe that ~p is a descending probability on f1; . . . ; 22ng. With
~Uc : RN � C! R, de®ned by

~Uc�x; v� � ~W~pc��f �S; x; v��S�N �
we obtain the following result.

Theorem 4.2 There is a c1 �1 such that for every c > c1 the modi®ed nucleolus
in the unique maximizer of ~Uc, i.e.

argmaxf ~Uc�x; v� j x 2 X ��v�g � fw�v�g �4:6�
for every v 2 C.

Proof. By Lemma 1.5 and Theorem 2.10 X ��v� can be replaced by every set X
of preimputations such that X � fx 2 X �v� j x is reasonableg is satis®ed. As
in Section 3 we can assume that v is chosen in such a way that
X � fx 2 RN j ÿ1 � xi � 1; i 2 N ; x�N� � 0g possesses the desired proper-
ties. More precisely, equation 4.6 is equivalent to

argmax
X22n

i�1
c2

2nÿiGi�x; v� j x 2 X

( )
� fw�v�g ; �4:7�

where

Gi�x; v� � minfmaxff �S; x; v� ÿ f �T ; x; v� j �S; T � 2Sg j S � 2N � 2N

and jSj � ig
for i � 1; . . . ; 22n. Take a disjoint copy N� of N and de®ne the dual replication
�N [ N�; �v� of v by

�v�S [ T �� � v�S� � v��T � for S; T � N :

Corollaries 1.6 and 2.6 of SudhoÈ lter (1997) show that
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N�Z; �v� � fx 2 Z j xN � w�v�g ;
where Z � fx 2 RN[N� j xN 2 X and xi � x�i for i 2 Ng. Kohlberg's (1972)
result (Theorem 4.1) applied to �Z; �v� ®nishes the proof. q.e.d.

This theorem can be reformulated with the help of the dually weighted
Gini index Gw

c � ~G~pc .

Corollary 4.3 There exists c1 > 1 such that for every c � c1 and every v 2 C

argminfGw
c �x; v� j x 2 X �v�g � fw�v�g :

Theorem 4.4 For the real number c1 which occurs in Theorem 4.2 any
c1 � 2 � c�2n� can be chosen.

For a proof of this theorem the Appendix is referred to.

Example 4.5 Let �N ; v� be the 4-person weighted majority game, de®ned by
N � f1; 2; 3; 4g and

v�S� � 1; if m�S� � 5
0; otherwise

�
;

where m � �3; 2; 1; 1�. The nucleoli can be computed as:

m � m�v� � �1; 0; 0; 0� m� � m��v� � �1; 1; 0; 0�=2 w � w�v� � m=7

The corresponding Lorenz curves of the satisfaction vectors (Lr refers to the
Lorenz curve of satisfactions w.r.t. r) are sketched in Fig. 4.1. Note that Li���
and Li�1��� are connected via a straight line in order to get a `curve'.

We apply Theorem 2.2 in order to show that the maximal satisfaction
solution is the convex hull (CH) of the three nucleoli, i.e.

M �M�v� � CHfm; m�;wg
holds true (see Figure 4.2).

Fig. 4.1 Lorenz curves of satisfactions
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(1) M�v� � CHfm; m�;wg : Let x 2 CHfm; m�;wg � Y . Then the minimal sat-
isfaction at x is attained by S1 � f1; 3; 4g, because the satisfaction of S1 is
minimal at every extremal point of Y. Note that S1 is the unique coalition of
minimal satisfaction at m�. The coalition S2 � f1; 2g possesses minimal satis-
faction at m;w and second lowest satisfaction at m�, thus

z1 � 1S1 � �1; 0; 1; 1� and z2 � 1S1 � 1S2 � �2; 1; 1; 1�
are members of X �G�x; v��.

The highest satisfaction at every extremal point of Y is attained by
S3 � f1; 3g and S4 � f1; 4g, thus

z3 �
X

S3 6�S�N

1S � �2nÿ1 ÿ 1; 2nÿ1; 2nÿ1 ÿ 1; 2nÿ1� � �7; 8; 7; 8�

and

z4 �
X

S4 6�S�N

1S � �7; 8; 8; 7�

are members of X �G�x; v��. Let A � fz1; z2; z3; z4g. The proof that A spans RN

is straightforward and skipped. The observation that

�1=17� � �z1 � z2 � z3 � z4� � 1N

is valid, implies that A is balanced. Every ®nite superset in the span of a
balanced set is automatically balanced, hence X �G�x; v�� is balanced, thus
Theorem 2.2 implies x 2M�v�.
(2) M�v� � Y : Let xe � �1; 1; 1; 1�=4 denote the `equal treatment' preimpu-
tation. By PO, DES, and ETP

M�v� � CHfm; m�; xeg
is valid. For an arbitrary vector x 2 CHfm; m�; xegnY two cases may occur.
(a) x1 < x2 � x3: (This means that x is a member of the convex hull of m�; b; xe

but it is not on the line segment connecting m� and b (see Fig. 4.2).). The four
coalitions Ri; i � 1; . . . ; 4 satisfying 3 j2Ri 3 1 can be characterized by the
corresponding indicator vectors as

Fig. 4.2 The set M�v�
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1R1 � �1; 0; 0; 1�; 1R2
� �1; 0; 0; 0�; 1R3 � �1; 1; 0; 0�; 1R4 � �1; 1; 0; 1� :

Conversely, let T i; i � 1; . . . ; 4 satisfy 1 j2 T i 3 3, namely
1T 1 � �0; 1; 1; 1�; 1T 2 � �0; 1; 1; 0�; 1T 3 � �0; 0; 1; 1�; 1T 4 � �0; 0; 1; 0� :

The observation that f �Ri; x; v� < f �T i; x; v� holds true for i � 1; . . . ; 4 directly
implies z1 � z3 for every z 2 X �G�x; v�� and zi > z3 for some z 2 X �G�x; v��.
Therefore x j2M�v�� by Remark 2.8.
(b) x1 > x2 < 2x3 � x3 � x4: (This means that x is a member of the convex hull
of m; a; xe but it is not on the line segments connecting m and a or a and xe

respectively (see Figure 4.2).) This case can be treated analogously by ®rst
de®ning coalitions Ri; T i by

1R1 � �1; 1; 0; 1�; 1R2
� �0; 1; 0; 1�; 1R3 � �0; 1; 0; 0�; 1R4 � �1; 1; 0; 0� ;

1T 1 � �0; 0; 1; 0�; 1T 2 � �1; 0; 1; 0�; 1T 3 � �0; 0; 1; 1�; 1T 4 � �1; 0; 1; 1� ;
and then observing f �Ri; x; v� < f �T i; x; v�, thus z2 � z3 for every z 2 X �G�x; v��
and z2 > z3 for some z 2 X �G�x; v��.

In this case the Shapely value can be computed as u � u�v� � �7; 3; 1; 1�=12
and is, thus, a member of the maximal satisfaction solution.

5. Appendix

This section serves to prove Theorems 3.6 and 4.4. The following result is of
technical nature and used in the sequel.

Lemma 5.1 Let n; k 2 N; x; y 2 Rn; and dr 2 Rtr
>0 for r � 1; . . . ; k such that

0 < t1 < � � � < tk � n; �5:1�

xtrÿ1�1 � � � � � xtr

for r � 1; . . . ; k �where t0 � 0�;
ytrÿ1�1 � � � � � ytr

�5:2�

Xtr

i�1
dr

i xi �
Xtr

i�1
dr

i yi for r � 1; . . . ; k: �5:3�

If c � maxfdr
i=d

r
j j r � 1; . . . ; k; i; j � 1; . . . ; trg and b 2 Rn satisfies bn � 0

and bi > c � bi�1 for i � 1; . . . ; nÿ 1; thenXn

i�1
bixi �

Xn

i�1
biyi : �5:4�

Moreover,Xn

i�1
bixi �

Xn

i�1
biyi ; iff x � y : �5:5�

Nucleoli as maximizers of collective satisfaction functions 407



Proof (by induction on k):

(1) k=1. Let d � d1 and d � x1, i.e. x � �d; . . . ; d�. If n � 1, both assertions
((5.4) and (5.5)) are obviously valid. Assume (5.4) and (5.5) are obviously
valid. Assume (5.4) and (5.5) are proved for n < m for some m > 1. If n � m,
then y1 � d is true by (5.2) and (5.3). If y1 � d, then again by (5.2) and (5.3)
x � y. Therefore we can assume y1 < d, let us say y1 � d ÿ � for some � > 0.
We come up with

Rn
i�2diyi � d � Rn

i�1di ÿ d1y1
� d � Rn

i�1di ÿ d1�d ÿ ��
� d � �d1�=Rn

i�2di�
ÿ �

Rn
i�2di ;

thus the inductive hypothesis guarantees

Xn

i�2
biyi � d � �d1�=

Xn

i�2
di�

 !Xn

i�2
bi : �5:6�

The observation

Rn
i�1biyi � b1�d ÿ �� � d � �d1�=Rn

i�2di�
ÿ � � Rn

i�2bi �by �5:6��
� dRn

i�1bi � � � �d1=Rn
i�2di�Rn

i�2bi ÿ b1
ÿ �

shows that the proof is ®nished in this case as soon as

d1
Xn

i�2
bi <

Xn

i�2
dib1 �5:7�

is shown. By the properties of b we have b1 > b2 � d1=dj for j � 2; . . . ; n; thus

Rn
i�2dibi � �nÿ 1�b1 mini�2;...;n di > �nÿ 1�b2d1 � d1R

n
i�2bi;

which shows (5.7).
(2) By (1), assume that (5.4) and (5.5) are veri®ed for k < m and some m > 1.
If k � m, then de®ne d � dk; p � tkÿ2; q � tkÿ1; e � xq; d � xn (which implies
x � �x1; . . . ; xp; e; . . . ; e;|����{z����}

qÿp

d; . . . ; d|����{z����}
nÿq

��: Two cases may occur.

(a) If Rq
i�1dixi � Rq

i�1diyi, let us sayXn

i�q�1
di�xi ÿ �� �

Xn

i�q�1
diyi

for some � � 0, then (1) and the inductive hypothesis applied to

�d ÿ �; . . . ; d ÿ �� and �yq�1; . . . ; yn� with sequence �dq�1; . . . ; dn�
and to

�x1; . . . ; xq� and �y1; . . . ; yq� with sequences d1; . . . ; dkÿ1

respectively implies
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Xn

i�q�1
bixi �

Xn

i�q�1
biyi and

Xq

i�1
bixi �

Xq

i�1
biyi

respectively, where equality can only hold simultaneously in case y � x.
Therefore the proof is ®nished.
(b) If Rq

i�1dixi � Rq
i�1diyi, let us say Rq

i�1dixi ÿ � � Rq
i�1diyi for some � > 0,

then we come up withXp

i�1
dixi �

Xq

i�p�1
di eÿ �

� Xq

i�p�1
di

 !
�
Xq

i�1
diyi

and Xn

i�q�1
di d � �

� Xn

i�q�1
di

 !
�
Xn

i�q�1
diyi :

The inductive hypothesis and (1) implyXq

i�1
biyi �

Xp

i�1
bixi �

Xq

i�p�1
bi eÿ �

� Xq

i�p�1
di

 !
�5:8�

and Xn

i�q�1
biyi �

Xn

i�q�1
bi d � �

� Xn

i�q�1
di

 !
; �5:9�

thus it remains to show thatXn

i�q�1

bi

Rn
j�q�1dj

<
Xq

i�p�1

bi

Rq
j�p�1dj

�5:10�

holds true. As (5.10) can be rewritten asXn

i�q�1
bi �

Xq

j�p�1
dj <

Xq

i�p�1
bi �

Xn

j�q�1
dj

it is su�cient to verify

bq�1 � max
j�p�1;...;q

dj < bq � min
j�q�1;...;n

dj

which is true by de®nition of b. q.e.d.

Lemma 5.2 For every balanced collection S � 2N of coalitions with
jNj� n 2 N there is a sequence �dS�S2S of balancing coe�cients satisfying
maxS;T2S dS=dT � c�n�.

Proof. Let S be a balanced collection and assume without loss of generality
that ; j2S. Then S � Sk

i�1S
i for some minimal balanced collections

Si; i � 1; . . . ; k; with balancing coe�cients �di
S�S2Si which are uniquely

determined. For i � 1; . . . ; k de®ne ai � 1=minS2Si di
S . Observe that �dS�S2S

de®ned by
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dS � Rk
i�1d

i
S � ai

Rk
i�1ai

for S 2S (where di
S � 0 by convention, if S j2Si) is a sequence of balancing

coe�cients which possesses the desired property. q.e.d.

Proof of Theorem 3.6. It is su�cient to prove the result concerning the
prenucleolus, because the antinucleolus can be treated analogously by re-
placing a game by its dual. In order to apply the preceding lemmata, let
�N ; v� be a game, c > c�n�; m � m�N ; v� be the prenucleolus, and z 2 X ��N ; v�
be such that

Upc�z; v� � Upc�m; v�:
It remains to show that z � m holds true. By Corollary 1.4 we can assume that
z is Pareto optimal, because Upc reduces inequality. Let S1; . . . ; S2

n
be an

ordering of the set of coalitions, i.e. fSi j i � 1; . . . ; ng � 2N , such that the
arising vector of satisfactions w.r.t. the prenucleolus is nondecreasing,
whereas the arising vector of satisfactions w.r.t. z is nondecreasing on con-
stant parts of the other vector, i.e.

f �Si; m; v� � f �Si�1; m; v� �5:11�

f �Si; z; v� � f �Si�1; z; v�; if f �Si; m; v� � f �Si�1; m; v� �5:12�
for i � 1; . . . ; 2n ÿ 1. De®ne

x � f �S1; m; v�; . . . ; f �S2n
; m; v�ÿ �

;

y � f �S1; z; v�; . . . ; f �S2n
; z; v�ÿ � 2 R2n

;

and 0 � t0 < t1 < � � � < tk � 2n by

xi � xj for trÿ1 < i; j � tr and r � 1; . . . ; k �5:13�
and

xtr < xtr�1 for r � 1; . . . ; k ÿ 1: �5:14�
Kohlberg's (1971) result shows that the setsSr � fS1; . . . ; Strg are balanced.
According to Lemma 5.2 there are balancing coe�cients �dr

i �tri�1 for Sr sat-
isfying dr

i=d
r
j � c�n� for i; j 2 f1; . . . ; trg. Pareto optimality of z and Lemma

5.1 directly imply that x � y, thus m � z is true. q.e.d.

With the help of Theorem 2.2 (and its proof) of SudhoÈ lter (1997) Theo-
rem 4.4 can be veri®ed using precisely the same technic as proposed in the
preceding paragraph. Instead of presenting a detailed proof we only recall
one characterization of the modi®ed nucleolus in what follows.

A setT � 2N � 2N is calledm-balanced if f1S � 1T j S; T 2Tg is balanced.
The following assertion is the content of SudhoÈ lter's (1997) Theorem 2.2.

A preimputation x of a game �N ; v� coincides with the modi®ed nucleolus
w�v�, if and only if

T�x; a; v� � f�S; T � 2 2N � 2N j f �S; x; v� ÿ f �T ; x; v� � ag
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is m-balanced for a 2 R such that T�x; a; v� 6� ;.
IfT �T�x; a; v� is m-balanced, then there is a balanced set of coalitions

S � 2N[N� , where N� is a disjoint copy of N, such that for every sequence
�dS�S2S of balancing coe�cients for S there is a balancing sequence
�d�S;T ���S;T �2T which arises from the initial sequence by taking components
and sums of two components only (up to a normalization). This assertion is
content of the proof of Theorem 2.2 and shows that balancing coe�cients of
m-balanced collections can be chosen in such a way that their quotients are
bounded by 2c�2n� by Lemma 5.2.

The proof of Theorem 4.4 can be completed analogously to that of
Theorem 3.6 by interchanging the roÃ les of `balancedness' by `m-balanced-
ness', `prenucleolus' by `modi®ed nucleolus', and `Upc ' by ` ~Uc'.
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